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Abstract. - We study the distribution of ground-state energies of directed polymers on 
disordered hierarchical lattices. The problem can be reduced to finding the stable distribution 
when one combines random variables in a nonlinear way (for example, e = min (el + e, es + e*)). 
The ground-state energy fluctuations of a polymer of length L increase like L". We calculate w 
numerically for a whole family of hierarchical lattices. In a limiting case, we present a 
perturbation theory for the ground-state energy and the exponent w, which agrees well with the 
numerical results. 

Polymers in random media have been a controversial subject for some time[l-41. The 
combined effects of excluded volume and randomness are still not fully understood, and the 
upper critical dimension and the critical exponents remain unknown. There has recently 
been important progress in the case of directed polymers: in two dimensions the critical 
exponents are known exactly[5-8], and the exact solution of the *mean field. limit of a 
polymer on a tree shows several features in common with mean-field spin glasses[9]. 

It would be interesting to extend these .mean field. results to models of a finite- 
dimensional lattice, but that is a difficult problem. In the present paper we consider some 
properties of directed polymers on random hierarchical lattices [lo] which can be thought of 
as intermediate between mean-field and finite-dimensional systems [U], or as providing a 
(crude) renormalization group approximation to the latter. Here we will only consider the 
zero-temperature limit or ground state; finite-temperature studies are among some of the 
possible generalizations mentioned in the conclusion. At zero temperature, the directed 
polymer reduces to an optimization problem which is to find the path of lowest energy in a 
random landscape [6]. 

The hierarchical lattices [lo, 111 we shall consider are constructed by an iterative rule, 
indicated in fig. la) for the adiamondn lattice. The first generation consists of one bond and 
two sites. In the second generation the bond is replaced by a set of four bonds, each of which 
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Fig. 1. - The iterative construction of the diamond hierarchical lattice (a)) and of the generalized 
lattice (b)) .  

is replaced by a corresponding set to form the third generation, etc. In the generaliz- 
ation shown in fig. lb), each bond is replaced by a set of 2b bonds. We shall consider 
directed walks from A to B, that is paths of (minimal) length L=P-'  in a lattice of 
generation n. 

To each bond of the lattice is assigned a random energy e, with probability Pl(el). The 
energy Ew of a directed walk W from A to B is the sum of the energies of the bonds in the 
walk, and the ground-state energy E is the minimum of Ew over all W. The hierarchical 
nature of the lattice means that the ground-state energy of a lattice of generation 
(n + 1) can be written as 

where the E'') are the ground-state energies of lattices of generation n. As these are 
independent random variables, (1) yields a recursion relation for the probability distribution 
Pn(E"): 

The first step (2) corresponds to the addition of two energies, and the second (31, to finding 
the minimum: note that the minimum of the b sums in (1) is greater than x, if and only if each 
sum is greater than x. 

As in the case of other disordered models on hierarchical lattices, one has to iterate a 
probability distribution. This usually cannot be done exactly and one has either to make 
approximations [12], to treat the problem numerically [13] or to expand around situations 
where the iteration of P,(x) is simple [14,15]. We used a numerical procedure for general b 
and an expansion around b = 1. 
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Our numerical analysis was applied to distributions of the form 

where the sum is over a finite set of integers, because the recursion formula for the a,, (m) is 
simple and easy to program, In the case 

we found that P,(x)  tends toward the form 

with increasing n, provided p is large enough, see (5), so that the - 1 bonds do not percolate 
between A and B. Here y,, and 8, depend on the initial distribution, but Fb depends only on b. 
The same form arose for an initial distribution with the a,@) chosen to approximate a 
Gaussian. We also calculated p,,U), the j-th moment of P,(x) about the mean, ((x - $j), for 
several values of j and found that ratios like ,~,(4)/[ ,~, ,(2)]~ become independent of n as n 
increases. Also the square root of ,~,,+~(2)/p,,(2) tends to a limit 

A = 2" = lim 7+,- (&+,/&), (7) 

which depends on b but not on Pl (x), see fig. 2a). Our numerical estimates for 8, the average 
ground-state energy per unit length of the walk as the latter becomes infinite, are shown in 
fig. 2b) for the initial distribution (5) with p = 1/2, and for a set of values a, (m) chosen to 
approximate a Gaussian with mean 0 and variance 1. For large b, 8 depends on PI (x), but for 
small b both these distributions (which have the same mean and variance) give similar 
results. 

