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Résumé. 2014 Les réseaux booléens aléatoires sont constitués d’unités logiques binaires connectées aléatoirement.
A chaque intervalle de temps t, chaque unité, ou spin, prend la valeur 0 ou 1 suivant une fonction booléenne de K
signaux d’entrée binaires provenant des K spins connectés. Nous comparons l’évolution au cours du temps des
recouvrements entre des configurations initialement différentes pour les deux modèles suivants : dans le modèle
de Kauffman, les connexions et les fonctions booléennes des automates sont choisies une fois pour toutes à l’ins-
tant initial. Dans le modèle recuit ces paramètres font l’objet d’un nouveau tirage aléatoire à chaque pas de temps.
Les simulations numériques effectuées pour les deux modèles sont dans un accord remarquable avec les prédictions
théoriques faites pour le second modèle.

Abstract 2014 Random Boolean nets are systems of randomly connected binary units (or spins). Each spin 03C3i can

take two possible values (03C3i = 0 or 1). It receives, at time t, K binary input signals coming from K connected spins
and updates its state according to a deterministic Boolean function of the K inputs. We compare the time evolution
of the overlaps between different configurations for the two following models : Kauffman’s model, for which the
connections and Boolean function of each spin are randomly chosen at time t = 0 and remain unchanged at later
times; the annealed model, for which these parameters are randomly reset at each time step. The numerical simu-
lations for both models agree remarkably well with the theoretical predictions available for the second model.
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1. Introduction.

Random Boolean nets were proposed by Kauffman [1]
as models of genetic systems. They are also used as mo-
dels for disordered systems when one is interested by
dynamical properties rather than by static equilibrium
properties. As compared to formal neurons nets, such
as proposed by Hopfield [2], they differ by the fact that
an energy function is not available since interactions

among automata are not symmetric. This is the reason
why attractors are more complex : there can be limit
cycles with eventually large periods. The absence of an
energy function also complicates the theory and the
prediction of the dynamical properties. Even the
simple scaling laws observed by Kauffman [1] from
computer simulations have not yet been formally
established [3-6]. Recently another approach to this
fifteen year old problem has been proposed [7], which

allows theoretical predictions about a closely related
model (the annealed model). This approach allows the
analytic calculation of the time evolution of the dis-
tances between pairs of configurations in the annealed
model.

In the present work, we first generalize the analytic
calculations on the annealed model to the time
evolution of triplets, quartets and quintets of configu-
rations. We then compare these analytical predictions
for the annealed model with numerical simulations
done for the quenched model.
Our main results are the following :
1. When one iterates n configurations (n &#x3E; 2) for

the annealed model, the number x2 of spins which are
identical in 2 configurations has a limit at infinite time,
which is the same for all pairs [7]. Similarly, the number
Xi of spins which are identical in i configurations has a
limit which is independent of the i-plet If one knows
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the Xi for even ’(X2, X4, ..., X2P)’ the values of xi for
odd i(x3, x5, ..., X2p+ 1) can be deduced. We shall write
the equations giving x2, X3, X4 and x5’

2. In the thermodynamic limit (i.e. when the number
N of automata becomes infinite), one cannot distin-
guish the numerical simulations done for the quenched
model from the analytic predictions done for the
annealed model.

2. Definitions.

Let us briefly recall the definitions of the quenched
model (Kauffman7s model) and of the annealed model.

2.1 THE QUENCHED MODEL. - The quenched model
depends on a parameter K. The system consists of a
net of N spins (1i which can take 2 possible values
(Qi = 0 or 1). The time evolution of this system is

given by N Boolean functions of K variables each.

For each i the spins (Jit’ (Ji2’ ..., aiK are randomly
chosen among the N spins «(Jil’ (Ji2’ ..., (JiK are the

inputs of spin ai). The system is defined once a

function fi and the input sites ii, i2, ..., iK have been
chosen for each site i of the net. At each time step
(from t to t + 1), all the spins are simultaneously
updated according to (1).
There exists 22K possible Boolean functions f of K

variables. In Kauffman’s model each functionfi is

randomly chosen among these 22x possible functions.
The system is random because for each i the input sites
ii, i2, ..., ig and the function f are randomly chosen.
This randomness is quenched because the input sites
il, i2, ..., iK and the function f are quenched : they
remain constant over time.
The dynamics of such a net is thus fully deterministic.

