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Effect of thermal noise and initial conditions in the dynamics of a mean-
field ferromagnet
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Résumé. 2014 Pour un ferromagnétique en champ moyen, nous calculons en fonction de la température la

probabilité que deux configurations soumises au même bruit thermique tombent dans des vallées opposées.
Pour un système de N spins, nous montrons que le temps pour que deux configurations se rejoignent augmente
commme log N quand les deux configurations se trouvent dans la même vallée et comme une exponentielle de
N quand elles appartiennent à des vallées différentes. La pente de cette croissance exponentielle donne une
mesure de la hauteur de barrière.

Abstract. 2014 For a mean field ferromagnet, we calculate as a function of temperature the probability that two
configurations submitted to the same thermal noise fall into opposite valleys. For a system of N spins, we show
that the time for two configurations to meet increases like log N when the two configurations belong to the
same valley and exponentially with N when the two configurations belong to different valleys. The slope of this
exponential growth gives a measure of the barrier height.
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1. Introduction.

It has been recently suggested [1] that looking at the
time evolution of two or more copies of a same
system subjected to the same thermal noise could be
a way of studying phase transitions from a dynamical
point of view. The main idea is that in a high
temperature phase, two different initial configur-
ations end up by becoming identical whereas in a low
temperature phase, they have a finite probability of
falling into different valleys and thus of remaining
different after a long time (which would be infinite
for an infinite system). Monte Carlo calculations [1]
done for the 3d Ising ferromagnet have shown that
the probability P (t ) that two different initial con-
ditions have not met at time t does not vanish for

long times t only below the critical temperature
Tc of the ferromagnet. In the case of 3d spin
glasses [1], a dynamical phase transition (below
which P (t) = 0 for long times) was found at a

temperature much higher than what is usually be-
lieved to be the spin glass transition. Other Monte

Carlo simulations using again the comparison of two
configurations submitted to the same thermal noise
give for the 2D ANNNI model clear dynamical
phase transitions close to the phase boundaries of
the ferromagnetic, antiphase and floating phases [2].

Since this method of comparing the time evolution
of configurations submitted to the same thermal
noise has not been yet used in many situations, it is
useful, as a test, to see what it would give for the
simplest systems. In the present paper, we consider
the case of a mean field ferromagnet (the infinite
range Ising model). The system is defined as

N Ising spins which interact through the following
hamiltonian JC

By definition of the model, all the interactions

Jij are equal

(In the infinite range model, one has to scale the
strength of the interactions with N in order to keep
an extensive free energy).
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We will mostly consider the following parallel
dynamics : if the system is in a configuration
{Si (t)} at time t, it is updated according to the
following rules :

(1) One computes the N probabilities pi (t)

where T is the temperature.
(2) One updates the N spins according to

In practice, one chooses N random numbers

zi (t) uniformly distributed between 0 and 1 and one
computes the new configuration {Si (t + 1 )} by

These dynamics are parallel since all the spins are
updated simultaneously. In that case, one can show
that the probability t ( {Si} ) of finding the system in
a configuration {Si} at time t converges in the long
time limit to an equilibrium J eq ( {Si} ) which is given
by [3]

This equilibrium probability distribution is different
from the usual Boltzmann distribution

which would be the equilibrium distribution for

sequential updating (for which during each time
interval At = 1 one spin i is chosen at random andN ’
is updated according to (3) and (5)). However

distributions (6) and (7) have usually very similar
properties [4]. For example in the infinite range case
(2), they both have a Curie temperature at

and for T  T, the same spontaneous magnetization
given by

In the present paper, we want to compare the time
evolution of two configurations submitted to the

same thermal noise. This means that we choose two

different initial configurations ( Si (0 ) ) and {Si (0) }
and we make them evolve according to formulas (3)
and (5) with the condition that at each time step, the

same numbers (zi(t)) are used to update both
configurations. Therefore

When one compares two configurations submitted to
the same thermal noise, there are two simple quan-
tities which can be considered. The survival prob-
ability P (t) which is the probability that the two
configurations are still different at time t and the

average distance d(t) between two configurations
defined by

Of course if two configurations become identical at a
certain time t, they remain identical at any later

time. The main goal of the present paper is to

calculate the probability P (t ) when t becomes large.
Of course 1- P (t ) can be interpreted as the prob-
ability that two initial configurations fall into the

same valley.
In section 2, we calculate the probability distri-

bution of the magnetisation and of the distance

between two initial configurations after a finite

number of time steps. It is during these first time
steps of the dynamics that the combined effects of
the initial condition and of the thermal noise make
each configuration choose what valley it will fall

into.
In section 3, we show that once two configurations

are in the same valley, it takes them a typical time of
order log N to become identical.

