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The random map model:
a disordered model with deterministic dynamics
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Résumé. 2014 Le modèle d’application aléatoire que nous considérons est un modèle désordonné simple dont la
dynamique est aléatoire. Pour chaque point de l’espace des phases, on choisit au hasard un autre point de
l’espace des phases comme étant son successeur. L’espace des phases se décompose en plusieurs bassins
d’attraction. Nous obtenons l’expression analytique de la distribution f(Ws) des poids Ws où Ws représente la
taille normalisée du bassin du s-ième attracteur. Nous calculons aussi la distribution 03C0(Y) de Y ou
$$. Quand on compare f(W) et 03C0 (Y) du modèle du mapping aléatoire avec ce qui a été obtenu dans la

s

théorie du champ moyen des verres de spins, on trouve que, dans les deux problèmes, ces lois des probabilité
ont des formes très semblables mais des expressions différentes.

Abstract. 2014 The random map model is a simple disordered system with deterministic dynamics. For each point
in phase space, one chooses at random another point in phase space as being its successor in time. Phase space
is broken into basins of several attractors. We obtain the analytic expression for the probability distribution
f(Ws) of the weights Ws, where Ws denotes the normalized size of the basin of the s-th attractor. We also
compute the probability distribution 03C0 (Y) of Y where Y is defined by Y = 03A3 W2s. When we compare

s

f(W) and 03C0 (Y) in the random map model and in the mean field theory of spin glasses, we find that the shapes
are very similar in both models but the analytic expressions are different.
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1. Introduction. 

The purpose of the present work is to give an
analytic solution of the random map model which is
a limiting case of the Kauffman model. We will
compute the statistical properties of the multivalley
structure. Our main conclusion will be that the
random map model has not the same multivalley
structure as the Sherington-Kirkpatrick model. The
expressions for the probability distributions of the
sizes of valleys and their shapes are nevertheless
very similar in the two models.

In the present work, we shall associate to each
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Gif-sur-Yvette, France.

attractor s a weight W, which is the normalized

number of points which fall in the s-th basin of
attraction. So if phase space consists of M points and
f2, of these points fall on the s-th attractor, we have

We compute f (W) which is defined in the following
way : f (W ) dW is the average number of attractors
with weight between W and W + dW. We also

compute the probability distribution v (Y) of Y
where Y is defined by

The paper is organized as follows : in section 2, we
define the random map model, and give a brief
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summary of already known results of the random
model, in particular why it is a limiting case of the
Kauffman model. In section 3, we compute the

moments Wn in the thermodynamical limit and we
obtain f ( W ). We also give the expression for the
probability g (Wl, W2) that two randomly chosen
configurations fall on attractors of weight Wi and
W2. Lastly we obtain the probability h (W, l ) that a
randomly chosen initial configuration falls on an
attractor of weight W and of period 1. In section 4,
we obtain a simple recursion relation for the mo-
ments yn and we draw 7T (Y). We also give the shape
of the probability distribution of the weight of the
largest basin of attraction.

2. Definition of the random map model.

One considers a system whose phase space consists
of M points. The dynamics of the system is governed
by a random map of this set of M points into itself :
for each point 1 :-s i :!!-:-: M, one chooses at random
one point T (i ) among the M points of phase space as
being the successor in time of point i. So if the

system is in configuration (or point) i at time t, it will
be on point T(i) at time t + 1. If it comes back at a
later time t’ to configuration i, it will visit again
configuration T(i) at time t’ + 1.

This model is random because the map T is
random. So, at least for finite M, the properties of
this system should depend on the choice of the map
T and are therefore not selfaveraging. On the other
hand, the dynamics are deterministic because T does
not change with time. This implies that the time
evolution of any initial configuration ends up being
periodic (just because phase space is finite and after
a time t &#x3E; M, the system must have visited twice the
same configuration). So the set of M points is the
union of the basins of several periodic attractors.

