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Résumé. 2014 Nous donnons le développement de faible désordre des exposants de Lyapounov d’un produit de
matrices aléatoires. Ce développement est valide quand les valeurs propres de la matrice en l’absence de
désordre ont toutes des modules différents. En illustration, nous étudions la localisation des électrons sur des
rubans dans la limite du faible désordre. Nous montrons que notre développement est en bon accord avec des
calculs numériques quand la condition sur les modules est satisfaite, ce qui correspond à des énergies en dehors
de la bande de conduction du système pur. Pour ces énergies, nous obtenons une densité limite des exposants
de Lyapounov quand la largeur du ruban augmente. A l’intérieur de la bande, notre développement n’est
valide que si une partie imaginaire est ajoutée à l’énergie.

Abstract. 2014 We derive the weak disorder expansion of the Lyapounov exponents of a product of random
matrices. The condition for this expansion to be valid is that in the limit of zero disorder, the matrix has all its
eigenvalues with different moduli. As an example we study the problem of localisation on strips in the limit of
weak disorder. We show that our expansion agrees very well with numerical simulations in the region where
the condition on the moduli is satisfied which corresponds to energies outside the conduction band. In that
region, we find a limiting density of Lyapounov exponents when the strip width goes to infinity. Inside the
band, our expansion cannot be valid unless one adds an imaginary part to the energy.
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1. Introduction.

Products of random matrices are very often used in
the study one dimensional disordered systems (spins
with random interactions or in random fields, elec-
trons in a random potential, etc.) [1-3]. When one
considers infinite products of random matrices, the
first quantities which can be calculated are the

Lyapounov exponents. Usually, the physical proper-
ties (free energy, magnetisation, density of states)
are easy to obtain when the Lyapounov exponents
are known. Unfortunately there does not exist any
general method which gives the expression of the
Lyapounov exponents.

In the simplest cases (one dimensional models
with nearest neighbour interactions), the random
matrices are 2 x 2 matrices and there exists a few

methods to expand the Lyapounov exponents in
various limiting cases. In particular, one knows how
to make weak disorder expansions when the random
matrices have small fluctuations around their average
value [3-7].
When one tries to study more complex situations

like disordered chains having longer range interac-
tions than nearest neighbours or disordered systems
on strips, one has to consider infinite products of
random matrices of size n &#x3E; 2. For magnetic systems,
the free energy is given by the largest Lyapounov
exponent whereas the second Lyapounov exponent
is needed to compute the length which characterizes
the decrease of correlation functions. In the localisa-
tion problem, it is the smallest positive Lyapounov
exponent which gives the localisation length [8-10].
So in general, the study of a disordered system
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requires the calculation of not only the largest
Lyapounov exponent but of all of them. One should
notice also that several recent works on disordered

systems or on dynamical systems have shown the
importance of the whole distribution of Lyapounov
exponents [11-15].
The purpose of the present wprk is to give a

perturbative expansion of the Lyapounov exponents
of products of random matrices in the limit of weak
disorder.

In section 2, we derive this weak disorder expan-
sion up to 4th order. The conditions for this expan-
sion to be valid is that in the unperturbed problem
(i.e. in the limit of zero disorder), the random
matrices have all their eigenvalues with different
moduli.

In section 3, we consider the example of the
localisation problem on strips of finite width. We
write the expression of the random matrices and we
use the results of section 2 to obtain the Lyapounov
exponents.

In section 4, we compare the expressions obtained
in 3 with results of numerical simulations.

2. Weak disorder expansion of the Lyapounov ex-
ponents.

In this section we are going to derive the weak
disorder expansion of the Lyapounov exponents of a
product of random matrices :

The matrices Ma are n x n matrices and by weak
disorder we mean that the Ma have the following
form

where A is a fixed matric (independent of «) and
Ba is a random matrix. The matrices A and

Ba can have real as well as complex elements and
need not have any symmetry. We only assume that
the average of Ba vanishes

If (3) is not satisfied, one can always reduce the
problem to a case where (3) is verified by including
the average of Ba in A.

In order to obtain the weak disorder expansion of
the Lyapounov exponents, we need to set the

following condition on A :

The n eigenvalues of A
have all their moduli different . (4)

We will see later why we need this condition. Let us
just mention here that it is similar to perturbation

theories where one needs to treat the degenerate
case separately.
Because of (4), one can always work in the basis

where is diagonal. Therefore we shall make all our
calculations assuming that A has the following
diagonal form

with

If one calls y p the p-th Lyapounov exponent, our
final result will be

where Bij is the matrix element i, j of the matrix
Ba and the bar denotes the average over disorder. If
complex numbers appear on the right hand side of
(7), one has to take the real part of the result.

