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The problem of directed polymers on disordered hierarchical and hypercubic 
lattices is considered. For the hierarchical lattices the problem can be reduced 
to the study of the stable laws for combining random variables in a nonlinear 
way. We present the results of numerical simulations of two hierarchical lattices, 
finding evidence of a phase transition in one case. For a limiting case we extend 
the perturbation theory developed by Derrida and Griffiths to nonzero tem- 
perature and to higher order and use this approach to calculate thermal and 
geometrical properties (overlaps) of the model. In this limit we obtain an inter- 
polation formula, allowing one to obtain the noninteger moments of the parti- 
tion function from the integer moments. We obtain bounds for the transition 
temperature for hierarchical and hypercubic lattices, and some similarities 
between the problem on the two different types of lattice are discussed. 
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1. INTRODUCTION 

The problem of a polymer in a r a n d o m  med ium can be formulated in its 

simplest lattice version as follows. (1) Consider  a regular lattice with an 

energy eij chosen r andomly  according to a given probabi l i ty  dis t r ibut ion 
p(eu) on each b o n d  0" of the lattice. O n  this lattice, one would like to study 

the thermal  properties of a self-avoiding walk (polymer)  with a fixed origin 
O and a given length L. By definition, the par t i t ion funct ion Z of this 

polymer at temperature  T is given by 

Z = ~  e -EW/r (1) 
W 
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where in (1) the sum runs over all the possible self-avoiding walks of length 
L starting at the origin O and where the energy Ew of each walk W is the 
energy of all the bonds visited by the walk 

Ew = ~ e~ (2) 
t~ 

As with other models in statistical mechanics, one would like to know the 
free energy of this system in the thermodynamic limit (L ~ o0) in order to 
understand the phase diagram and the characteristics of each thermo- 
dynamic phase. In addition to the free energy, it is interesting to consider 
several other properties of this system (geometrical properties such as the 
average end-to-end distance of the walk, dynamical properties such as the 
diffusion constant, etc.). 

This problem in the theory of disordered systems has been of interest 
for the last few years for several reasons: 

1. It is a relevant question in the study of the properties of polymeric 
chains in porous media ~2 12/or of the pinning of one-dimensional interfaces 
by random impurities (12 19) in two-dimensional systems. In its zero-tem- 
perature limit, the problem becomes an optimization problem: one has to 
find the best path (2~23) in a random environment. 

2. The prOblem of a self-avoiding walk on a random lattice can 
be viewed as the limiting case of a magnetic system with random 
interactions (4"51 (in the limit of spins with zero component). The corre- 
sponding pure system (all the eij equal) has a positive specific heat exponent 
c~ and one expects that any amount of disorder would change the critical 
properties of the walk. 

3. There is a strong analogy between the problem of a polymer in a 
random medium and spin glasses. (1) One might then wonder whether some 
properties specific to spin glasses (multivalley landscape, broken replica 
symmetry, non-self-averaging effects) could also be observed in the case of 
polymers in random media. 

Although the above questions have not yet been fully answered, some 
progress has been made in the last few years. 

First, by considering a simplified version of the problem, that of direc- 
ted polymers (i.e., walks such that one of their coordinates is an increasing 
function of time), ~21'23'24) it is possible to obtain exact results ~13'21'24 26) in 
dimension 2 = 1 + 1 (for directed polymers, the direction along which the 
polymer is directed always plays a special role). 

Second, in d > 3 ( = 2 + 1 ), it is possible to prove that at high enough 
temperature, ~27,2s~ the quenched free energy (log Z )  of the directed walk is 
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identical to the annealed free energy l o g ( Z )  (which can be calculated 
easily; see Section 9). This implies that there is a high-temperature phase 
where the problem is well understood. 

Third, in the mean-field limit (d-~ oo), the problem can be solved 
exactly (there is a very simple expression of the free energy)/1) One finds 
that there exists a transition temperature below which the system has 
properties very similar to those predicted for mean-field spin glasses (29 3t~ 
(broken replica symmetry, non-self-averaging effects, a nontrivial proba- 
bility distribution for the overlaps, etc.). 

