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Diluted Neural Networks 
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It is possible to construct diluted asymmetric models of neural networks for 
which the dynamics can be calculated exactly. We test several learning schemes, 
in particular, models for which the values of the synapses remain bounded and 
depend on the history. Our analytical results on the relative efficiencies of the 
various learning schemes are qualitatively similar to the corresponding ones 
obtained numerically on fully connected symmetric networks. 
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1. I N T R O D U C T I O N  

For  tile last few years a great deal of work,  numerical  and analytical, has 
been done on the Little Hopfield model  (1'2) of neural networks and on 
generalizations of it. Analytical work on the equilibrium properties were 
made possible using two basic simplifications: the synaptic connect ions 
were taken as symmetric, and each neuron  was connected to every other  
neuron.  The thermal properties were then computed  using the replica 
method.  (3) For  this model  several at tempts have been done to analyze the 
effect of dilution and /or  asymmetry /4  9) 

Recently a diluted, asymmetr ic  version of the Lit t le-Hopfield model  
has been introduced. (1~ For  this model,  the dynamics can be solved 
exactly. Hence, it is tempting to look at the properties of the Lit t le-  
Hopfield model  and its generalizations for this diluted, asymmetric  
architecture in order  to determine in an exactly soluble case the effect of the 
relevant parameters.  It turns out that  models that  are difficult to study 
analytically for the fully connected network,  with symmetric interactions, 
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can be solved exactly on this diluted, asymmetric network. This is the 
motivation of the present paper, which deals with learning schemes where 
forgetting occurs: we solve here for the dynamical properties of the diluted, 
asymmetric network with learning schemes leading to short-term memory 
effects~11 13) or long-term memory effectsJ 14) 

In Section 2 we give the general framework of dilute, asymmetric 
models and the equations that give the storage capacity of the network for 
any given learning scheme. In Section 3 we recall the definition of the 
learning schemes in which we are interested and introduce the quantities 
that measure the number of stored and memorized patterns. In Section 4 
we give the solution for the diluted, asymmetric network with these 
schemes. We always find a phase diagram very similar to the ones obtained 
by numerical or analytical calculations for the fully connected symmetric 
network. In all cases, the problem can be reduced to the study of a one- 
dimensional random walk with constraints depending on the learning rule. 

2. T H E  D I L U T E D ,  A S Y M M E T R I C  N E T W O R K  

We consider the general framework introduced in Ref. 10, that is, we 
work with a system of N Ising spins ~i = + 1 with a very low connectivity. 
The interactions J~ are given by 

j~= C~T 0 (1) 

where C o is chosen (independently of C~i) at random according to the 
distribution 

p(Co)=C 6(Co-1)+(1-C)~(Co) (2) 

and T U is a matrix that depends on the stored patterns: a given learning 
scheme is characterized by a given prescription for fixing the T~. We will 
limit ourselves to the large-C limit, with N--* ~ first (the solution is valid if 
C <~ log N)J 1~ 

The dynamics is defined by the following updating rule. If spin i is 
updated at time t, this means that 

ai(t ) = + 1 with probability ( 1 + e 2/~h,) - 1 
(3) 

~i(t) = - 1 with probability ( 1 + e 2"h') - 1 

where 

h, = Z J~oj(t) (4) 
J 
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Since the interactions Jo are not symmetric, there is no Hamiltonian, no 
partition function, and the temperature fl ~ is only defined through the 
updating rule. 

The retrieval quality m.(t) of a learned pattern {i ~ is defined by 

m~,(t) = 1/N~, {ii'~i(t) (5) 
i 

As shown in Ref. 10, the evolution of mu(t ) is given, for parallel dynamics 
(all sites are updated at each time step), by 

m.(t  + 1) = f~(m.(t)) (6) 

and for random sequential updating (a randomly chosen site is updated 
during the time interval dt = l/N) by 

dm~(t)/dt = f~(m~(t)) - m~(t) (7) 

where f~(m), in the limit C--+ a2, is given by 

f~(m) = fo~ dz/(2~z) 1/2 e--z2/2 tanh[flCA.(m + zd.)  ] (8) 
- - o o  

with 

where A. 
patterns: 

d .  = [(D~ - A.2)/CAu 2 ] 1/2 (9) 

and D.  are the following averages, on the randomly stored 

One can notice that by making a gauge transformation such that ~.~z = + 1 
for all i, A~ is given by Au = T,j. 

