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Résumé. 2014 Nous étudions l’évolution de deux configurations soumises au même bruit thermique pour
plusieurs modèles en dimension 2 : ferromagnétisme et verres de spin symétrique et non symétrique. Pour
chacun de ces modèles nous obtenons une température critique non nulle au-dessus de laquelle les deux
configurations finissent toujours par se rencontrer. En utilisant les lois d’échelle des systèmes finis, nous
déterminons pour ces trois modèles cette transition de phase dynamique et certains exposants critiques. Pour le
modèle ferromagnétique, la transition à Tc ~ 2,25 coincide avec la température de Curie tandis que pour les
deux modèles de verre de spin (± J) nous obtenons Tc = 1,5-1,7.

Abstract. 2014 We study the time evolution of two configurations submitted to the same thermal noise for
several two dimensional models (Ising ferromagnet, symmetric spin glass, non symmetric spin glass). For all
these models, we find a non zero critical temperature above which the two configurations always meet. Using
finite size scaling ideas, we determine for these three models this dynamical phase transition and some of the
critical exponents. For the ferromagnet, the transition Tc ~ 2.25 coincides with the Curie temperature whereas
for the two spin glass models ( ± J distribution of bonds) we obtain Tc ~ 1.5-1.7.
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1. Introduction.

Monte Carlo Methods [1] combined with finite size
scaling ideas [2, 3] are widely used to study the phase
diagrams and the critical properties of all kinds of
models in Statistical Mechanics : one first determines
as accurately as possible the properties of finite

systems (squares, cubes, etc.) of linear size L and
then one extracts the critical behaviour of the
infinite system by looking at the dependence of the
physical properties on the linear size L. In the case
of a second order phase transition at a critical point
Tc, one assumes a scaling form valid for large L and
in the neighbourhood of Tc : for example the mag-
netic susceptibility X (L, T) of a ferromagnet, which
depends on the size L and on the temperature T
(and thus is a function of two variables), can be
expressed near a critical point Tc and for large L as

and so becomes a function of a single variable.

Recently a new dynamical method based on the
comparison of two configurations subjected to the
same thermal noise has been proposed. Several

dynamical phase transitions were observed using this
method for various models (3 dimensional ferromag-
net and spin glasses [4], the 2d ANNNI model [5], 2d
and 3d automata models [6]). It appears that at high
enough temperature a system rapidly forgets its
initial condition and consequently two configurations
subjected to the same thermal noise become identical
very quickly. At low temperature, each configuration
may be trapped in a different valley which depends
on the initial condition and therefore they remain
different for very long. Numerical studies [4-6] as
well as analytical calculations done for infinite
dimensional models [7, 8] show that these two

regimes are separated by sharp dynamical phase
transitions. An important question is to know how
these dynamical phase transitions are related to the
usual phase transitions at thermal equilibrium. It is
then useful to develop methods capable of giving
accurate estimates of the location of these dynamical
transitions and of the exponents which characterize
the critical behaviours near these transitions.
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In the present paper we use a finite size scaling
method to determine these dynamical transitions for
several two dimensional models : the 2d ferromag-
netic Ising model, the 2d ± J spin glass and the 2d
non symmetric ± J spin glass (for which Iij and
iii are independent random variables). The main
quantity we consider is the time T for two configur-
ations to become identical. This time depends on the
size and on the temperature and therefore assuming
a finite size scaling form similar to (1), we can
estimate the transition temperatures and the expo-
nents. The main result of the present work is that the
finite size scaling analysis of our numerical data gives
a non zero transition temperature for all these 2d

models. In the case of the ferromagnet, this tran-
sition coincides with the Curie temperature of the 2d

ferromagnet at equilibrium. We also obtain estimates
of the critical exponents. These estimates are more
accurate in the ferromagnetic case than in the two

spin glass problems because Tc is known exactly for
the ferromagnetic model.

This paper is organized as follows. In section 2 we
describe the stochastic dynamics we use and how we
submit two different configurations to the same
thermal noise. In section 3, we discuss our finite size
scaling approach to the problem : this approach is a
generalization to dynamics of a method which has
already been very often used for static properties [9-
12]. In section 4, we describe our results for the 2d
ferromagnetic Ising model. In sections 5 and 6 we
repeat the same calculations for the ± J spin glass
and the ± J non symmetric spin glass.

