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DYNAMICAL PHASE TRANSITIONS AND SPIN GLASSES

B. DERRIDA
Service de Physique Théorique* de Saclay, 91191 Gif-sur-Yvette Cedex, France

Abstract:

By measuring the distance between two configurations subjected to the same thermal noise, one observes for spin glasses three phases: a
high-temperature phase (T > T,), where the distance between the two configurations vanishes in the long-time limit; an intermediate phase
(T,< T<T,), where this distance has a nonzero limit independent of the initial distance; a low-temperature phase (T < T), where the distance
depends on the initial distance. For the 3d and 4d +J spin glasses, the results of Monte Catlo simulations give clear evidence for the existence of
these three phases. For the Sherrington—Kirkpatrick model, T, is infinite whereas T, is close to the equilibrium transition temperature. For the 2d
+J spin glass, the behavior at high and low temperature is similar to that of the 3d and 4d models but there is much less evidence for the presence of
the intermediate phase and for well-defined transition temperatures between these phases.

1. Introduction

For a large class of spin models in statistical mechanics, one observes sharp dynamical phase
transitions [1-6] when one compares the time evolution of two spin configurations subjected to the
same thermal noise. These dynamical phase transitions usually separate two phases:

A high-temperature phase, where the two spin configurations become identical quickly. In this
phase, the effect of thermal noise is strong enough to make the two configurations quickly forget their
initial conditions and the distance between them vanishes.

A low-temperature phase, where the two configurations remain at a finite distance in the long-time
limit (if the system size is large enough). Several effects can be responsible for this non-zero distance.
Either phase space consists of several valleys separated by high free energy barriers and the two
configurations do not meet because they fall into distinct valleys. Or the two configurations belong to
the same valley in phase space but the dynamics is chaotic: two close configurations have the tendency
to diverge (the dynamics has positive Lyapunov exponents).

This dynamical phase transition associated with the distance between two configurations has been
studied up to now in a large class of systems: ferromagnets [1, 3, 4], 2d ANNNI model [2], spin glasses
[1, 5], automata [6]. Several analytic results have been established concerning this dynamical phase
transition. Firstly, one can calculate the time evolution of the distance exactly for some mean field
models [3, 5] and one finds that above a certain temperature the distance tends to zero whereas at low
temperature it does not. Secondly, one can show [7] that in the case of Ising spins with ferromagnetic
interactions only, the dynamical transition coincides with the Curie temperature.

Numerical studies of other models (ANNNI model [2], spin glasses [1]) give a temperature for this
dynamical transition which seems higher than the transition temperature which is observed when one
studies the system at equilibrium. However, at least in the case of spin glasses [1], one can observe a
second dynamical transition temperature below which the distance between the two configurations
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depends on their initial distance. In the case of the 3d spin glass [1], this second dynamical transition is
rather close to the true spin glass phase transition.

In the present paper, the calculations of ref. [1] will be extended to the case of 2d, 3d, 4d, and
infinite-dimension *J spin glasses with sequential dynamics. We will see that the three phases can be
observed in three and four dimensions. In infinite dimensions, the high-temperature phase disappears
whereas in two dimensions the existence of sharp transitions and of the intermediate phase is much less
clear.

2. The heat bath dynamics

For a system of N Ising spins S, = *1 interacting through the hamiltonian

- (§:> thstsl ) (1)
Y

the updating rule used here is the following. To obtain the configuration {S,(¢ + At)} of the system at
time ¢ + At, with

At=1/N, (2)

from its configuration {S;(¢)} at time ¢, one chooses one spin i at random among the N spins and one
updates it according to Glauber dynamics,

¢
S(t+Af)=1  with probability 3 + } tanh(Z ! }( )) ,
]
t
=—1 with probability } — } tanh(z ! 7’,( )> , (3)

]

where T is the temperature. With this dynamics, one can show that in the long-time limit, each spin
configuration {S;} is visited with a probability exp[— #({S;})/T]. To implement this dynamics, at each
time step At, one chooses a random number z(¢) uniformly distributed between 0 and 1 and one obtains
S,(t + Ar) by