The critical temperature 1/fi* is given by (dfJdm)(O)= 1 and therefore 
is a solution of 

f 
oo 

f l * C A ,  dz/(27c) 1/2 e z2/2 cosh-2(fl*CA/~Auz) -= 1 
o o  

(12) 

and the transition is of second order. 
At zero temperature, the stationary value m~, i.e., the value of m.(t) in 

the limit t ~ c~, is a solution of 

m~ = (2/701/2 fm;~. dz e -z2/2 (13) 
"~0 

A.  = ~' i~j  Tij (10) 

D~, = [ ~ i ~ ' ; T u J : - -  T~j 2 (11) 
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and m,  is nonzero if 

Au < (2/~) 1/2 (14) 

For a general learning scheme, the averages A t and D r depend on #, and 
criterion (14) gives which patterns are memorized. If one wants the 
patterns retrieved with a quality at least equal to a given value M, one has 
the criterion 

~<M/X (15) 

where X is defined by 

M =  (2/~) 1/2 dz e z2/2 (16) 

Hence, for any given learning scheme, the storage properties of the 
system are obtained by the computation of the mean A~ and mean square 
D~ of the synaptic efficacies (this means also that two different learning 
schemes, leading to the same values of A t and D~ have the same storage 
properties). This would not be true for the fully connected network, where 
the result depends also on the correlations between the Jo (such as 
JuJjkJkt). One can note, however, that the qualitative results obtained by a 
signal-to-noise analysis provides a criterion similar to (14) [-but with an 
unknown parameter instead of (2/~)1/2]. Such a criterion leads to a 
continuous transition, whereas in the fully connected network, one has 
a discontinuous transition. Apart from this crucial difference, the scaling 
properties with the connectivity are (qualitatively) the same for the diluted 
and nondiluted networks. 

3. L E A R N I N G  A N D  F O R G E T T I N G  S C H E M E S  

Simple modifications of the Hopfield scheme, keeping a Hebbian type 
learning rule, but leading to forgetting effects (instead of a complete 
deterioration of the memory due to overloading), have been studied either 
numerically or analytically. (1'1~ ~3) These models are characterized by an 
iterative learning rule: once some configurations have been stored, the 
acquisition of a new configuration is obtained via a modification of the 
synaptic efficacies that depends only on the new configuration. Further- 
more, the rule is local at the synaptic level, that is this modification 
depends only on the activities of the two neurons involved (presynaptic 
and postsynaptic neurons). We will consider here three of these models. Let 
us first recall the definition of these models, and then their main properties. 
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Although in the fully connected network the connectivity C is identical 
to the number of neurons N, having in mind the diluted network we study 
here, we will write C instead of N whenever appropriate. 

Model A: Hopfield scheme. The learning of the pth pattern ({P~) is 
obtained via 

Tu(p) = To( p - 1)+ (l/C) {P YP.,., j (17) 

Model B: Marginalist scheme and weighted schemesY ~'~2) 
B1. Marginalist scheme. The learning of the pth pattern is 

Tu(p) = 2[Tu( p - 1) + (e/C) ~P,~O] (18) 

with 2=exp(-e2/2C).  If p~ is the total number of stored patterns, (18) 
leads to the formula 

Ps 

T(i(p)=(e/C) ~, e-u~z/2c~ps #+!~ps j~+t (19) 
#=1  

B2. Weighted schemes. A straightforward generalization (~2) of this 
model is the prescription 

Ps 

To.(p)=(1/C) ~ A(t~/C){ ps ~+*{P' #+' (20) 
u=l 

where A is any given positive function with the appropriate normalization 

Ps 

(1/C) Z A2(I~/C) = K  (21) 

where K is a constant and does not depend on C. The thermodynamics of 
model B for the fully connected and symmetric network have been 
solved (~2) in the same way as those of model A. (3) 

Model C: Learning within bounds. (~,~,~3) The synaptic efficacies are 
constrained between a lower and an upper bound, - L  <<, T o. <~ L: 

T0(0) = 0 

~ T o ( p -  1)+ (eL/x/-C;) ~Pi~P/ if no bound is reached (22) 
Tij(P) =  +Lor - - L  otherwise 

Hence, each T~ makes a random walk between two nonabsorbing walls. 
This model C has been studied numerically (~'~'~z) for the fully connected 
symmetric network and has the very same qualitative behavior as the 
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marginalist scheme. Analytical solution of this model is difficult because the 
T o are correlated. 