2. Dynamics.

Our calculations are done for Ising spins (ai = ± 1 )
on a square lattice of linear size L with periodic
boundary conditions in both directions. The spins
aim i interact through some nearest neighbour interac-
tions Jij which are given by

All the calculations in the present work are done

using the following parallel dynamics. If the system
is in a configuration C, = (Si(t)) at time t, its

configuration Ct + 1 = {Si (t + 1)} at time t + 1 is

given by

Si (t + 1 ) = + 1 with probability pi (t )

where the pi (t) are given by

By parallel dynamics we mean that at each time
step t, all the pi (t ) are calculated before all the spins
Si are updated. The main advantage of parallel
dynamics is that the updating of the spins can be
easily vectorized in numerical calculations.
We compared, in some tests, parallel dynamics

with sequential dynamics (for which during a time
interval ..1t = 1/ N, pi (t ) for a single spin i is

determined and the spin i is updated). We found that

the « physical » times (time for magnetisation to

decay, time for two configurations to meet) are

longer for parallel dynamics than for sequential
dynamics. However, the structure of our programs
was such that the sequential dynamics required more
computer time than parallel dynamics. Thus we
decided to limit our calculations to parallel dynamics.
When one uses parallel dynamics for systems with

symmetric interactions (Jij = Jji), the probability
P ( {Si} , t ) of finding the system in a configuration
( Si ) at time t converges to an equilibrium P eq ( {Si} )

which is given by [13]

This probability distribution is different from the

usual equilibrium
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which would be obtained by updating the spins in a
sequential way (one spin is updated at each time
step).
The two equilibrium P eq ( {Si}) and P eq ( {Si} )

have clearly different properties. If we consider the
spins {5’J on a lattice which can be decomposed
into two sublattices A and B such that any spin of
each sublattice interacts only with spins of the other
sublattice, we see that (6) gives no correlation
between the spins of the two sublattices whereas (7)
gives such correlations.
One can prove, however, that these two equilib-

rium probability distributions ((6) and (7)) have

many properties in common. If one decimates (6)
and (7) by summing over all the spins of one

sublattice (say B), one finds that both (6) and (7)
give the same distribution

This implies that any correlation function  Sh... Sh)
of spins located on the same sublattice is the same
for (6) and (7). Therefore quantities such as the
critical temperature Tc, the magnetisation on each
sublattice, the correlation length have to be identical
for (6) and (7) whereas quantities such as the

susceptibility which involve correlations between

spins of the two sublattices are different for (6) and
(7).
To implement the dynpmics (3) and (4), one

computes at each time step"1l11 the Pi (t ) using the
expression (4) and one updates the spins according
to the following formula

where the zi (t) are N random numbers uniformly
distributed between 0 and 1.

The method used in the present paper consists in

comparing the time evolution of two configurations
{Si (t)} and (SJ (t )) submitted to the same thermal
noise. This means that the two configurations are
updated using the same random numbers zi(t) for
the two configurations (and the same interactions
Jij) :

Clearly if the two configurations become identical at
some time t, they remain identical for ever.
As in previous works [4, 6-8], the two basic

quantities we consider to compare the time evolution
of two configurations are :

(1) the survival probability P (t ) that two configur-
ations are still different at time t ;

(2) the distance between the two configurations
4 (t ) defined by

A (t) is simply the fraction of spins which are

different between the two configurations.
In all the calculations presented here (except for

the calculation of the magnetisation of the ferromag-
net), we choose the initial configuration {Si (O)} at

random and (SJ (0)) opposite to it

We then calculate for each sample s, the distance
as (t ) defined by (11) and we stop the calculation
when the two configurations become identical. We
then calculate two moments Tl (L, T, s) and

TZ (L, T, s ) of a characteristic time for the two

configurations to meet

T and T2 depend of course on the system size L, the
temperature T and the sample s. One can easily see
that T1 1 and TZ are measures of characteristic times
for the two configurations to meet by taking the
example of a pure exponential for ds (t ) (if t1S (t ) =
exp (- a t ), then 71= « -1 1 and r2 == 2 a - ).

In the next section we will discuss the finite size

scaling forms of T1 and T2 and we will see that it is
convenient to introduce the ratio R defined by

Before doing so let us mention that in the case of
ferromagnetic interactions (2a), one can measure
the magnetisation m (t ) from the knowledge of the
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distance 4 (t ) between two configurations. By start-
ing at t = 0 with two fully polarized configurations

It can be shown [14] that with the dynamics (10) one
has at any later time

So the distance L1 (t) defined by (11) can be expressed
in the ferromagnetic case and for the initial con-

dition (16) :

Averaging over many samples, the distance L1 (t )
gives the average magnetisation m (t ) at time t

(starting at t = 0 with m (0) = 1).