Due to this analogy, it is legitimate to wonder whether all the proper- 
ties characteristic of the mean-field spin glass are present only for the 
polymer problem in infinite dimension or whether they persist in finite 
dimension. 

The study of directed polymers with disorder in arbitrary dimension is 
still a very open question and the nature of the low-temperature phase is 
not yet well understood. Recently a related problem has been investigated 
which consists in considering polymers on a hierarchical lattice in the 
presence of disorder. (23) This is a much simpler problem than the finite- 
dimensional one because it is possible to write simple recursions for the 
partition function. It is, however, reasonable to think that hierarchical 
lattices are much closer to finite-dimensional systems than mean-field 
models, in particular because one can vary some parameters which define 
the hierarchical lattice in order to go from low- to high-dimensional 
systems. 

The main purpose of the present work is to extend to finite tem- 
perature some analytical results which have been obtained recently for the 
problem of polymers on disordered hierarchical lattices. (23) We will show 
that quantities such as the free energy, overlaps of an arbitrary number of 
configurations, the probability distribution of overlaps, (29'31~ and integer 
and noninteger moments of the partition function can be calculated at any 
temperature by a perturbation method. 

As we will see in Section 2, the problem of polymers on a random 
hierarchical lattice is closely related to an interesting problem in proba- 
bility theory: the problem of finding stable laws when one combines 
random variables in a nonlinear way; for example, if one combines ab 

random variables Z~ ') to obtain a new variable Zn+l given by 

(1) (2) (a) ( a +  1) (2a) ( a b - a +  1) (ab) 
Z n + l = Z n  Z n . . . Z  n -~ -Z  n . . . Z  n + . . .  + Z  n . . . Z ,  (3) 

(Zn+~ is the sum of b products of a random variables), the problem is to 
find a stable law for this operation, i.e., the shape of a distribution which 
remains unchanged when one goes from the Z(, ~ to Z ,  +1. This problem has 
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a simple answer if a =  1 or b =  1 (for a =  1 the stable law is a Gaussian 
distribution, whereas for b = 1 it is a log normal distribution), but is much 
more difficult if both a and b are larger than 1. 

This paper is organized as follows. In Section 2 we define the model of 
polymers on a random hierarchical lattice and we show that it can be 
reduced to the study of recursions similar to (3). In Section 3, we calculate 
a few integer moments and we obtain the phase diagram and the overlaps 
corresponding to these moments. In Section 4, we describe a Monte Carlo 
method which gives numerical estimates of the thermal properties and of 
the overlaps. In Section 5, we present a perturbative approach which allows 
one to calculate analytically the free energy at any temperature. In the 
zero-temperature limit, we recover the results of ref. 23. In Sections 6 and 
7, we calculate the overlaps and the (integer and noninteger) moments of 
Z and we discuss the validity of the replica method (we will see that the 
zero-temperature limit and the limit of zero replica do not commute). In 
Section 8 we show how the results obtained in Sections 5-7 can be 
extended to other hierarchical structures. Lastly, in Section 9, we compare 
some properties of the problem on a hierarchical lattice and on a hyper- 
cubic lattice. 

2. C O N S T R U C T I O N  OF THE H I E R A R C H I C A L  LATTICE 
A N D  OF THE ITERATIVE RULES 

As in ref. 23, we will consider here a family of hierarchical lattices 
which are constructed by an iterative rule. The rule consists of building the 
lattice at the (n + 1)th generation by replacing each bond of the lattice at 
the nth generation by a motif of 2b bonds as shown in Fig. 1. The so-called 
diamond lattice (which is the case b = 2 )  is shown in Fig. la, and the 
generalization of it (arbitrary b) is shown in Fig. lb. 