Si(t+At)=sign[%+%tanh(; . ’(t)) 2(t )] (4)

In order to compare the time evolution of two configurations {S,(t)} and {§,.(t)} subjected to the
same thermal noise, one chooses at each time step At, the same site i for the two configurations and the
same random number z(t),

#5()

S,(t+An= sign[ +3 tanh(z - z(t)] ,
®)

S.(t+Ar) = mgn[ +1 tanh(z y ’(t)) z(t)]

]
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In the limit T— , each time a spin is updated, this spin becomes identical in the two configurations.
This means that the effect of using the same random numbers is to make the two configurations attract
each other.

The first quantity one can measure to compare the two configurations is their distance A(¢) at time ¢,

40 =55 215,60 - 0. ©)

This distance A(¢) counts the number of spins which are different in configurations {S,(¢)} and {S,(¢)} at
time ¢. Usually, the calculations are repeated for many samples and the quantity which is measured is
the average {4(¢)) over these samples.

If for any reason (finite size effects, fluctuations, etc.) the two configurations become identical at
some time ¢, they remain identical at all later times. As a result it is more convenient to average the
'distance A(t) only over those samples which have survived at time ¢, i.e., such that A(¢) # 0. To do so,
one can introduce the survival probability P(¢) defined as the fraction of samples for which the two
conﬁguratlons {S,(t)} and {S (¢)} are still different at time . Then the distance ( D(¢)) obtained by
averaging over those samples only is given by

(D(1)) =4O /P(®) . (7)

3. Distances in spin glass models

In this section, the results of numerical simulations done to measure (D(¢)) for four spin glass
systems are presented. The models studied here are the Sherrington-Kirkpatrick [8] model with
interactions J,; = +1/VN and the *J spin glass model on a 4d hypercubic, 3d cubic and 2d square
lattice.

In all cases (A(t)) and P(t) were calculated by averaging over 100 samples. For each system, two
lattice sizes were used (N =256 and 512 for the SK model, N = 4* and 6' for the 4d model, N =8> and
12* for the 3d model, N = 16> and 32° for the 2d model).

For each model, the following three initial conditions were considered:

- situation A: {S; (0)} is random and {S,(0)} = —{5,(0)};

—situation B: {S;(0)} and {S (0)} are random and uncorrelated;

— situation C: {S5,(0)} is random and { S, :(0)} is identical to {S5,(0)} except for one spin: S. (0) = §,(0) for
i=2and § ,(0)=—-5,(0).

~ Similar calculations had been done [1] for the 3d = J spin glass in the case of parallel dynamics.

Lastly, all the results shown in the present paper correspond to the time ¢ = 500 Monte Carlo steps
per spin.

Figure 1 shows (D(¢)) for the SK model. We see that the distance (D(t)) does not vanish at any
temperature (this has been checked up to T=4 and (D(t)) seems to decrease like T7%). So the
temperature T, above which (D(t)) vanishes is infinite for the SK model. We see also that (as for the
3d spin glass [1]), there exists a phase T, < T < T, =  where the distance {D(t)) does not depend on
the initial distance. From fig. 1, one can estimate T, =0.9. This estimate is rather close to the spin glass
transition T, =1 of the SK model and it is plausible that T, and T, are the same temperature since the
data corresponding to different distances come together in a tangential way. Of course it would be very
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Fig. 1. SK model. The distance { D(t)} versus temperature T for three Fig. 2. The distance { D(f)) versus temperature (as in fig. 1) for the 4d

initial distances; opposite initial conditions [D(0) = 1], uncorrelated
initial conditions [D(0) =1/2], identical initial conditions except for
one spin [D(0) = 1/N].

+J spin glass.

interesting to improve the data for the SK model in order to know whether T, and T coincide. This
would require a careful analysis of the time and size dependence of T,.