In section 4, we present some numerical simu-
lations showing finite size effects in the low tempera-
ture phase. For a finite system of N spins, two
configurations always end up by becoming identical.
We measure the time it takes for two configurations
to meet and we see that this time increases with
N like the typical time for a configuration to go from
one phase to the other.

2. Dynamics after a finite number of time steps.

In this section, we are going to compare the time
evolution of two different configurations submitted
to the same thermal noise (i.e. updated with the
same random numbers zi (t ) in Eq. (10)). As ex-
plained in the appendix (see the paragraph after
Eq. (A.11)), the calculation is valid for N --&#x3E; oo and

for t finite.



1665

We will consider two situations which had been
studied in the numerical simulations of the 3 dimen-
sional ferromagnet [1] :

(1) The configuration (Si (0)) is chosen at ran-

dom and the configuration (S1 (0 ) ) is opposite to it,
so that d(O)=l.

(2) The two configurations ( Si (0 ) ) and ( $1 (0 ) )
are random so that d (o ) =1 + 0 (N- lr2).2

Because the system is an infinite ranged model
(see Eq. (1)), the two configurations can be de-
scribed by 4 numbers nl, n2, n3 and n4 : nl is the

number of spins i such that Si = Si = + 1, n2 such
that Si =-gi =+l, n3 such that Si = - 0160i = - 1,
n4 such that Si = Si 1. Of course one always has

and the total magnetizations M1 and M2 are given by

For the initial condition (1), nl = n4 = 0 and the
probability distribution of n2 and n3 is

whereas for the initial condition (2), each site has a
probability 1/4 of contributing to nl, n2, n3 or

n4 and therefore

Because the two configurations { Si } and ($i)
play symmetric roles, one can always choose

Ml &#x3E;_ M2 so that n2 &#x3E;_ n3. Moreover since the prob-
ability that n2 = n3 vanishes as N --+ oo, one can

always neglect these events when N is large. There-
fore the condition

is satisfied (which gives condition (A.1) of the

appendix) with probability one in the initial con-
dition and the distributions (14) and (15) become

The probability Qo(M1, M2) of M1 and M2 can then
be obtained from (17) and (18)

where Ao and Bo are given by

for the initial condition (1) (i.e. for two opposite
initial configurations) whereas

for the initial condition (2).
In the appendix, we have shown (A.16), (A.18)

that if the probability distribution of M1 and

M2 has an expression similar to (19), it keeps this
shape after an arbitrary number of time steps,
Ao and Bo being replaced by At and B, according to
the following recursion

This recursion can be solved easily and one finds that

From the expressions (23), we see that in the low
temperature phase (T : 1),A, and B, decrease expo-
nentially with time indicating that the distribution of
M1 and M2 becomes broader and broader. Physically
the magnetizations are growing because the system
is in its low temperature phase and the probability
that M1 and M2 are small decreases with time.

For t large, each configuration has chosen the
valley positive and negative magnetization) it will

fall into and the probability 5’ that the two configur-
ations fall into different valleys is given by

i.e. by the probability that both configurations have
opposite magnetizations. From expressions (A.17)
and (A.19) one gets
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From (20), (21) and (23) we see that in the low
temperature phase T 1, (25) gives for the initial
condition (1) :

whereas for initial condition (2), one gets

Figure 1 shows T versus T for the two initial

conditions (1) and (2). We see that as T- oo,
T (1) - 1 whereas T (2) ---&#x3E; 1/2 as expected since at 0

temperature the fact that the same zi are used does
not play any role.
As T increases decreases because the choice of

a valley is less and less influenced by the initial

condition and more and more influenced by the
effect of thermal noise. These shapes of T(l) and
T(2) are very similar to those which had been

observed in numerical simulations of the 3 dimen-
sional Ising model [1].