Since at each new generation the number of bonds is multiplied by 2b, 
the hierarchical lattice at the nth generation consists of (2b) n ~ bonds. 
As for the other lattice models, one assigns a random energy eij chosen 
according to a given probability distribution p(eu) to each bond /j of the 
lattice. Although several results which will be discussed in what follows 
could be obtained for arbitrary distributions p(e), we will mostly limit our 
discussion to a Gaussian distribution 

p(e) = (2re) in exp(--e2/2) (4) 

On this hierarchical lattice (Fig. 1), we consider all the directed walks 
starting from point A and ending at point B. On a lattice at generation n, 
there are b 2"-1-~ such walks and the length of each of these walks is 
L = 2  n 1 
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Fig. 1. The iterative construction of (a) the diamond hierarchical lattice and (b) the 
generalized lattice. 

Because the lattice at generation n + 1 can always be viewed as the 
combination of 2b lattices at generation n, one can write the following 
recursion for the partition function: 

1) (2b) Z~+ _ 7 o ) 7 ( 2 ) +  ... +Z~2b- Z~ (5) 

where Z,, + 1 is the partition function of a lattice at the (n + 1)th generation 
and the Z~ u) are the partition functions of 2b (different) lattices at genera- 
tion n. 

Because all the partition functions which appear in (5) are random, 
the quantity one needs to consider is the probability distribution ~.(Z)  of 
the partition function Z of a lattice at the nth generation. Clearly (5) 
implies that 

t" r 

(6) 

Since at the first generation, the lattice consists of a single bond, one can 
write that 

T r 

n,(Z)= | p(e)de6(Z-e ~/r)= p( Tlog Z)  2 ,) 
(7) 

So the problem of calculating the free energy is reduced to the study of the 
recursion (6) for the probability distribution nn(Z), and the average free 
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energy F,(T) per unit length of the walk on a lattice at the nth generation 
will be given by 

F~(T) = - V  <l~ Z~) - ~T-~f~,(ZldZlogZ (8) 
2 . 1 2 

where ( - )  denotes the average over disorder. 
Apart from the thermal properties of the walk (energy, specific heat), 

which can be computed as derivatives of F , (T)  with respect to temperature, 
it is interesting to study other properties of the walk, such as the overlaps. 

If one considers two walks W and W' of length L = 2 n- ~ on the same 
random lattice (at generation n), one can define the overlap q2(W, W') of 
these two walks as the fraction of their length they spend together. This 
definition is the direct generalization to this problem of the notion of over- 
laps which is used in spin glasses. (3~ From this definition of overlaps, 
one can introduce the probability P2(q) of finding two configurations with 
an overlap q: 

Y~w Y~w, [exp(- Ew/T-  Ew'/T) ] cS(q- q2( W, W') ) 
P2(q) = (9) 

Zw Zw, exp( - Ew/T-  Ew,/T) 

As in Eq. (5), it is possible to obtain Pz(q) from a recursion relation. To 
do this, it is convenient to introduce the following generating function 
Xn(T, y) for a lattice at the nth generation: 

X , ( T , y ) = ~ ' e x p  ~-y2"-lq2(W, W') (10) 
w' T T 

Then one can write the following recursion formula for X: 

X n + l  = --n'~(" (1) ~(" (2) - ' t ' - - - n  - -  . . . _~_ y ( 2 b -  1) Xn(2b) 

+ + ..  + 2b- 

(1) (2) 2 ( z ( 2 b - l ) z ( 2 b ) ] 2 ]  - [ ( z ,  z o  ) + . . . + , _ ,  - ,  (11) 

The origin of this relation is very similar to the origin of Eq. (5): the lattice 
at the (n + l ) th  generation is composed of 2b lattices at the n th generation. 
If one considers two walks on the lattice at the (n + 1 )th generation, either 
they go through the same branch [first term of the rhs of (11)] or they go 
through different branches [last two terms of (11)]. Then in principle one 
should consider the probability 5,(X, Z)  of X and Z and write an iterative 
formula similar to (6) with the following initial condition: 

~(X, Z) = f p(e) de 6(X-  e y 2e/T) 6(Z-- e t/r) (12) 
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which expresses the fact that at the first generation, the lattice consists of 
a single bond and that two walks on this lattice are identical and have 
the same energy. If one can calculate ~ , (X,Z) ,  then the average 
(Y,,(T, y)/Z,2(T)) over disorder is known and one can deduce the average 
overlap q2 by 