Therefore, since the system has only 2N different

configurations, after a time t &#x3E; 2’, the system must
have been at least twice in the same configuration,
and so the system must be periodic with a period P
less or equal to 2N.
The dynamical properties of the quenched model

were studied by numerical simulations [1, 5] Kauff-
man [1] reports that the period P of the limit cycles
follows different regimes depending on K. For low
K (K = 1 or 2), P increases as the square root of the
number N of automata. For K &#x3E; 3, P increases
exponentially with N. Numerous attempts [1, 3-6] to
derive these scaling laws were made without achieving
a complete success, except for K = N [8].

2.2 THE ANNEALED MODEL. - The definition of the
annealed model is exactly the same as the one of
the quenched model. In particular the connectivity
constant K plays the same role. The only difference
with the quenched model is that the connection
structure (the inputs ii, i2, ..., ig of each site i) and the
Boolean function fi are randomly changed at each

time step. Annealed nets are thus nets of probabilistic
automata. Therefore they cannot show any periodic
behaviour.
So the two models look a priori very different since

the quenched model has limit cycles which are absent
in the annealed model.
We shall see however that one can compare the time

evolution of overlaps between configurations in the
two models and that in the thermodynamic limit
(N -+ oo), the two models have identical behaviours
as far as overlaps are concerned.

3. Overlaps between configurations.
In the next section (section 4), we are going to study
the time evolution of the overlaps between configu-
rations in the annealed model. Before doing so, we
want to discuss in the present section the following
question. Given n configurations C1, C2, ..., CII of the
spins ai, i.e. given uf for 1  i , N for each configu-
rations Cu, how many parameters are needed in order
to describe all the overlaps between these configu-
rations ?

Let us denote by AJlv the number of spins ai which
are the same in Cu and Cv, i.e. the number of spins Ui
such that ei = a!. t Similarly, one can define A AlIV as the
number of spins which are identical in Ci, Cu and Cv.
And so on. So for example if we have n = 8 configu-
rations, A13567 is the number of spins Ui such that
a I = U3 = US = U6 =CF 7(a2, or4, cr8 being any-
thing).
When the number N of spins is large, one can define

intensive quantities aÂJlv... by

A priori, for a set of n configurations, there are
2" - n - 1 such quantities alIlV..... The question one
can ask is the following. Are they independent or are
there relations between them ?

It turns out that for Ising spins ( O"i = 0, 1 or ai = ± 1),
only the even ones are independent and all the odd
ones can be expressed as a function of the even ones
(even or odd refer to the number of indices of the
quantity alIlV..)’ For example, we will prove that

One can prove that for an arbitrary number n of
configurations, odd a’s are always functions of even
a’s. One could also try to generalize formulae (3)
and (4). But since in the rest of the paper we will never
consider sets of more than 5 configurations, we will
not discuss here the problem of general n because this
would be too long and would require the introduction
of heavy notations. So we will limit ourselves to the
proof of (3) and (4).
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Let us first prove (3). If we have 3 configurations C1,
C2, C3, let us call Nxv the number of spins Q such that
cla = a" = 1 - (JV. Then one has

This last equation expresses just the fact that a spin
is either the same in the 3 configurations or differs in
one configuration from the two others. Eliminating
the XV, one gets equation (3).

Similarly, to prove equation (4), one can define Ny.
as the number of spins ai such that at = 62 = a? =
a:- = 1 - y? and Hz45 the number of spins ai such
that Q1i - 62 - J? = 1 - a = I - a? (of course y,
and zÂ/J are defined in a similar way for all A and u).
Then one has

Plus all permutations of these first 3 equations and

This last equation expresses again that the total
number of spins is N. Eliminating again the y’s and
z’s, one gets equation (4).
At the end of this section, we can make two remarks.
- If the spins were not Ising spins but Potts spins

«(Ji = 1, 2, 3, ..., q) i.e. would have q possible values
instead of 2 in the Ising case, then one could not relate
the odd a’s to the even a’s.
- One can wonder whether all the even a’s are

independent or not. Let us just give a simple example
which shows that the a with 4 indices cannot be

expressed as a function of the a’s with 2 indices. Consi-
der the two following sets of 4 configurations 4 spins.