In the present work, we will compute the proper-
ties of this random map model in the thermodynamic
limit (M --&#x3E; oo). We will see that in this limit, several
properties remain non-selfaveraging, in a way very
similar to what happens in the mean field theory of
spin glasses [17-20].
The statistical properties of a random map of a set

of M points into itself have been studied a long time
ago in the theory of probability [21-25] and has more
recently attracted the attention of physicists [26, 27].
Reference [21] gives a review of results known on
the subject. Let us first mention some of these
results which are related to the calculations pre-
sented in the next sections of this paper or which we
found particularly interesting.
The probability P (1) that a randomly chosen

initial configuration ends up on an attractor of

period I is

In the limit M - oo, one gets

where x is defined by

This gives for the average (1 ) and for the variance

The probability QM that a random map of M
points is indecomposable [24, 25] is given by :

Indecomposability means that the map has a single
attractor. So with probability QM, the M points fall
on the same attractor. For large M this gives

Reference [24] gives also the probability QM (l ) that
the map is indecomposable and that the attractor has
a period 1 :

Another interesting result concerns the probability
distribution that a random map has exactly A
attractors. The probability distribution of A is
known [21]. Let us just give here the result [22, 27]
for the average number (A) of attractors of a
random map of M points :

Reference [21] gives several other interesting
results which we will not mention here. In particular
how the previous results can be generalized to

random maps with constraints : for example such
that T(i) #= i, or one to one maps.

Let us now see why the random map model is a
limiting case of the Kauffman model. In the Kauff-
man model, one considers a system of N sites, each
site containing an Ising spin (ai = 1 or 0). For each
site i, one chooses at random K input sites (among
the N sites) j 1 (i ), j 2 (i ), ..., j K (i) and a random
Boolean function Ii of K variables. The time evolu-
tion of the system is given by

Notice that since each of the K input sites
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j 1 (i ), ... , j K (i ) is chosen at random and indepen-
dently of preceeding choices, the K input sites are
not necessarily different. Therefore K needs not be
less than N.

If one considers two configurations of spins
Ci and C2 which are at distance n at time t = 0, one
can compute the probability P 1 (m, n ) that their
distance is m at time t = 1. (Here distance means the
number of spins which are different in the two

configurations.) The expression of P 1 (m, n ) was
derived in reference [6] :

In the limit K - oo (which can be taken even for
finite N since, one finds

This shows that in the limit K - oo, the images by
the dynamics of two configurations in phase space
are not correlated even if the two configurations
C1 and C2 are very close. This limit K - o0 of the
Kauffman model is very reminiscent of the limit

p - o0 of the p spin glass model which gives the
Random Energy model where the energies become
incorrelated [28].

3. Distribution of the sizes of valleys.

In order to compute the probability distribution of
the weights W, we are going to compute the prob-
ability Yn that n randomly chosen initial configura-
tions fall on the same attractor. Let us define

Q (Tl’ T2, ..., Tn) by

(Q (Tl, T2, ..., Tn) is the probability that a randomly
chosen configuration C1 at time t = 0 visits T,
different points of phase space (at times
t = 0, 1,..., T, - 1)) before it falls on a point already
visited, that a randomly chosen configuration C2
visits T2 different points of phase space before it falls
on the trajectory of Ci, ... that a randomly chosen
configuration Cn visits exactly Tn different points

before it falls on the union of the trajectories of
C1, C2, ..., Cn _ 1. 
Then the probability Yn that the n configurations

fall on the same attractor is just

If one makes the change of variable

Then (13) and (14) become

In the limit M -&#x3E; oo, one can use continuous vari-

ables : ,

and (16) becomes

and one finds

where B (y, z ) is Euler’s integral of the first kind

(Y2=2I3; Y3 = 8/15 ; Y4 = 16/35 ; Ys = 128/315
etc.). For a given sample (i.e. for a given random
map) the probability Yn that n configurations fall on
the same attractor is

Therefore, when one averages over the disorder,
one has

where f (W) dW is the average number of attractors
which have a weight between W and W + dW.
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Using the well known relation

one gets from (19) and (21) :

If one wants the probability g (W) that a randomly
chosen configuration belongs to a basin of attraction
of weight W, it is just

g (W) is the probability f (W) of having an attractor
of weight W times the probability W of falling on this
attractor..