Models B and C lead qualitatively to the same short-term memory 
effects. The parameter e characterizes the amplitude with which a pattern is 
stored. Two other parameters, g and cr are of interest to study the large-C 
limit: 

g = p~/C (23) 

where p, is the total number of stored patterns since the beginning of the 
learning process, and the capacity 

0~= pm/C ( 2 4 )  

where p,,, is the number of patterns that are effectively memorized. 
For e smaller than a critical value ec, these models present three 

regimes (Fig. 1): g < g*(e); g* (e )<  g < g~(e); and g > go(e): 

1. A good learning regime, g < g*(e), where every stored pattern is 
well retrieved and therefore P m =  P~ (i.e., g = :r 

2. When one increases the number of stored patterns g, one then 
finds a forgetting regime g * <  g < gc where only the most recent 
patterns are memorized and therefore cr < g. 

3. Finally, above a critical value gc(e), one reaches a complete 
deterioration regime where no stored pattern is memorized, cr = 0. 

IX 

g*(E) 

g*(c) go(E) 
Fig. 1. For  ~ < ec, capac i ty  ~ as a function of g = p,/C, where Ps is the to ta l  n u m b e r  of s tored 

pat terns .  Fo r  g < g*, all  pa t te rns  are memor ized  (c~ = g). Fo r  g * <  g < go, only the s t ronges t  
ones are memorized.  Fo r  g > go, no pa t t e rn  is memorized.  
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The Little-Hopfield model is recovered in the e ~ 0 limit. In that 
limit only the two extreme regimes can be observed and g* = gc 
(~0.14 for the fully connected, symmetric network, and 2/~z for the 
diluted, asymmetric network). 

For  ~>ec,  the complete deterioration regime never occurs (go= oo) 
and for g--* oo the network reaches a stationary regime: the capacity c~ has 
a limit ec(c), which is the stationary number of memorized patterns 
(Fig. 2). When e increases from ~c, this stationary capacity c%(e) has a 
maximum eopt at a certain value eopt (Fig. 3). All these functions g*(e), 
go(e), ~c(~) and ec, c%pt, eop~ depend on the learning scheme and will be 
computed in the next section. Note that ~opt is always much smaller than 
the maximal capacity g*(0) of the Little-Hopfield model. 

Model D: Learning within absorbing bounds. This model has been 
introduced and studied numerically Peretto. (~4) The learning rule is iden- 
tical to that of modelC,  except that now once a synaptic efficacy has 
reached a bound + L  or - L ,  it remains fixed at this value forever. This 
leads to long-term memory effects: it is now the oldest learned patterns that 
are memorized; clearly, when the number of stored patterns increases, the 
number of frozen synaptic efficacies increases, hence there is less and less 
plasticity to store the relevant information on the new patterns. This 
indicates, as confirmed numerically, (~4~ that one has similar diagrams 
(those of Figs. 1-3), where now c~ gives the number of first learned patterns 
that are still memorized. 

In the next section we consider these models on the diluted, asym- 
metric network. 

Fig. 2. 

=tic) 

I 
g*(c) g 

The same as Fig. 1, for ~ > ~,.: gc is infinite, and ct has a nonzero limit ~c(~) for g ~ ~. 
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IX 

0~opt 

Ec Eopt 

Fig. 3. Asymptot ic  capacity ctc(e ) as a function of e. 

4. R A N D O M  WALK SOLUTIONS 

4.1. General Solut ion 

We now consider a diluted, asymmetric network as defined in Sec- 
tion 2. The synaptic efficacies are given by (1), and we take the T o as given 
by the learning schemes of Section 2. We restrict ourselves to the 
equilibrium (i.e., the infinite-time limit) properties, that is, we consider the 
storing capacities as given by Eqs. (13) (16). For  each model, we have to 
compute the mean values A,  and Du. 