In both cases Allv = 2, Vp and v, but A1234 = 1 in
case I and A1234 = 0 in case II. So clearly A1234
cannot be expressed as a function of the Allv.

4. Time evolution of the overlaps in the annealed modeL

In this section, we are going to generalize the calcu-
lation of the time evolution of the distance between

pairs of configurations (Derrida and Pomeau, 1986)
[7] to the case of the overlap of n configurations.
We keep the notations of the previous section. Let

Na,x,,... be the number of spins which are the same in
configurations C;." Cp., C,... at time t. Let us define by
Nal the number of spins which are the same in
configurations C,,, C,, Cv... at time t + 1. In refe-
rence [7], it was shown that the time evolution of ain
was given by :

Let us recall briefly how one can get (7). Among the N
spins, N(a12)K have all their inputs the same in Cu
and C, and N[1 - (a12)K] have at least one of their
inputs different. The spins which have all their inputs
the same in C1 and C2 will be the same in the two
configurations at time t + 1. On the contrary, the
spins which have at least one of their inputs different
at time t, have a probability 1/2 of being the same at
time t + 1 and 1/2 of being different at time t + 1.
Therefore

which gives (7).
Let us now discuss the case of 3 configurations.

The time evolution of a12, a13 and a23 will be given
by (7). Let us now calculate a’123. One has

In (9), the first term represents the spins which have
all their inputs the same in Cl, C2 and C3. The second
term represents the spins which have all their inputs
the same in C1 and C2 but at least one input differs in
C3. These spins have a probability 1/2 of being the
same in C1, C2 and C3 at time t + 1. The similar terms
for the pairs (C1, C3) and (C2, C3) are the next two
terms. Lastly, the last term represents the spins which
have all their inputs the same in none of the pairs
(C1, C2), (C2, C3) or (C1, C3). These spins have a
probability 1/4 of being the same in the 3 configuratons
at time t + 1. One can simplify (9) and one gets

If one uses (7) to express the auv in terms of the a,,, one
gets :

which is again the relation (3) found in section 3. So
the time evolution of a123 could have been guessed
directly from (3) without any calculations.
One can use the same procedure and get the time

evolution a1234. The reasoning is exactly the same
although it becomes longer and more complicated
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So we will just give the answer

In principle, one can carry on and compute the over-
laps for a larger number of configurations but the
calculations become more and more complicated
and we did not find yet the expression in the general
case.

Obviously, one does not need to do the calculation
for odd a’s because of what was said in section 3
and because the time evolution of al234, can be

obtained from (7) and (12) using equation (4).

5. Results of computer simulations of the quenched and
of the annealed models

In this section, we are going to present the time evo-
lution of the alIlV... obtained by numerical simulations
for both the quenched and the annealed models.
Our procedure is the following. For a net of N

spins (N = 32, 256, 2 048 and 16 384), we choose at
random at time t = 0, 4 configurations C1, C2, C3, C4.
Each spin a, in each configuration is chosen to be 1
with probability 1/2 and 0 with probability 1/2. Then,
we build the net (i.e. for each spin ai we choose its K
inputs ii’ ..., iK and the function fi at random). Then
we compute the configurations C1, C2, C3 and C4
at time t = 1. For the quenched model, we keep the
ii; ..., iK and thefi fixed Whereas we change them for
the annealed model. Then we compute the 4 confi-
gurations at time t = 2. Again, we change the rules for
the annealed model and we keep them fixed for the
quenched model. And so on. Doing that, we can
measure a12(t), a123(t), al234(t) for both the quenched
and the annealed models. So we get the time evolution
0  t  50 of these 3 quantities.
For small sizes (N = 32, 256), the sample to sample

fluctuations are rather large. So we decided to average
these quantities over many samples. We averaged over
50 samples for N = 16 384, 400 samples for N = 2 048,
3 200 samples for N = 256, 25 600 samples for N = 32,
so that the amount of computer time devoted to each
size is roughly the same.