1.0 1.2 1.4 1.6 1.8 2.0 

Fig. 2. - The scaling factor A (a)) and the ground-state energy B ( b ) )  as a function of b for initial 
conditions (7) and (13). 0 delta functions, o Gaussian. 

The fluctuations ( ( E  - El2) of the ground-state energy vary with the length L of the walk 
as L2" when L is large, because with each iteration L doubles and the width of P, is 
multiplied by 2", see (7). In the case b=2,  which corresponds to the Migdal-Kadanoff 
approximation of the 2d lattice, our numerical method gives A = 1.23 ( i . e .  w = 0.30), whereas 
the exact value is known to be w = 1/3 in two dimensions [6]. 
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In the limit b = 1, P,+l is the same as Q,, and thus, for large n, P, will tend to a Gaussian 
distribution, assuming P1 has finite moments, and one has A = fl and e = 0 (assuming the 
first moment of P1 vanishes), consistent with fig. 2. 

For b close to 1, we have carried out an analytic expansion to first order in E = b - 1 which 
confirms the numerical results. Assume that P, is a Gaussian with a small correction 

For P, to be normalized, p, has to satisfy 

By means of (2) and (3) and ignoring terms of order = ( b  - 1)2, one obtains the expression 

where F and the linear operator Yp are defined by 

dt exp [- P/21 , 1 
$p (2)  = (Udm 1 dt p (t/ ~) exp [- (t - ~ ) ~ / 2 3  . (12) 

In order to rewrite (10) in the form (€9, we introduce two arbitrary constants cn and dn in 

(13) 

the expressions 

yn+l= 27, + ECn fldn an+, = (1 + dJ flan 

Then is of the form 

with a, = 1 (see eq. (10)). 

eigenfunctions (Hermite polynomials) 
The linear operator 3 in (12) has eigenvalues 2l-", S = 0, 1,2, ..., associated with 

~ ( ~ ' ( 2 )  = (-- 1)8(exp [x2/2])(d/dx)"(exp [- 2/21). (15) 

Thus the first three terms on the right side of (14) are proportional to p)(O), p(') and P(~), 
respectively. 

If F(x)  is expanded as a series in the eigenfunctions (15), the S = 0 (constant) term is 
cancelled by a,. Next c, and d, can be chosen to cancel the S = l  and S = 2  terms, 
respectively. Then, if the corresponding expansion for 9% contains only terms with S 3 3, the 
same will be true of P) ,+~ ,  and the fact that the corresponding eigenvalues are all less than 1 
in magnitude means that p, will converge to a unique limit as n+ m. These considerations 
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single out the unique values 

c, = - K1 = (2x)-ln I dx xF (2) exp [- x2/21, 

d, = K2 = ( 2 ~ ) - ' ~  1 dx $ (1 - x2> F (2) exp E- 2'121 
(16) 

with numerical values Kl = 0.903 197.. . , K2 = 0.297 82.. . . 
one obtains 

Upon iterating (13) using (16), and y1 = 0, 8, = 1 (Gaussian of zero mean and of width 11, 

to lowest order in E; note the d is the large n limit of y,/B-'. The terms linear in E axe shown 
as straight lines in fig. 2, in good agreement with numerical results. 

It would be of interest to extend the results described above in various ways. An obvious 
possibility is to consider alternative hierarchical lattices, such as one in which each of the b 
branches in fig. l b )  contains a bond with a > 2. More challenging is the problem at finite 
temperature where each walk is given a weight exp [-E,/?'], and (1) is replaced by a 
corresponding recursion formula for the partition function 2'"). If (logZ) could be obtained 
as an expansion in powers of b - 1, in analogy with the ground state, this would provide a 
new class of almost solvable random systems. One could then for example, see if the replica 
method with an appropriate breaking of symmetry yields the same result, as in the case in 
the .mean-field. situation of a polymer of a tree [9,16]. Finally we note that if the initial 
distribution Pl(x> of ground-state energies decays sufficiently slowly as 1x1 + CQ, the limiting 
distribution for large n and b = 1 is not a Gaussian, but a Levy distribution [17]. It would be 
of interest to see if our expansion around b = 1 could be extended to that case. 
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