Recall that p~= gC is the total number of patterns that have been 
learned, and Pm= o~C is the total number of memorized patterns that are 
effectively memorized (these are the most recently learned patterns in 
models B1 and C, the oldest ones in model D). Whenever condition (14) is 
true for all ~, l < / ~ < p s ,  then c t=g:  all of what has been learned is 
memorized. 

When g reaches g*, (14) becomes an equality: 

max A, = (2/7z) I/2 (25) 
# 

For g larger than g*, the capacity e decreases, and ~ is given by the 
number of # such that (14) is true. When g increases, c~ might reach zero at 
a value gc or an asymptotic value c~ c > 0 for g ~ oo (see Section 2). 

In all cases that we consider, A~ is a monotonic function of # 
(increasing with ancestry for models B1 and C, and with recency for 
model D). Equation (25) can be written, in the large-C limit, 

A(ct, g) = (2/z~) 1/2 (26) 
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with 

A(~, g ) =  [D(cr g)/A2(o~, g)]l/2 

A(ct, g )=  lira A. 

(27) 

(28) 

D(e, g ) =  l i r a  (Ou--Au2)/C (29) 
C~oo 

where # = p, - eC for models B1 and C, and # = c~C for model D. Once the 
function A(e, g) has been determined, the thresholds g*(e) and gc(a) are 
respectively given by 

d(g*,  g*)=  (2/701/2 (30) 

d(O, go)= (2/7Z) 1/2 (31) 

For g* < g < go, the capacity a(e, g) is given by (26). In particular, for 
> e~., there is an asymptotic capacity c~c(e) given by 

A(cq., oo)= (2/n) l/2 (32) 

and the optimal capacity is obtained by 

[-d~/d~](aopt) = 0, (Xop t = ~e(Gopt) (33)  

4.2. W e i g h t e d  Schemes 

We consider first the simplest case, model B2, which contains as a 
particular case the Little-Hopfield model (model A) for A = AH: 

AH(U) ---- 1/X ~ ,  u <~ g = p , /C  
(34) 

=0, u> g 

and the marginalist scheme (model B1) for A = Am: 

~e exp( - a2u/2 ), u <<. g 
A,~(u) = (0,  u > g (35) 

For any decreasing function A, one finds 

A(c~, g) = A(a) 

D(~, g) ----- A 2 ( u )  du 

(36) 

(37) 
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Resolution of Eqs. (30)-(33) gives for the marginalist scheme (35) 

~c = ( g / 2 )  1/2 (38)  

and the functions 

g*(e) = (1/e 2) log(1 + ez/e~. 2) (39) 

gc(e)=-(1/e2)log(1-ez/ec 2) for e<ec  (40) 

For g* < g ~< g~., the capacity e is 

~(e, g) = (1/e 2) log{~Z/ec2 [ 1 - exp( -e2g)] } (41) 

and the asymptotic capacity c~c(e ) for e ~> ec is 

~c(e)  = (2/~; 2) log(e /co)  (42)  

The optimal capacity C~op t is reached at ~ = ~;opt: 

eopt = ec ~ = 2.066 (43) 

~ o p t  = 1/gZpt = 0.234 (44) 

One should notice that the ratio 1/e = 0.368, between the optimal capacity 
and the maximal capacity of the Little-Hopfield scheme, is very close to 
the corresponding ratio obtained for the nondiluted, symmetric case, (12) 
namely 0.0489/0.138 = 0.354. 

If one requires a retrieval quality at least equal to M, one has to 
replace (2/~) 1/2 by MIX [see (15), (16)] in Eqs. (25), (26), and (30)-(32). 
This gives the same solutions (39)-(44), with now Ec = X/M. For example, 
if one choses M = 0.97, for the marginalist scheme one has e~ = 2.23, ~opt  = 

1/(ccZe) = 0.074, Cop t = e c ~ = 3.68. In the limit of very good retrieval (M 
very close to one), Eqs. (39)-(44) become identical to those obtained in the 
same limit for the nondiluted, symmetric case. (12) 

4.3. Learning within Bounds (Model C) 

In this scheme each synaptic efficacy T~ is bounded above and below: 

- L  <~ To.<<,L (45) 
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and each pattern is stored with a uniform acquisition amplitude, provided 
a bound is not reached. That is, with the appropriate scaling, one has 