3. Finite size scaling.

In a high temperature phase, the effect of noise is

strong, the two configurations {Si (t)} and {Si (t)}
forget quickly their initial conditions and therefore
the time T 1 should be short. On the contrary, in a
low temperature phase, the two configurations
{Si (t)} and {S¡ (t)} may fall into different valleys
and T1 becomes the activation time to jump over the
barriers which separate these valleys ; one then

expects T1 to increase as the exponential of a power
law L’ of the size L (L’ is the typical height of a
barrier. At the transition temperature T, between
these two regimes, it is reasonable to think that

T 1 has a finite size scaling form

which should be valid for L &#x3E; 1 and T - Tc I  1.
In (19) we have left the sample dependence of

T 1. This means that T 1 as defined up to now is sample
dependent and the meaningful quantity to consider
is the probability distribution of T 1.

In principle by computing averages of T 1 1 or of

functions of T 1 (i.e. log 7"1) over many samples for
several sizes and temperatures, one can try to

determine the three unknown z, v, and Tc in (19). In
practice it is more convenient to consider a quantity
like R defined in (15) which has a simple finite size
scaling. Since 72 is also a measure of a squared
characteristic time for two configurations to meet,
one expects that

and therefore

If one averages R (or functions of R) over many
samples s, one finds that

or

We see from (22) and (23) that Tc can be determined
from the data for several sizes. One draws (R ) or
(log R) versus T for several sizes L and the point
where the curves, corresponding to different sizes,
cross gives Tc. A similar approach based on the ratio
of moments of the magnetization has been often
used to study the critical point of ferromagnets [9,
12].

Since the finite size scaling forms (22) and (23) are
expected to be valid only for large L, one expects the
curves corresponding to different L to cross at the
same points only for large enough sizes.
Once T, has been estimated, one can try to

determine the exponent v by looking at how

d(R(L T s» ...u ’ dT ’ depends on the size L at T and z bydT

measuring the slope of log  T 1 (L, Tc, s ) &#x3E; (or of

log T 1 (L, Tc, s )) ) versus L ..
At Tc, one can also study the full time dependence

of the distance L1s (t) defined by (11). L1s (t) depends
on the time t, the size L, the temperature T and the
sample s. If one averages L1s (t) over many samples at
T = T,, one gets a quantity 5 (L, t ) :

which depends on the size L and on time. For

t &#x3E; 1 and L &#x3E; 1, one expects a finite size scaling
form

We will show in the next sections our results for
5 (L, t ) and we will extract from our data estimates
of the exponents a and z.

In the case of the ferromagnet, a similar finite size
scaling form is expected for the average magnetis-
ation m (t ) at Tc:

and again the exponents b and z can be estimated by
assuming this scaling form. In the case of the 2d
ferromagnet, the critical exponents at thermal equili-
brium are known exactly (v = 1, /3 = 1/8) (here f3 is
the exponent of the magnetisation below Tc) and one
expects that b = f3 Iv = 0.125 = 1/8.
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4. The 2d ferromagnet.

In this section we present the results of our numerical
calculations in the case of the 2 dimensional ferro-

magnetic Ising model. We did our calculations for
L = 10, 20 and 40 and the number of samples
generated was respectively 10 000, 2 000 and 500. So
the number of spins was roughly the same for all the
sizes. For each sample, the initial condition was a
random configuration {Si (0)} and the other con-

figuration (Si’ (0 )) opposite to it. All samples were
iterated until the distance dS (t ) between the two
configurations has vanished.

In figure 1 we show (R) defined by (15) and (22)
and (log (7?)), as a function of temperature for the
three different sizes. One can see that the three
curves cross almost at the same point which can be
estimated from figure 1 to be Tc = 2.25 ± 0.05. This
value agrees with the exact Curie temperature
Tc = 2.269 of the 2d Ising model. This result shows
that studying the distance as (t ) is a possible way of
determining Tc for a ferromagnetic system [14]. We
did not try to measure the ratio R below Tc because
the time for two configurations to become identical

Fig. 1. - (a) The ratio (R) =  T2/ Tl) versus T for

different sizes L for the 2d ferromagnet. The curves

corresponding to different L meet at Tc. (b) The same as
figure 1a for (log R ) .

increases very rapidly as T decreases and so does our
computer time.
For T = Tc = 2.269, we show in figure 2 the

survival probability P (t) which is the fraction of

samples s such that Lis (t) =F 0 . We see that as L
increases, it takes longer and longer for the two
configurations to meet (for L = 40, there remains
1/3 of the samples after 104 time steps and it took
almost 105 time steps for the distance to vanish in all
our 500 samples). As this time grows roughly like
L’, we had to limit ourselves to L - 40.

Fig. 2. - The survival probability P (t ) versus t for the 2d
ferromagnet at T = T,.