Fig. 1. - Parallel dynamics : probability T of finding two
configurations submitted to the same thermal noise in

different valleys after a large number of time steps as a
function of temperature. The dashed curve corresponds to
two opposite initial conditions (Eq. (25)) whereas the full
curve corresponds to random initial conditions (Eq. (26)).

3. The time to meet.

In this section we are going to calculate the time it
takes for two configurations to meet once they are in
the same valley. We will limit ourselves to the high
temperature (T &#x3E; 1) phase because there is a single
valley and we will show that the time for two

configurations to meet increases like log N. (The
same calculation could also be repeated for the case
of two configurations which belong to the same

valley in the low temperature phase).
If we start with initial conditions (1) or (2) (see

section II) at time t = 0, we have seen in the

appendix (Eqs. (A. 17, A. 19, A.20)) that after time
t, the distribution Q (M, D ) of M and D is given by

where At and Bt are related to Ao and Bo by

After a long time to we see that for T &#x3E; 1 one has

So the distribution of M becomes time independent
whereas the distribution of the distance becomes

narrower and narrower.

From (29b) it is clear that after a time to of order
log N, Bo becomes of order 1IN and the distribution
of D becomes concentrated around D of order 1.

If one defines FI (x, y ) in the same way as in the
appendix,

We see from (27) and (29) that after a long time
to

When the time to becomes of order log N, D
becomes of order 1 and one can use the results

(A.28) and (A.29) of the appendix

where E (z ) is an error function

-- -
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where y, is related to y = yo by

From (32) and (A.30) one can calculate Q,,,,(O)
the probability that the distance is 0 at time

where

One can show that for t --&#x3E; oo, zT has the following
behavior

where cp is a constant which depends on the tempera-
ture ( cp = - .276 for T = 1.2 ; cp = - .486 for

T = 1.5 ; cp = - .655 for T = 2. ).
So we see that after a long time

which gives clearly for both initial conditions that the
probability for the 2 configurations to meet becomes
of order 1 when to + T -- log N.
A similar calculation could be done below Tc for

two configurations in the same valley. Again the
result would be that it takes a time of order log N for
them to meet.

4. Finite size effects. Barrier heights.

For a finite system, one expects that two configur-
ations will always meet after a finite time. This is

because for a finite system there is at each time step
a finite probability that the two configurations meet.
One can then try to study how this time depends on
the size N. For T &#x3E; 1 or for T  1 if the two

configurations belong to the same valley we have
seen (Sect. 3) that this time increases like log N. But
in the low temperature phase, one expects this time
to be much longer if the two initial configurations
belong initially to different valleys. One then expects
this time to increase exponentially with N since one
of the two configurations has to jump a free energy
barrier which increases like N (because the model is
a mean field model).

In order to study this effect, we present the results
of Monte Carlo simulations done at T = 0.7 for

10 000 samples. In figure 2 we show log (TZ) and
(log T2&#x3E; as a function of the number N of spins
where ’r2 is the time it takes for two randomly chosen
initial configurations to meet (initial condition (2)).
The average ( ) denotes the average over the initial
condition and the history. We see that log (TZ) and
(log T2) increase with N as expected since these
averages of T2 are dominated by the events, which
correspond to the two configurations falling into two
opposite valleys.
To confirm this fact we measured (full line in

Fig. 2) the relaxation time T of the magnetization by
calculating the largest eigenvalue A = e below 1
of the Master Equation which describes the evolution
of the magnetization

where t/1 (M, M’ ) is the probability that the total

magnetization jumps from M’ to M during a single
time step

A = e-lIT is the largest eigenvalue of the odd
subspace

We see in figure 2 that T increases exponentially
with N with the same slope as T2 because both times
are dominated by the activation free energy necess-
ary to jump the barrier between the two valleys.
For comparison, we measured also the time