Knowing f ( W ), it is easy to compute g (WI, W2 ),
the. probability that two randomly chosen configura-
tions CI and C2 fall on attractors of weight WI and
W2 respectively :

In (25) the first term is the probability that

Ci and C2 fall on the same attractor of weight
Wl. The second term expresses the following: if

CI falls on an attractor of weight W1, this means that
phase space can be decomposed into MWI points
which fall on the same attractor as CI and

M(1- WI) other points. The restriction of the
random map T to these M(1- Wl) points is again a
random map T of M (1- W1 ) points into themselves.
The probability of finding an attractor of weight W

for this restricted map T is again given by f (W). An
attractor having a weight W for the restricted map T
has of course a weight (1- Wl ) W for the full map
T. From (24) and (25) one gets

Similarly one can calculate g (WI, W2, W3), the prob-
ability that if Cl, C2, and C3 are randomly chosen,
they fall on attractors of weights WI, W2 and
W3:

We can now compare the results (23) and (26)
with what is known in the mean field theory of spin
glasses [18]. Like in the case of spin glasses, the
average number of valleys is infinite (it is given by

1

f (W) dW which diverges). This agrees of course0

with equation (9) which implies that for M -+ oo, the
average number of valleys is infinite.

In spin glasses, the expression of f (W) and of
f (Wl, W2) = g (WI, W2)/(Wt, W2) are [18] :

where y is a parameter which depends on the model,
the temperature, the magnetic field etc., etc. We see
that the expressions (28) and (29) are surprisingly
similar to (23) and (26) although there is no choice of
y for which these expressions would be identical so
the multivalley structure of the random map is

qualitatively very similar to what is known in the
mean field theory of spin glasses but the two

problems are nevertheless different.
One can wonder whether the weight W of an

attractor is correlated to the period 1 of this attractor.
It is possible to calculate the probability h (W, l that
a randomly chosen configuration falls on an attractor
of weight between W and W + dW and of period 1.
One can follow the same steps as at the beginning of
this section. If Zn (l ) is the probability that n

randomly chosen configurations fall on an attractor
of period 1, one has

The only difference with formula (16) is that the
sums start for Si = / and that the term sfl M2 has
been replaced by Sl/M2. One can again use continu-
ous variables for M --&#x3E; 00, and one gets
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where x is defined by

After some manipulations (see the appendix), one
can show that

where

Of course, if one sums over 1, one recovers

g ( W ) given by (24)

and if one sums over W, one recovers P (1 ) given by
(4) : :

Expression (34) shows how the weight of an attractor
is correlated to its period. The main effect is that if
the period I is large (x = l / M large), then the weight
W cannot be small.
To conclude this section we would like to show

how (24) can be derived also from (7).
Let us call Rn the probability that configuration

. C1 falls on an attractor which has n points in its
basin. One has

which is found the following way:

is the number of ways one can choose n configura-
tions with configuration C1 among them. (n/M )n Qn
is the probability that these n configurations map
into themselves (see Eq. (7)). Finally
(1 - n/M)M-n is the probability that the remaining
M - n configurations do not map into the set of n
configurations which constitute the basin of attrac-
tion of Cl. In the limit M -&#x3E; oo, if one writes

one gets

So the probability that a configuration falls on an
attractor of weight between W and W + dW is

Very similar calculations can be done to derive (26)
and (27) from (7).
One can also easily recover (34). Exactly as (37)

was obtained, one can compute the probability
Rn (1 ) that configuration C1 falls on an attractor
which has n points in its basin and a period 1. One
has

where Qn (1) was given in equation (8). For M and 1
large, if we set 

, .

we get

Therefore the probability h (W, l ) dW that configur-
ation C1 falls on an attractor of period I and of

weight larger than W but less that W + dW is given
by

4. Distribution ’IT ( Y).
In addition to the weights W of valleys, there is
another quantity Y which has been considered in the
mean field theory of spin glasses. (Y is the length of
the plateau of the function q (x )). It is defined by

In this section we are going to obtain the probability
distribution of Y. The first moments are easy to

obtain, from the knowledge of g (W), g (Wl, W2)
and g (Wl, W2, W3):
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One can in principle continue and obtain like that all
the moments of Y. There is however an easier way
which gives a recursion relation for the moments
Yn.