In figure 3a we show the average distance 8 (L, t )
defined in (24) for the 2d ferromagnet at T = T,.
The behaviour seems to be a power law at short

times, a cross over region and a faster decay at long
times. As L increases, the cross over occurs later.

In figure 3b we show L’ 8 (L, t ) versus tIL’ in a
log-log plot. We see that for a = 0.26 and z = 2.1,
our results are consistent with the finite size scaling
form (25). Trying to vary the exponents a and z we
found that for

the curves corresponding to the three sizes

(L = 10, 20, 40) looked superimposed.
We did not find a way of relating the exponent a to

already known exponents. For the exponent z our
estimate (27) agrees rather well with previous nu-
merical determinations of the dynamical exponent z
[15].

In figure 4 we show the average magnetisation
m (L, t ) measured as explained in section 2 by
choosing for the initial condition {Si (0) = 1 } and

{ Si (0) = - I}. Again we see a power law at times
shorter than a cross over time when the decay
becomes faster. Our results are consistent with the
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Fig. 3. - (a) The average distance 5 (L, t ) versus t (log-
log plot) for different sizes L for the 2d ferromagnet at
Tc. (b) La 8 (L, t ) versus t / L (log-log plot) for a = 0.26
and z = 2.1. These data are consistent with the finite

scaling form (25).

scaling form (26) with

So b takes the value f3 / v as expected and we
recover the same estimate for z as in (27).
We see that for the 2d ferromagnetic Ising model,

one can estimate the transition temperature by
studying the ratio R and that one can measure the
exponent z from the time dependence of either the
distance 8 (L, t ) or the magnetisation m (L, t ).
From our results we can also predict the power law
decay of 8 (t, L ) and m (t, L ) for times T  L Z :

where a, b and z are given by (26) and (27).

Fig. 4. - (a) The average magnetisation m (L, t ) versus
t(log-logplot)fordifferentsizesLforthe2dferromagnet. (b)
L6 m (L, t ) versus t / L (log-log plot) for b = 0.125 and
z = 2.1.

5. The symmetric ± J spin glass.

Using the same method, the same sizes and the same
number of samples as for the ferromagnet case, we
try now to find the critical temperature Tc and the
critical exponents a and z for the symmetric
± J spin glass defined by (2b). Here, since the

interactions are random, we changed also the inter-
actions for each new sample.

In figures 5a and 5b we show (R ) and (log R )
versus T for several sizes L. We can estimate from
these figures

The accuracy is worse than in the ferromagnetic case
because the point where (R(L, T ) ) and

(R(L’, T ) ) cross depends more on L and L’ than in
the ferromagnetic case. So in the case of spin glasses,
the finite size effects seem stronger, and it would be

necessary to increase the size L in order to improve
the accuracy of Tc.

Since Tc is not known very accurately, we expect
rather large error bars in the estimates of the critical
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Fig. 5. - (a) and (b) : The same as figure 1 in the case of
the 2d symmetric ± J spin glass. We see that the curves
corresponding to L = 10, 20 and 40 cross in the region
T = 1.6 ± 0.1 with a tendency for Tc to increase with L.

exponents z and a. In table I, we give estimations
Zl and Z2 of z obtained by the following formula

for L = 10, and Z2 is given by the same expression
for L = 20.
We see that the values of z vary with what we

choose for Tc but the results seem not to depend
much on L for Tc == 1.7 leading to an estimate for
z t-- 1.7.

We calculated the survival probability and the
average distance 5 (L, T ) for various temperatures
in the range 1.5 === Tc ,1.7. We found that the finite
size scaling form (25) was better satisfied for
T = 1.7 and we will present our data only for that
temperature.

In figure 6, we show the survival probability as a
function of time at T = 1.7. One can see that the
characteristic time for two configurations to meet
increases roughly like L 1.7 with L.

Figures (7a) and (7b) give the average distance
5 (L, T) for T = 1.7. When we tried to plot
S (L, T ) La versus t / L z, we found that for

Table I. - Exponents a and z for different values of
a chosen critical temperature Tc, for the case of
symmetric :t J spin glass. z, and Z2 are the slopes of
(log T 1&#x3E; as function of log L as defined in

equation (31). Z3 an a are estimated by trying to

satisfy the best the scaling form (25).

Fig. 6. - The survival probability versus t for the

2d ± J symmetric spin glass model at T = 1.7.

z = 1.70 ± 0.05, a = 0.65 ± 0.07, the curves corre-

sponding to the three sizes were superimposed.
Of course if we change T, we have to change the

value of z and of a. In table I, we give Z3 and a
obtained by trying to superimpose the curves for
different L when T is changed. We see that

Z3 changes a lot with T whereas the value of a is
much more stable. Comparing with Zl and Z2 we see
again that at Tc = 1.7, the z estimates of z =1.7
seem to coincide.