Tij(p)  = Tij(p - 1) + (eL/x/--C) ~Pi~Pj if no bound is reached 
(46) 

= value of the bound ( + L or - L) otherwise 

Let us fix the scale by 

L = C1/2/~ (47) 

Thus, the probability distribution of a given T U as a function of the number 
of stored patterns, chosen at random, is the probability distribution of a 
one-dimensional random walker making unit steps _+1 with equal 
probability within two nonabsorbing walls at + L. Solving this problem for 
the fully connected network ( C = N )  is difficult because one has to deal 
with the correlated random walks of different T U. Here, in the dilute case, 
one needs only to consider the average properties of one synaptic efficacy: 
we just have to solve for the problem of one random walk between walls. 

We will only consider the simplest case where L is an integer. There is 
no difficulty a priori  to generalize the calculation for a noninteger L, but 
the calculations are a little more complicated for finite L, and should 
become identical in the infinite-L limit. One could also generalize to 
synaptic efficacies having a given sign (that is, 0 ~< Tr ~< L or - L  ~ T o ~< 0 
for each Tr 

To solve our problem we need the averages ( z )  and ( z 2 ) / C  in the 
large-C limit, after t patterns have been stored, z being the position of the 
random walker, knowing that at time r the walker makes a + 1 step. Let 
pz( t )  be the probability distribution of the position z at time t. At any time 
t ~ r the evolution equations for Pz are 

p z ( t ) = � 8 9  for [ z [ < L  (48) 

p +_L(t) = �89 +(c -~ ) ( t  -- 1) + p +_L(t - 1)] (49) 

with the initial condition 

p:(O) = 6~,o (50) 

and at time z 

pz (z )=p~  1 ( ~ - 1 )  for I z [ < L  

PL(z) = P L - , ( * -  1) + P L ( ~ -  1) 

p L(T)= 0 

(51) 
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One can solve these equations, and one obtains 

p~(t)= 
2L + 1 + 2 L  +-----1 K=, c~ t,z~TfJ[_c~ \2L + 1/3 

4 ~ sin F(zK+ 1)=zqf [ ( 2 K +  1)Tr]'~ ̀ -" )K 
+ tZL+1)2K_o L ~+-~ ]~c~ 2 ~ - f J J  I -  

x COSL2-~2i~j t + Z ( -  cos cos\2-Z--~/3 
Q = I  

1 - cos [ (2K+ 1)Tz/(2L + 1)] } (52) 
x c o s [ Z Q n / ( 2 - / f + l - ~ - - - c o ~ l ~ 7 ( Z L  + 1)] 

The two first terms contain the symmetric (with respect to z ~ - z )  part of 
Pz, which will give (z2).  The remainder is the antisymmetric part, which 
will give ( z ) .  As explained in Section 2, we are interested in the large-C 
limit, hence in the large-L limit, with the scaling 

t= gC (53) 

t - r = ~C (54) 

Since L = Cm/e, where ~ is a measure of the acquisition amplitude of the 
patterns, one finds 

A(~, g ) =  lim ( z )  
C ~ o o  

= Y~ [8/~2(2K+ 1) 2] exp[-c~e2~2(2K+ 1)2/8] 
K>~0 

x ( 1 +  ~ 2(--)Q{(ZK+l)2/[(ZK+l)2--4Q2]} 
Q>~I 

x exp[ - (g- -  ~) ~2~2Q2/2]) (55) 

D(e, g) = lira (z 2)/C 

= ( 1 / 3 e 2 ) [ 1 +  ~ (-)Q(12/~2Q2)exp(-ge2rc2Q2/2)l (56) 
Q~>I 

Let us comment on these formulas. 

1. Note first that (z 2) is only a function of the total time, and not of 
the time r: this is expected, since for each walk with a + 1 step at time T 
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one can consider the symmetric walk with a - 1  step, showing that the 
same result for (z  2) should be obtained whatever the direction of the step 
at time r. Note also that at time 0, that is, g = 0 ,  one must have (z 2) =0 ,  
which is indeed the case, since Y'.Q ( - )Q 12/rdQ 2 = - 1 .  