1 e / x . ( r , z ) \ l  
q~(T)-2"-' dy \ Z](T) /t,=o (13) 

The procedure that we have just described to calculate q2(T) can easily be 
extended to obtain other overlaps, such as the overlap qm(W(~),..., W (m)) 
between m walks (this overlap is simply the fraction of their length that 
these m walks spend together). Defining, as in (10), Xn(T, y) by 

I Zw(, Ew~,,~ 
X , ( T , y ) =  Z Z ' Z exp . . . . . . . .  

w*LI w~2~ v~") T T 

q 
I- y2 n- ~q,,,(W (1) ..... w(m))l 

(14) 

One can write a recursion very similar to (11) 

(1) (2) X~ Y, ,+ t=X, ,  X n + . . .  +X~2b-~) (2b) 

-]- ,[Z(1)*7" ( 2 ) - - n  - - n  - ] -  " ' "  Z ( n  2 b  l ) g ( 2 b ) )  m 

-- [-(Z(1)Z (2)'1~ -+- --- -k- (g(2b-- 1)z(2b)]m ] 
L ~ - - n  - - n  J ~ n n ! _1 

with the initial condition 

(15) 

X['):eY(Z[~ m (16) 

We see from (5), (11), and (15) that the problem of a polymer on a 
random hierarchical lattice can be understood if one knows how to 
describe the probability distribution of variables like X n + ~ or Z ,  + ~ which 
are obtained by combining other random variables (the X~ s) and the Zn)U) 
in a nonlinear way. Of  course, if b = 1, log Zn is a sum of random variables 
and the solution is given by the central limit theorem. However, as soon as 
b > I, the problem is much more complex and, to our knowledge, the shape 
of the limiting distribution of Zn when n ~ 00 is unknown. 

The problem of finding the distribution of Z ,  in the limit n --, oo is 
very similar to the distribution of ground-state energies of the same 
problem. (23) At zero temperature, the recursion relation (5) becomes a 
recursion relation for the ground-state energy En of a lattice at the nth 
generation 

e ,  +1 = min[E~i) + E~ (2) ..... E~2b-1)+ E~2b~] (17) 

822/57/1 2 7 
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Then one can write the following recursion for the probablity distribution 
P.(E.) of E. : 

P.+,(E)=bQn(E) dE' Q.(E') (18a) 

Q.(E) = f dE' P.(E') P . ( E -  E') (18b) 

In ref. 23, numerical and analytical results were presented concerning the 
iteration (18). For large n, it was observed numerically than Pn(E) takes 
the following form: 

1 "E-Tn~ 
P n ( E ) = z  Fb (---~, j (19) 

where ~. and An both depend on the initial distribution P I ( E ) -  p(E), but 
Fb does not. Moreover, for n ~  o% the ratio A.+~/A. has a limit 2b inde- 
pendent of the initial distribution PI(E). This implies that the fluctuations 
of the ground-state energy increase with the length L of the polymer as a 
power law 

with 

E ( e .  ~ ) - ( E n ) 2 ]  1/2 ~Zln  ~ ( ~ ) "  ~ L ~ (20) 

co = log 2b/log 2 (21) 

The ground-state energy per unit length of the polymer (En }/2"-1 and the 
scaling factor 2b were measured numerically for several values of b and it 
was shown that one can develop a perturbative approach for b close to 1 
which gives analytic expressions for these two quantities. 

3. T H E  I N T E G E R  M O M E N T S  

For most disordered systems, the calculation of integer moments of 
the partition function is much easier than that of the average free energy. 