Let us show now how formula (7) can be derived
and how it could be generalized.

Let us call Ul, U2, ..., Up, p randomly chosen
vectors of dimension n and let us define

WI, Wz, ..., WP by

The sum of the first p Lyapounov exponents is given
by the exponential growth of a p dimensional
volume generated by p vectors [16, 17]. One possible
measure of the volume generated by VI, U2, ..., Up is
detp (Ui, U2, ..., Up) defined as the determinant of
the p x p matrix where the i-th column consists of
the first p components of the vector Ul.
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Therefore, the first p Lyapounov exponents can
be obtained from the following formula :

In order to compute the Lyapounov exponent
Yi, ..., y p, we are going to do first a perturbation
expansion N being finite and fixed and then take the
limit N - oo .

If one wants to compute the Lyapounov exponents
up to an order g q, it is enough to expand P up to
order JM ql2 because all the higher order terms will
disappear when we will average over disorder. Here
we are going to compute the Lyapounov exponents
up to 4th order in u and therefore we need only to
expand P up to 2nd order in g. One then finds

where the matrices C and D are defined by

We have now to compute log [detp (P )]. Using (10)
and the fact that A is diagonal, one has

Using the fact that log (det M) = tr (log M) for any
matrix M, one can replace (13) by

where A, ?, C , D are p x p matrices which are
obtained from A, U, C and D by keeping the first p
rows and columns. 

’

We can now expand (14) up to 4th order in g and
one gets :

log [detE

We have now to find the limiting behaviour of (15)
in the limit N - oo . One has of course

because of (3) whereas

because of (3) and of (6).
Then we have to compute the remaining terms.

One sees easily that
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When one adds all these terms in (15), there are some cancellations and one ends up with

We see now why the condition (6) is necessary. In
(23), the sum over a and j3 has a limit when
N --+ 00 only if IA,.l ,- lajl ] for 1 --j--p and

r &#x3E;. p and if IÀrÀsl I ,- IÀiÀjl ] for all i, j  p and r
and s &#x3E; p. In the limit N -+ oo , these sums reduce to

geometrical series and one gets (7).
Condition (6) can be understood in the following

way. In the weak disorder limit (ii -+ 0 ), the

Lyapounov exponents become the logarithms of the
eigenvalues of the matrix A. The largest Lyapounov
becomes the logarithm of the eigenvalue which has
the largest modulus. The second . becomes the

logarithm of the second eigenvalue and so on. So the
ordering (6) is right in the limit u -+ 0 and one has to
choose this order for our expansion to be valid.
We see that one could continue the weak disorder

expansion to higher orders. One should also notice
’that if two eigenvalues have the same modulus,
condition (6) cannot be satisfied by reordering the
eigenvalues and our formula is not valid in that case.
By looking at the expansion (7), we also see why
condition (6) is necessary. At each order, we see
differences of eigenvalues in the denominator and so
condition (6) prevents the appearance of small
denominators. Condition (6) is probably too strong
and formula (7) remains probably true if lki I &#x3E;

lajl I for 1 --i --p andp+1, j,n.

3. Localization on disordered strips.

The transport properties of electrons on two dimen-
sional disordered strips have been studied in the
framework of a one electron theory. The usual

model consists of a tight binding Hamiltonian with

diagonal disorder. The wave function t/Ji,j at the

point (i , j ) of a square lattice satisfies :

where g Vi, j is the random potential on site

(i I i).
On a strip of finite width M, one has

If one knows the wave function oi, j on two consecu-
tive columns (for example on columns 0 and 1) one
can compute the wave function on any other column
using a product of 2 M x 2 M random matrices. If
one defines the 2 M component XL by

Then from (24), it follows that

where the transfer matrix Ma is a 2 M x 2 M matrix
which can be written as

where

1 denotes the M x M identity matrix, 0 denotes the
M x M matrix whose all elements are 0, TH is a
M x M matrix defined by

and V a is defined by

The coefficient t depends on the transverse boundary
conditions on the strip. Periodic boundary conditions
(If i, j = If i + M, j) correspond to t =1. For rigid
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boundary conditions (4,0, i = t/J M + 1, j =0) one

should choose t = 0. The parameter t could also be a
complex number in the presence of a transverse
current or equal to 2013 1 for antiperiodic boundary
conditions.
Time reversal symmetry and current conservation

imply that the transfer matrices Ma are symplectic.
As a consequence, their eigenvalues are pairs, the
elements of which are inverse of each other. There-
fore the knowledge of the first M eigenvalues or
Lyapounov exponents contains the whole infor-
mation.
The most interesting exponent, which is the smal-

lest positive one, has be studied numerically and was
shown to be in agreement with scaling concepts [8,
9]. More recently, the M positive Lyapounov expo-
nents have been investigated. They converge towards
a limiting distribution as the width M increases [11].

