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Zero temperature magnetization of the random axis chain
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Résumé. 2014 Nous calculons l’aimantation à température nulle du modèle d’axes aléatoires à une dimension dans
la limite d’une forte anisotropie et d’un faible champ magnétique h. Pour une distribution uniforme des axes aléa-
toires, nous obtenons m = Ch1/03B4 où l’exposant critique 03B4 = 3 comme pour un verre de spin d’Ising à une dimension
avec une distribution gaussienne des interactions.

Abstract. 2014 We have calculated the zero temperature magnetization of the random axis chain in the limit of strong
anisotropy and small magnetic field h. For the uniform distribution of random axes we obtain m = Ch1/03B4 with the
same critical exponent 03B4 = 3 as in the one dimensional Ising spinglass with a Gaussian distribution of bonds.
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The random anisotropy axis model (RAM) was
introduced by Harris et al. [ 1] to describe amorphous
intermetallic compounds. The possibility of both
- ferromagnetic and spinglass like behaviour - has
stimulated much theoretical work. In the mean field
limit the model is always ferromagnetic [2], no matter
how strong the random anisotropy. Below four
dimensions the ferromagnetic order is destroyed, as
can be shown with a domain wall argument [3] as
well as with a renormalization group analysis [4].
Whether or not the model has a spinglass phase is
still a matter of controversy. Furthermore, if a spin-
glass phase exists, it is not clear whether its critical

properties are related to those of the more conven-
tional spinglass model of Edwards and Anderson [5].

Recently Bray and Moore [6] have studied the
RAM numerically in two dimensions, using a large
cell renormalization group method. They interpret
their results in terms of a zero temperature phase
transition in the universality class of the Ising spin-
glass.
The RAM in one dimension and zero applied field

has been considered by Thomas [7], who showed
that the ground state is nonferromagnetic. He also
discussed the effect of a magnetic field in terms of
domain wall argument : weak bonds of strength
I Jij I  Jo divide the chain into segments of length

L - 1/Jo. A magnetic field h can flip the magnetic
moment of such a segment M L ’" J L, provided the
energy gain ML h compensates the bond energy Jo.
This yields m = ML/L = Ch1/3’.

In this note we present an exact calculation of the
zero temperature magnetization for the random axis
chain (RAC). The result agrees with the domain wall
argument of Thomas and furthermore yields an

explicit expression for the amplitude C.
The RAM is defined by the Hamiltonian

for d component spins S, of fixed length Si - Si = 1.
Nearest neighbours are coupled by a uniform exchange
interaction J &#x3E; 0. The direction ni (0; = 1) of the
local anisotropy varies randomly from site to site,
whereas the strength of the anisotropy D and the
applied magnetic field H are the same for all sites.
We restrict our discussion to the case of large aniso-
tropy, D &#x3E;&#x3E; J and D &#x3E; I H 1, such that the spins point
either parallel or antiparallel to the local axis ni

In terms of these new variables the Hamiltonian
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reduces to an Ising model

with random bonds Jij = J(ni - OJ) and random fields
H; = (H - ni). Note that the fluctuations in the bonds
and in the fields are correlated.
We have calculated the groundstate energy of the

model (3) in the limit of small magnetic field. Our
method of calculation is a generalization to the RAC
of a method already used for the onedimensional
spinglass [8]. Hence we keep our discussion brief and
refer the reader to reference [8] for any details.
One first derives a recursion relation for the ground-

state energy of a chain with L spins. If the spin UL =
+ 1(UL = - 1) then its groundstate energy is denoted
by - FL(- GL). These quantities obey the following
coupled recursion relations

with

A single, closed equation is obtained for the diffe-
rence 2 CL = (GL - FL)IJ

CL remains finite as L -+ oo and obeys a stationary
probability distribution P(CL, nL) which depends on
the local random axis nL. It satisfies the integral
equation :

with h = H/J.
Here we have assumed that the ni are independent

variables, which all have the same distribution p(n).
Once the distribution P(C, n) is known, one can cal-
culate the groundstate energy - E, via

where the average  ... &#x3E; is taken over n, n’ and C’.
In this section we present the solution of the integral equation for P(C, n). As a first step we break up the

integration over C’ and work out the various contributions explicitly :

To solve this equation, it is useful to look at the moments of the distribution function

In the following we specialize to the isotropic distribution p(n) and consider the limit of a weak magnetic field
only. In that case the angular dependence of the integral kernel (9) allows one to derive a closed set of equa-
tions for the low order moments. For zero magnetic field one has the solution Qo(C, h = 0) = ð(C). For fmite
but small magnetic field we expect Qo(C, h) to be concentrated in a small region around C = 0. We multiply
equation (9) by (h - n)m, integrate over n and expand for small C. The first three equation (m = 0, 1, 2) read :



957

with

Let us look for a solution which has the following
properties :

a) Qo and Q2 are even in C and Ql is odd in C.

b) For small C and h, Qm(C, h) have a scaling form

We shall use this ansatz to simplify the equations and
then show explicitly that this ansatz does indeed solve
the equations.

To leading order in C and h equations (12, 13)
imply

and

Therefore our ansatz is only consistent if we choose

and

With these results, equation (11) reads

where

Hence one must have

With the substitution

we can reduce equation (18) to an ordinary differential
equation

This equation is solved by

with

and K 1/3 a Bessel function.
The groundstate energy is a weighted integral of the

stationary probability distribution (Eq. (8)). In par-
ticular for the isotropic distribution p(n), it is given
by

For small h we have seen, that P(C, n) is concentrated
in a small region around C = 0. Hence we can expand
around C = 0 and obtain

This integral can be further transformed with help of
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the substitutions as defined above

We differentiate with respect to H, to obtain our final
result for the magnetization

where Ad is given in equation (14). This implies

m = 0.9050 (H/J)1/3 for xy spins (d = 2) and

m ‘ 0.6123 (H/J)1/3 for Heisenberg spins (d = 3).

To conclude : the exact calculation agrees with the
result - m = Chl/3 - of a domain wall argument
and explicitely yields the amplitude C. The critical
exponent 6 is the same as for the onedimensional

Ising spin glass with a nonzero probability of zero
bonds [8]. A domain wall argument exists also for the
Ising spin glass [9] with an arbitrary distribution of
bonds. In that case the exponent 6 was shown to
depend on the density of bonds at Jij = 0 [8, 9]. It
would certainly be interesting to generalize our cal-
culation for the RAC to an arbitrary distribution of
random axes [10]. Our method of solution, using the
moments Qm of the distribution function P(C, n),
relies on the isotropy of p(n). So far we have not been
able to generalize it to an arbitrary distribution p(n).
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