In the figures 1 and 2, we plot the averaged values
of a12(t) and a1234(t) versus time for sizes N = 32,
256,2 048 and 16 384 for nets with K = 3. We do not
show a123(t) because the curves are very similar.
The full curve represents the result obtained from

expressions (10) and (12). Since at time t = 0, the 4
configurations are chosen at random, one has on
average :

Fig 1. - Time evolution of the overlaps between 2 ran-
domly chosen configurations for several sizes of a random
Boolean network of connectivity K = 3. [N = 32 ( + ),
N = 256 (8), N = 2 048 ( x ) and N.= 16 384 (0)]. The full
curve represents x2(t), the result of expression (15). Figure 1 a
gives the simulation results of the quenched model and
figure 1 b the simulation results of the annealed model.
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Fig. 2. - Same conditions as in figure 1, except that we have
plotted the overlaps between 4 configurations a1234(t), and
that the full curve corresponds to X4(t) given by expression
(16).

Since all the allv are the same at time t = 0, they will
remain equal at later times. Therefore if one defines
X2(t), X3(t), and x4(t) by

then the time evolution of x2(t) and x4(t) are given
from (12) and (13) by

with the initial values

So x2(t) and x4(t) are the predictions of the calcula-
tions done in section 4. The full line represents X2(t)
in figure 1 and x4(t) in figure 2.

It is easy to see from (3) and (4) that

In figures 3 and 4, we represent the same quantities
as in figures 1 and 2 in the case K = 2.

Again as N increases, one sees that the results
become closer and closer to the theoretical predictions
x2(t) and x4(t) given by expressions (15, 16, 17). So
again within the accuracy of our calculation, we see
that as N -+ oo, the results for the quenched and for
the annealed models are the same.
For K = 2, we netherless see that the convergence

(as N increases) is slower than for K = 3.
The formulae of section 4 and therefore the pre-

dictions given by (15),(16) and(17) are valid in principle
for the annealed model in the thermodynamic limit
(N -+ oo). For finite N, even the data for the annealed
model exhibit some finite size effects (see Figs. 1b, 2b,
3b, 4b).

It is interesting to have an idea of the amplitude
of these finite size effects. For the quenched model,
they are stronger for K = 2 than for K = 3.

Let us restrict our analysis of finite size effects to the
quenched model for K = 2. We see in figures 3a and
4a that, as t -+ oo, x2(t) and x4(t) computed from
formulae (15) and (16) converge to 1. Whereas for finite
N, the averaged values of a12(t) and a1234(t) saturate
as t -+ 00. Let us denoye by b12 and b1234 their limits
as t -+ 00

In figure 5, we have plotted log (1 - b12) and log (1-
b1234) versus log N. We have estimated b12 and b1234
by computing al2(t) and al234(t) at time t = 50 and
t = 100 to make sure that the limits had been reached
In figure 5, we show the results for N = 8, 16, 32...512.
For larger sizes N, the values at time t = 50 and
t = 100 had not yet reached saturation and we did not
get reliable values of b12 and b1234.
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Fig. 3. - Same conditions as in figure 1 for connectivity
K = 2 (overlaps between 2 configurations).

Fig. 5. - Finite size effects in the quenched model for
K = 2. Log-Log plot of 1 - b12 and 1 - b,234, defined
by equations (20) and (21) versus N.

Fig. 4. - Same conditions as in figure 2 for connectivity
K = 2 (overlaps between 4 configurations).

The log-log plot seems to indicate that b12 and b1234
converge to 1 as N increases in the following way :

An estimate of the slope gives

This figure 5 confirms the idea that the annealed and
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quenched models have the same time evolution of
a12 and a1234 even at large time, provided that the
size N is large enough.

6. Conclusion

We have seen that the time evolution of the overlaps
of 3, 4, 5 configurations can be computed for the
annealed model and we have given the expressions
of these time evolutions (Eqs. (7), (10), (12) and (4)).
Comparing the results of the numerical simulations,

we have seen that for N large enough, one cannot
distinguish the time evolution of the quenched and of
the annealed models. The following simple argument
can explain this similarity.
The quenched model differs from the annealed

model because of the correlations introduced by signals
incoming on a given node following different paths.
Let us consider a site i at time t. It has K input sites
at time t - 1. Each of these sites have K input sites
at time t - 2 and so on up to initial time t = 1. The
value of ai at time t depends upon the knctions fi
located on M sites.

If these sites are all different, their are no correlations
between functions fj and both models have identical
behaviour. This occurs with a probability P

which, at finite time delays t, goes to 1 when N goes
to infinity. The two models thus have identical beha-
viours the thermodynamic limit.

Further refinements of the above argument are still
needed in order to predict the correct time dependence
of the finite size effects observed in our simulations.
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