T3 that among 3 randomly chosen initial configur-
ations, two at least meet. We see in figure 2 that
 T3) does not increase exponentially with N. This is
of course easy to understand : since below Tc = 1
there are only 2 valleys, 3 configurations cannot
remain different for very long.
Although the fact that T2 and t3 have very
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Fig. 2. - Parallel dynamics : in the ferromagnetic phase
(T = 0.7  T, = 1), the time T z for two configurations to
meet as a function of N. This time increases exponentially
with N as the relaxation time of the magnetization. The
slope of T2 is a measure of the barrier height. The time
T3 that three configurations remain different is much
shorter because there are only two valleys.

different behaviors for the mean field ferromagnet is
obvious, we think that the same idea could be used
to study the barrier heights and the number of
valleys in other problems like spin glasses or automa-
ta for which the valley structure is expected to be
more complex.

5. Sequential dynamics.

All the results which have been discussed so far for
the case of parallel dynamics can be extended to the
case of sequential dynamics : during a time step
At - 1 one chooses a spin i at random among theN
N spins and this spin i is updated according to (3),
(4) and (5). The calculations are very similar to those
of parallel dynamics. They are just a little more

complicated because condition (A.1) is not fulfilled.
We will not repeat these calculations here and we

will just give the final result. For initial conditions
(1) and (2), the probability that the two configur-
ations fall into opposite valleys is given by

The shape shown in figure 3 is very similar to what
had been obtained in the case of parallel dynamics.
T decreases with temperature and vanishes at

Tc.

Fig. 3. - Sequential dynamics : survival probability as a
function of temperature (as in Fig. 1).

Like for parallel dynamics (Sect. 3) one can also
show that the typical time needed for 2 configur-
ations to meet increases like log N when they are in
the same valley.

Lastly, we repeated the simulation of section 4 for
sequential dynamics. The results are very similar :
T2 increases exponentially with N and the slope is
again the same as for the time T (full curve) obtained
by diagonalizing the Master equation. Again the
time t3 that 3 configurations remain different is
much shorter since the system has only two valleys.

Fig. 4. - Sequential dynamics : the same as figure 2.

6. Conclusion.

In this work we have calculated for the mean field

ferromagnet the probability that two configurations
fall into opposite valleys. This probability decreases
with temperature and vanishes at Tc as had been
observed in numerical simulations in 3 dimen-

sions [1].
We have also seen that measuring the time that

two configurations become identical gives a measure
of the barrier heights and that comparing more than
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two configurations can be a method of studying the
number of valleys (if a system has n -1 valleys, the
time Tn that n different configurations remain differ-
ent should be very short). Of course for the mean
field ferromagnet the results found for T2 and

T3 are not surprising. However, we think that the
study of the times Tn could be a useful tool [4] to
understand the multivalley structure of more com-
plex systems like automata [5, 6] or spin glasses [7-
9]. One can also hope that looking at the exponential
growth of these times could give a measure of barrier
heights [10] in these complex systems.
The results of sections 3 and 4 (the times increase

like log N or an exponential of N) are valid only for
T #= Tc. At T, one expects that all the times

Tn to be powers of N (for example T2 - N 1 y. We
tried to calculate for T2 the prefactor of N 112 but we
did not succeed in solving the equations analytically.
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Appendix A

Suppose that at time t, there are nl spins of type I,
n2 spins of type II, n3 spins of type III and

n4 spins of type IV and that

Each spin of type I at time t has a probability
11 

f 
.. 

f I 11 fb1 + 1t, of remainin of type, 2: t1 - 2: t1 of becom-i 2 1 - 1 2 1 2

ing of type II and - - t’ of becoming of type IV at2 2
time t + 1 where

Each spin of type II at time t has a probability
1 + 1 t2 of becoming f type I 1, 1 t2 f remain-2 2 of becoming of type, - t2 - - t2 of remain-
ing of type II and 1-1 t2 of becoming of type IV at2 2

and so on for spins of type III and IV with

One should notice that as long as condition (A.1) is
satisfied, one has ti &#x3E;_ ti i for all i and therefore the
number of spins of type III at time t + 1 is zero.