Although Tc and the exponents z and a cannot be
estimated as accurately as in the ferromagnetic case,
the finite size scaling analysis of our results gives a
strong evidence of a finite Tc =::: 1.7 for the ± J spin
glass model.
We have already seen in 3d [4] that the dynamical

transition studied in the present paper occurs at a
much higher temperature than the temperature
where a spin glass phase appears. So in 2d, a

dynamical transition at T = 1.7 does not contradict
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Fig. 7. - (a) The average distance 5 (L, t ) versus t (log-
log plot) at T = 1.7 for the ± J symmetric spin glass
model. (b) La 8 (L, t ) versus tIL’ 

Z 

(log-log plot) for
a = 0.65 and z = 1.7.

the presently accepted idea that there is no spin glass
phase at finite temperature [16].

It is however possible that when one crosses

Tc :::::: 1.7, some relaxation processes become much
slower ; a simple picture for the divergence of

T 1 at T, could be that below Tc, there exist some
infinite barriers in phase space which prevent the
two configurations from meeting.

6. The non-symmetric ± J spin glass.

Using, again, the same method, sizes and number of
samples as for the previous cases we try to find the
critical temperature Tc and the critical exponents a
and z for the non symmetric ± J spin glass defined by
(2c).

In figures 8a and 8b we show (R) and (log R)
versus T for several sizes L. From these figures we
estimate that

The accuracy of this estimate is better than for the
case of symmetric spin glass although it is not as

good as for the ferromagnetic case.

Fig. 8. - (a) and (b) : The same as figures 1 and 5 in the
case of the 2d non symmetric ± J spin glass. The curves
corresponding to L = 10, 20 and 40 cross in the region
T = 1.55 ± 0.05 with a tendency for Tc to increase with L.

It is also interesting to note that the time needed
for the distance to disappear is smaller in this case
than in the first two cases, as can be seen in figure 9,
which shows the survival probability P (t ) as function
of time for Tc = 1.55.

Figure 9 and the average distance 6 (L, T ) as

function of time plotted in figure 10a are shown at

Fig. 9. - The survival probability versus t for the

2d ± J non symmetric spin glass model at T = 1.55.
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Fig. 10. - (a) The average distance 5 (L, t) versus t

(log-log plot) at T = 1.55 for the ± J non symmetric spin
glass model. (b) La 5 (L, t ) versus t/LZ (log-log plot) for
a = 0.77 and z = 1.9.

Table II. - Exponents a and z for different values of
a chosen critical temperature Tc, for the case of non
symmetric ± J spin glass. Z1 and Z2 are the slopes of
(log T 1&#x3E; as function of log L as defined in

equation (31). Z3 and a are estimated by trying to
satisfy the best the scaling form (25).

Tc = 1.55 because it is at this temperature that our
data for the three sizes (L = 10, 20 and 40) satisfy
the best the scaling form (25), as can be seen in
figure 10b for the exponents a = 0.77 ± 0.05 and
z = 1.9 ± 0.1.

But, like in the symmetric spin-glass case, Tc is not
known very accurately and the estimate of the

exponent z depends on the value chosen for

Tc. So, we give in table II the exponents a and

Z3 estimated by trying to superimpose the curves for
the three different sizes at temperatures betwwen
1.5 and 1.6.

We also give in table II the exponents zl and

Z2 defined in equation (31) (the slope of a log-log of
( 71 ) as function of L). It is seen that also

Zl and Z2 give the closest result for Tc = 1.55.

7. Conclusion.

For all the two dimensional models studied here

(ferromagnet, symmetric ± J spin glass, non sym-
metric ± J spin glasses) we have observed a dynami-
cal phase transition when we compare the time
evolution of two configurations submitted to the
same thermal noise. For the ferromagnet, this dy-
namical phase transition coincides with the Curie
temperature TcF = 2.269 whereas for the two spin
glass models we find Tc = 1.5-1.7 which is clearly
much lower than TcF (excluding the idea that this
Tc could be related to the appearance of Griffiths
singularities). We have shown how finite size scaling
ideas can be used to study these dynamical phase
transitions and we have obtained estimates of the
critical exponents at these transitions.
We think that the approach we have proposed

here could be used in longer calculations to improve
our estimates of Tc and of the exponents. Of course,
the main question would be to know for the spin
glass models what is the change in the landscape of
phase space which occurs when one crosses Tc and
wether this transition can be recovered by studying
quantities [18, 19] other than the distance between
two configurations.
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