In order’to use the results of section 2, we need
first to find the eigenvalues of the matrix A.
Because the system is finite across the strip, the

transverse wave vector q is quantized. The k-th
eigenvalue A of the matrix A is then given by

For t = 1 (periodic boundary conditions), one has

For t = 0

when sk is an integer which can take the values 1,
2, ..., M.
Let us see now how condition (6) can be satisfied.

For a given energy E, we have to find the permuta-
tion sl, S2, ..., sM of the integers 1, 2, ..., M such that
I À 1 [ :::’ I ’k 21 [ &#x3E;’’ :::’ I A m I . This condition will satis-
fy automatically (6), since (31) implies that

À2M+l-j = 1/Aj-
For periodic boundary conditions and at any

energy E, the eigenvalue corresponding to sk is

always the same as the eigenvalue corresponding to
Sk’= M + 1- sk. Therefore there is no choice of the

sk which satisfies condition (6).
For rigid boundary conditions, there are only

some special energies E (vertical line in the complex
plane of E and a part of the real axis) for which two
eigenvalues have the same modulus. For all other
energies there is a choice of the sk which satisfies
condition (6). For real energies outside the band,

[E I &#x3E;- 2 + 2 cos M: 1 , this choice is simpleM+l ),
for

One should notice that in the band

there are always pairs of solutions of (31) which have
a modulus 1. Thus condition (6) can never be

satisfied in the band.
In the following, we shall limit ourselves to the

case of rigid boundary conditions and to energies E
which are either real with ] E I &#x3E; 4 or in regions of
the complex plane where all the eigenvalues of A
have different moduli.
The moduli of the eigenvalues being arranged in

descending magnitudes for the considered energy
(JAll ] ::’ IA21 ] :&#x3E; ...:&#x3E; I À k ] ::.... ), we will denote
q (k ) the transverse wave vector corresponding to
the eigenvalue A k-

In the basis where A is diagonal, the random
matrix Ba has the following form

where A, X and A are M x M matrices defined by

Note that the inverse X- 1 of X is given by

We can now use formula (7) for the disordered strip.
In general, our expressions give complex numbers,
the real part of which are the inverse localisation
lengths. Let us note by V, V 2, V 3... the moments of
the distribution of the diagonal random elements of
V a . For symmetric distribution, all the odd moments
vanish and formula 7 is reduced to

where Cp, Ql,pl Q2,P and Q3, p are related to the
matrices- A and X. Let us define
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It is probably possible to simplify the expressions
(40), (41) and (42). However, we did not succeed in
writing them in a much more compact form. A

difficulty in doing so is that for complex energies,
sk or the q (k) do not depend on k in a simple way.
Even without simplifying these expressions, they are
explicit enough to draw curves on the computer.
When the width M increases, one can compute the

weak disorder expansion of the density of

Lyapounov exponents [11-14]. Let us take the

example of a real energy E outside the band

E I :::. 4 ). The sk are then given by (34).
If we limit ourselves to the second order in tk, one

finds that

where bi and Ki are given by

and

For 1 = M ; 1 (M odd), (44) is slightly more

complicated.
In the limit M - oo, we see that yi becomes a

function of = iv only, the contribution of
+ 1

ai disappears and the sum becomes an integral

where K (q ) is given by

Formula (46) shows how in the limit M - oo the
distribution of Lyapounov exponents is modified by
the disorder.

Such an asymptotic distribution possesses an

interesting physical meaning [11]. For a sample of
finite longitudinal length N, the j-channel has a good
transmission when (yj)- 1 :&#x3E; N. Therefore (46) gives
the density of active transmission channels [18]
which can be related to the conductance [19].

4. Comparison with numerical simulations.

For real energies such that I E ] &#x3E; 2 + 2 cos 7TM + 1
and for rigid boundary conditions, we have used
formulae (40), (41) and (42) to compute the

Lyapounov exponents up to the 4th order in JL. In

order to compare with the results of numerical

simulations, we have considered a strip of width 3 at
energy E = 4 and a flat distribution of the potential

and = 0 for

. In figure 1, the points represent the

Lyapounov exponents estimated by performing the
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Fig. 1. - Positive Lyapounov exponents as a function of
the strength of disorder tL 2 V2 for a strip of width
M = 3 at energy E = 4. The points (+) represent the
results of numerical simulations and the curves the weak
disorder expansion up to Oth order (0), 2nd order (2) and
4th order (4).

product of 50 000 random matrices. The curves

represent the predictions of formulae (40), (41) and
(42) truncated at the Oth order, the 2nd order and the
4th order in ii. We see that as one increases the order
in the expansion, the agreement with the numerical
results becomes better and better.