If M1 and M2 denote the total magnetization of the

configuration { Si } and Igif and D the distance

between these two configurations, Ml, M2 and
D are related to nl, n2, n3, n4 by

If condition (A.1) is satisfied at t = 0 (and we will
always be in situations where (A.1) is true with

probability 1), n3 = 0 at all later times and therefore
Ml, M2 and D are given by

So we see that the system can be fully described by
only two variables, for example M1 and M2.

If we consider the generating function of M1 and
M2 at time t + 1, it is given by

This formula is valid for any distribution of ni at time
t which satisfies condition (A.1) and for any
N.

If condition (A.1) is satisfied, we know that after
the first time step n3 = 0 and from (A.7) one can
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calculate the ni and therefore the ti at time

t. So (A.8) contains the whole time evolution of the
probability distribution Qt(M1, M2) of M1 and

M2. It is however too complicated to allow one to
obtain a simple expression of Qt (Ml, M2 ) after an
arbitrary number of time steps because the average
( ) t of the right hand side of (A.9) over M1 and
M2 at time t cannot be expressed in a simple way in
terms of the generating function (exp(al M1 +
a2 M2))t. Fortunately there are a few situations for
which the calculation of Qt (Ml, M2 ) has a simple
form. We will consider here two of them : Firstly
when M1 and M2 are of order B/7V which is the case
after any finite number of time steps when one starts
with random initial conditions. Secondly when

Ml and MZ are both close to one of their equilibrium
values.

Let us first discuss the case when M1 and

M2 are of order .IN. To describe the distribution of
M1 and M2 = fl one can study the time evolution
of the generating function (exp (ai 1 Ml + a2 M2)) t
with

If one defines Ht(Xl, X2) by

One gets from (A.8) for the leading order when
N-.oo

This recursion relation allows one to calculate the

generating function Ht(xl, x2) after any finite
number of time steps (to obtain (A.11) from (A.8),
we have neglected terms of order 1 which

V./V
contribute only on time scales which would increase
with N). From the recursion relation (A.11) on the
generating function Ht(Xl’ X2), one can deduce the
probability distribution Qt(M1, M2 ) of the magneti-
zations M1 and M2 of the two configurations.

If one assumes that at time t, the distribution

Qt (Ml, M2 ) is a gaussian with parameters at and
bt

(where e (x) = 1 for x &#x3E; 0 and 0 for x  0). One can
show from (A.11) that at time t + 1, Qt + 1 (Ml, M2)
keeps the form (A. 12) with renormalized coefficients
at + 1 and bt + 1 given by

An easy way to prove (A. 13) and (A.14) is to use the
following relation

(A.12) can be rewritten as

where

and the recursion relations (A.13) and (A.14) be-
come

From (A.16), one can deduce the probability
distribution Qt (M, D ) where M and D are defined
by

These expressions will be used in section 2.
The second simple situation we want to discuss is

when M1 and M2 are both close to one of their
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equilibrium values and when the distance D is of
order 1 i.e. the 2 configurations differ by only a finite
number of spins. One can again use (A.8) to obtain
the probability distribution of M1 and M2 or of
M and D defined in (A.19). If one defines the

generating function Ht (x, y ) by

One can obtain a recursion relation for H from (A. 8)
by choosing

The leading order when N - oo gives

where in (A.23)  &#x3E; means the average over the
probability distribution of M and D at time t.

If we restrict ourselves to situations where
M has an equilibrium value, i.e. is solution of

then (A.22) becomes

We see from (A.25) that the distribution of M does
N

not change after one step or any finite number of
time steps. This is because we have chosen M/N to
be an equilibrium value (A.24).

Since M/N remains fixed, we need only to describe
the probability distribution Qt (D) of the distance
D. The recursion relation (A.25) for the generating
function Ht (x, y ) leads to the following recursion
relation for Qt (D) :

Another consequence of (A.25) is that if at t = 0,
the distance D has a given value Do, one has

and

where yt can be calculated from y by the following
recursion

with yo = y.

By choosing y = - oo, one can obtain the prob-
ability Qt (o ) that the distance D = 0 at time

t since
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