Figure 2 shows the data obtained for the four-dimensional +J spin glass. The statistics (100 samples)
is clearly not sufficient to get a good estimate of T,. One can, however, see that the distance { D(r))
vanishes above T, with T, =6, and that (D(¢)) is nonzero but independent of { D(0)) for T, < T < T,
with T,=2.0+0.4. For T <T,, {(D(t)) depends on D(0).

Figure 3 shows the distance ( D(¢)) for the 3d +J spin glass. The fluctuations are smaller than in four
dimensions. One finds again three phases: For T > T,, (D(t)) vanishes. For T,< T < T,, {D(f)) is
nonzero but independent of D(0). For T < T,, (D(t)) depends on D(0). From fig. 3, one can estimate
T,=4.0, T,=15+0.2. These results (and the estimates of T, and T,) for the 3d problem with
sequential dynamics are almost identical to those obtained for 3d problem with parallel dynamics. The
temperature 7, =1.2 of the spin glass transition [9] is again close to T,.

Figure 4 shows the data for the 2d case. An important difference with the previous cases is that one
does not observe the intermediate phase T, < T < T,, where the distance (D(f)) depends neither on
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Fig. 3. The distance { D(r) versus temperature (as in figs. 1 and 2) for Fig. 4. The distance { D(f)) versus temperature (as in figs. 1, 2 and 3)

the 3d *J spin glass. for the 2d +J spin glass.
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the size nor on the initial distance D(0). We see nevertheless on fig. 4 that ( D(¢)) vanishes above a
temperature T~ 1.8 £0.2 and does not vanish below. At low temperature, the results are very similar
to those of the 3d and 4d models. This means that at least after 500 MCS, the data on the distance
(D(t)) at low temperature do not show any evidence for a different behavior in two dimensions and in
more dimensions. In this two-dimensional case as well, a careful study of the time and size dependence
of the data would be very useful in order to decide whether the 2d and higher-dimensional systems are
similar or not.

4, Conclusion

In this paper, some preliminary results concerning the distance between two configurations subjected
to the same thermal noise were presented. In three and four dimensions, three different phases can be
observed: a high-temperature phase 7> T,, where the distance vanishes; an intermediate phase
T,<T<T,, where the distance does not vanish but is independent of the initial distance; a
low-temperature phase T < T,, where the distance depends on the initial distance. In two dimensions,
the results look very similar to those of d =3 and 4 at high and low temperatures but the existence of
the intermediate phase is much less clear than in d =3 and 4. For the SK model, the results look very
similar to the 3d case except that the high-temperature phase disappears (T, = «).

In the numerical results shown here (in d =3 and for the SK model) the temperature 7, (which is
defined as the temperature below which the distance starts to depend on the initial distance) seems to
be close to the spin glass phase transition. Since the curves ( D(¢)) always depend on the system size
and on the time ¢ at which the distance is measured, it is hard to know whether T, and the spin glass
transition are the same or not. To answer that question, a careful study of the time and size dependence
of T, would be needed.

A finite size scaling method has been developed [4] which allows one to determine T, rather
accurately. The method consists in measuring the time 7(L, T') it takes for the distance to vanish as a
function of the system size L and of the temperature 7, and in using finite size scaling ideas to estimate
T, where 7(L, T) diverges as L—. In the case of T,, the time 7(L, T) can be calculated easily
because for a given sample, one knows that once the distance vanishes, it remains zero for ever.

It seems that it would be possible to use similar ideas to estimate T,. Since T, is the temperature
where remanence effects associated with the distance appear, one can start with three initial conditions
{(S1(0)}, {$2(0)} and {5(0)}, such that the distance D,(0) between {S(0)} and {S®(0)} is }
and the distance D,(0) between {S¢"(0)} and {$®(0)} is 1. Then for each sample, one can define a
remanence time 7(L, T) as the time such that D,(7) = D,(7) for the first time. From the data on this
remanence time 7(L, T), one should be able to measure T, rather accurately using finite size scaling
ideas.

It would be interesting to do these finite size scaling calculations of T, because one could know how
the dynamical phase transition 7, associated with the remanence effects (which are purely dynamical
effects) is related to the spin glass phase transition.
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