2. The infinite-time limit (~ and g going to infinity) is obvious: far 
from a specific learning event, ( z )  has to be zero; the asymptotic 
distribution of p~ is easily found from (48), (49) to be p~= 1/ (2L+ 1), 
which gives (z 2) = L ( L  + 1)/3, in agreement with D ( ~ ,  ~ ) =  1/3~ 2. 

3. For e = 0, that is, looking exactly at the time when the walker 
makes the + 1 step, one must find ( z ) =  1. This can be checked on the 
formula (55) for ( z ) ,  noting that 

8/rc2(2K+ 1) 2= 1 
K>~0 

and for any integer Q/> 1, 

The c6tical value e,. is 

[ (2K+ 1)2-4Q2]  -~ = 0  
K~>0 

E c = (n/6) 1/2 = 0.7236... (57) 

Numerical solutions of Eqs. (30)-(33) give the curves g*(e), gc(e), and 
c~,(e), which are displayed on Figs. 4 and 5. The optimal stationary capacity 
is found at 

/~opt ~--- 1 . 4 5 6 . . .  (58) 

with the value 

eopt = 0.18788... (59) 

4.4. Learning within Absorbing Bounds (Model  D) 

A very similar computation can be done for model D. For this model, 
the probability distribution pz(t)  obeys the evolution equations 

p z ( t ) = � 8 9  l ( t - 1 ) + p z + l ( t - 1 ) ]  for I z l < t - 1  

I _ t P• 1 ) ( t )  = 2 P + ( L - - 2 ) (  - -  1) (60) 

p • = p ++L(t- 1) + �89 +_(c- 1)(t - I) 

822/49/5-6-9 
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Fig. 4. 
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Curves g*(e) and g,.(e) versus ~ for the (--) C (short-term memory model), and (- -) 
D (long-term memory model). 

with the initial condi t ion 

pz(O) = 6z.o 

and at time z the learning of the configurat ion ( r  +1)  implies 

(61) 

pz(z) = pz_ l (Z - -  1) for - - ( L - - 2 ) < ~ z < ~ L - - 1  

pL(Z) = P(L-- 1)( "c -- 1 ) + pL(v -- 1 ) 

P - ( r -  ,)(3) = 0 

p-L(~) = p - L ( ~ -  l) 

With the appropr ia te  scaling 

(62) 

t = g C ,  �9 = . C  (63) 
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Fig. 5. Asymptotic capacity e,.(e) for model (--)  C and (--) D. 

the results are 

A(7, g ) =  ~ ( - ) ~  [4/Tr(2K+ 1)] exp[-~ezrcz(2K+ 1)2/81 (64) 
K>~0 

D(~, g )=  (1/e 2) t l  + ~ (__)K+I  [32/Tr3(2K+ 1) 3 ] 
L K~>0 

• exp[-ge27z2(2K+ 1)2/81 t (65) 

Note that the mean value A depends only on the number of learning 
events since the beginning. These results provide again a phase portrait 
similar to Fig. 1, with here ~ giving the number of earliest learned patterns 
still memorized. 

Here the critical value ec is 

ec = (zc/2) ]/2 = 1.2533... (66) 
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Again numerical solution gives the curves g*(e), go(e), and 7c(e), 
which are also displayed on Figs. 4 and 5 for comparison with the previous 
model. The optimal values Coot and 0~op t a r e  here 

Cop t = 1.667... (67) 

~opt = 0 .15216 . . .  (68) 

These results are rather similar to those obtained in the previous scheme of 
learning within bounds (Section4.3). The performances are slightly 
diminished. For both models the Little-Hopfield model is recovered in the 
e -~ 0 limit. 

For the symmetric, nondiluted case, a signal-to-noise analysis with a 
similar random walk approach has been made recently. (15) 

5. CONCLUSION 

In this work we have compared different learning schemes for diluted, 
asymmetric architectures that allow an exact solution. All these schemes 
where forgetting occurs have qualitatively similar properties, with slightly 
different performances. 

Other questions, such as learning biased patterns, r hierarchies (171 of 
patterns, time-dependent patterns (sequences), ~181 and schemes where 
active and inactive neurons, and presynaptic and postsynaptic neurons play 
nonsymmetric roles, could be studied analytically on this architecture. 
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