If we consider a configuration Cl, we know that it
has a probability g (W) of falling on an attractor of
weight W. We can therefore consider phase space as
composed of the basin of the attractor of C1 which
contains MW points, and of the remaining
N (1 - W) points. The restriction T of the map T to
these N (1- W) remaining points is again a random
map and therefore should have the same statistical

properties as the map T. Therefore one can write

where Y corresponds to the map T and Y corre-
sponds to the map T. One should notice that Y and
W are correlated whereas Y and W are not. From
(47), it is easy to compute all the moments

Yn using the fact that Y and Y have the same
moments. Taking the n-th power of (47) one gets

One can then compute yn knowing YP for 1,

p z n - 1 :

It is easy to check that for N = 1, 2, 3 one recovers
(46).
Once all the moments 7 of Y are known, the

distribution 7T (Y) of Y is known (since the support
of 7T (Y) is the interval [0, 1]). It is however not easy
to obtain the explicit expression of 7r (Y) from the
iT.
To obtain a picture of 1T (Y), we use a stochastic

method based on formula (47). We just calculate a
random sequence {Yn} where yo is randomly chosen
between 0 and 1, where the recursion relation which
gives the Y n is

and where the Wn are chosen randomly according to

the probability distribution

Then we know that the yn which are generated by
this method are distributed according to 1T (Y). In
figure 1 we draw the histogram of the yn obtained by
iterating the recursion relation (50) 107 times.
We see that the shape of 1T (Y) is again very

similar to what has been obtained in the mean field

theory of spin glasses [18]. We see in figure 1 that
1T (Y) diverges at Y = 1 and has singularities at

Y = 1/2 and Y = 1/3.

Using the same argument which led to (47) and
(50), one can compute other statistical properties of
the random map model. For example one can obtain
easily the probability ir (WmaX ) that the largest basin
of attraction has a weight Wma,,. This is easily
achieved by drawing the histogram of the yn which
are obtained by the recursion

where again the Wn are distributed according to
g (Wn ) (see Fig. 2).

Lastly, it is easy to generalize the result (49) to
obtain the more general moments (yð)n where

Ys is defined by

For Ys there is of course a recursion relation

analogous to (47) :

where again Ys and Ys have the same distribution.
Then one finds that the moments (Ys )n are given by

Of course for 8 = 2, one recovers (49).

5. Conclusion.

In the present work, we have described several
statistical properties of the multivalley structure of
the random map model. Our main conclusion is that
these properties are very similar although not identi-
cal to those known in the mean field theory of spin
glasses. This rises the question whether a replica
approach could be developed for the Kauffman
model and whether this replica approach would lead
to a replica symmetry breaking. 
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Fig. 1. - Probability distribution ’T1’ (Y) obtained by
iterating 107 times the recursion (46). Y is defined by
equation (41).

The random map model is related to the Kauffman
model like the random energy model [28] is related
to the Sherington-Kirkpatrick model. In spin glasses,
correlations between energies lead, within the replica
approach, to the ultrametric structure of valleys. It
would be interesting to see whether the Kauffman
model for finite K presents a similar structure.
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Appendix.

In this appendix we show that equation (31) is

equivalent to equations (33) and (34).

Fig. 2. - Probability distribution if (W max) of the weight
W Max of the largest valley.

We have to show that Zn (l ) = A given by (31)

is equivalent to Zn (1) = B given by (33) and (34)

Let us first transform (A.I) :
If
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then (A.I) gives

and if one writes

then (A.2) becomes

So we have to prove that (A.5) and (A.7) are the
same. One can rewrite (A.7) as :

where we have just used the definition of T (n ).
Then in (A.8) we make the following change of

variable

One then gets

If one writes now

(A.10) becomes

The integral over x is easy and one gets

A last change of variable

leads to (A.5) and therefore proves that A = B.
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