For real energies I E 2 + 2 cos M ’T + 1 , , one
M + I

cannot use the expansion because the condition (6),
is not satisfied. One can then add an imaginary part
e to the energy which becomes complex

Then the condition is true for all energies Eo except a
few points such that

which is equivalent to I A i I = I A j 1. This condition
gives vertical lines in the complex plane of E.
For the example of a strip of width M = 3,

q (i ) and q { j ) can take only the values : ’ ; and
3 ir and therefore (49) gives Eo = 0, ± /-2and therefore (49) gives Eo - 0, _ 2

In figure 2, we show the Lyapounov exponents for
zero disorder as a function of Eo for a rather large
value of E (E = 0.5) and for a strip of width
M = 3. We see that the condition (6) (I Àtl 1 &#x3E;

I A 21 ] &#x3E; I A 3 1 ) is satisfied for all Eo except at the

points ,
In figure 3, we show as a function of Eo the

difference between the results obtained numerically
by multiplying 50 000 random matrices and the

expressions (40), (41), (42) truncated at the Oth, the

Fig. 2. - log I k i I (i =1, 2, 3 ) for a strip without

disorder as a function of Eo. M = 3, E = 0.5. Condition

(6) is satisfied except for Eo = 0 and Eo = ± B/2/2.

Fig. 3. - Difference between the positive Lyapounov
exponents computed by numerical simulations and the
non-degenerate expansion up to 0‘h order (---), up to
2°d order (...) and up to 4th order (-) as a function of
Eo for M = 3, E = 0.5 and IL2V2 = 1.

2nd and the 4th order. The strip has a width

M = 3, the flat distribution of the Vij is such tha:
V?. = 1, and c = 0.5. We see that the agreement is
usually improved by increasing the order of the
expansion. We do not see clearly that at the special

/9 ...

values Eo = 0, ± f- the expansion is not valid.

Several reasons might be responsible for it : too bad
statistics, too strong disorder or a value of s too
small. Even if the agreement is worse than for

E I :::. 4, it remains satisfactory.
In order to see what happens inside the band, we

show in figure 4 the Lyapounov exponents computed
from formulas (40-41 and 42) for a small value of 6
(6 = 0.01 ). We see that our expansion blows up at
several energies : first the energies which correspond
to the band edges of each j channel (these energies
are given by IE - 2 cos q(j)1 [ = 2 Le. Åj = ± 1). In



740

Fig. 4. - Non degenerate perturbation expansion up to
the fourth order (formula (24)) of the positive Lyapounov
exponents of a strip of width M = 3 as a function of the
energy Eo inside the band for e = 0.01 and JL 2 v2 = 1.

addition, one can see that the fourth order term
yields new divergences at the band centre of each j
channel (E = 2 cos q(j)) where Ai = e’ /2 and
more generally at all energies where A i =,A j or
A i A j = A k A,. see formula (7). The number of these
singular energies will increase with the width of the
strip and with the order in the weak disorder

expansion. These singular behaviors are already
present in the case of the chain (M = 1 ) at the band
edge and at the band centre. For the chain one
knows how to derive the right weak disorder expan-
sion in the neighbourhood of these special energies
[4-7]. We think that it should be possible to

generalize these approaches to the case of strips.

5. Conclusion.

In this work, we have obtained the weak disorder
expansion of the Lyapounov exponents of a product
of random matrices. When condition (6) is satisfied,
the agreement between numerical simulations and
our expansion is satisfactory for the problem of
localisation on strips.
So our expansion can be used to compute the

Lyapounov exponents for the localisation problem
on disordered strips for energies outside the band of
the non-disordered strip or for complex energies.
For energies inside the band of the non-disordered
strip, condition (6) is not satisfied and our expansion
is no longer valid. The presence of small de-
nominators in formula (7) shows that the degenerate
case (the case for which (6) is not satisfied) cannot
be in general treated by a simple extrapolation of
formula (7).
We think that it would be very interesting to

generalize our approach to degenerate cases, i.e. to
cases for which condition (6) is not satisfied and also
to cases where the matrix A cannot be diagonalized.
This would allow to compute the Lyapounov expo-
nents inside the band and would give a better

understanding of the scaling [8] of the Lyapounov
exponents with the strip width. Then, by looking at
the M dependence of the Lyapounov exponents [8,
9], one would have a new analytical way of under-
standing two-dimensional localization.
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