For the problem of directed polymers, it is easy to see that the calcula- 
tion of the integer moments can be reduced to the study of simple itera- 
tions. From (5), one can obtain the following recursion relations for the 
first moments of Zn : 

(Zn + 1 ) = b(Zn )2 (22) 

( Z 2 + 1 )  = b(Z2)  2 + b(b - 1)(Z n )4 (23) 
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' (23+1) =b(Z3)2"~  3 b ( b -  1)~Z~)2(Zn)2  +b(b - 1 ) ( b - 2 ) ( Z n )  6 (24) 

(Z,4+ l ) = b ( Z  2 )2 + 4b(b - 1)(Z2 ) 2 ( Z  n )2 + 3b(b - 1 ) ( Z 2 )  4 

+ 6b(b - 1 )(b - 2 ) ( Z  2 ) 2 (Z, , )4  + b(b - 1)(b - 2)(b - 3 ) (Zn )s 

(25) 

with the initial condition 

( Z  p ) = l~p = f p(e)e  -p~/v de (26) 

To calculate the p th moment of Z~, one needs to study a simple dynamical 
system in a p-dimensional space, since the calculation of the p th  moment 
at the ( n+  1)th generation only requires the knowledge of the first p 
moments at the n th generation. This dynamical system can be simplified 
further by considering the ratios 

Zp(n) = ( Z n > P / < Z 2 >  (27) 

and the recursions (23)-(26)become 

z2 (n+ 1 ) = b [ z 2 ( n ) ] 2 { 1  + ( b -  1)[z2(n)] 2 } ~ (28) 

{ 2 }(' z3(n + 1) = b2[z3(n)] 2 1 + 3(b - 1) \ z 2 ( n ) ]  + (b - 1)(b - 2)[za(n)] 2 

29) 

{ (Z4(n)~2 [-74(")]2 
z 4 ( n + l ) = b 3 [ z 4 ( n ) ]  2 l + 4 ( b - 1 ) \ z 3 ~ /  + 3 ( b - l )  [z2(n)]4 

-}- 6(b -- l)(b - 2) (z4(/7)~ 2 } 1 
\ z 2 ( n ) /  + (b - 1)(b - 2)(b - 3)[z4(n)] 2 

(30) 

There exist several attractive fixed points of these recursions and each 
possible phase of ( Z  p)  corresponds to one of these attractive fixed points. 

To describe the phase diagram of ( Z 2 ) ,  it is sufficient to study the 
recursion (28). There are three fixed points of (28): z2 = 1, z2 = 0, and z2 = 
1/(b - 1). For  b ~< 2, z2 = 0 is attractive and z2 = 1 is unstable, whereas z2 = 
1 / ( b -  1) is unreachable if 0 < z 2 ( 1 ) <  1 [see (27)]. So any initial z2(1)r  1 
converges to z2=0.  For  b > 2  the two fixed points z2= 1 and z 2 = 0  are 
attractive and the fixed point z2 = 1 / ( b -  1) is unstable. Depending on the 
initial value z2(1 ), the point z2(n) converges to one of these two attractive 



fixed points: z2(n ) --+ 0 if z2(1)< 1/(b-  t)  and z2(n)---* t if z2(1)> 1/(b-  1 ). 
So we see that in the plane (b, T), the line T2(b) given by 

z2(1) _ [~ p ( e ) exp ( - e /T2 )  de] 2 1 
J p(e) exp(-2~/T2)  d~ - b - 1 

(31) 

is a transition line for ( Z 2 ) .  For  the Gaussian distribution (4), this line 
T2(b) is given by 

Tz(b) = [log(b - 1)3 -~/2 (32) 

and is shown on Fig. 2. We see that T2(b) diverges as b--* 2 and that for 
b < 2 ,  ( Z  2) is always in its low-temperature phase. For  T>T2(b), 
z 2 ( n ) ~ l  as n--* oo, and so one knows that ( Z ~ ) / ( Z n ) 2 ~ l  and this 
implies that the distribution of Z n becomes very narrow arround (Zn ) .  As 
a consequence, for T >  T2(b), one has 

,limo ~ 1 1 ~ log Z .  = linao~ ~ - 7  l o g ( Z . )  (33) 

with probability 1. 

1.5 

0.5 

T 4 

Tz 
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Fig. 2. The transition temperatures T2(b), T3(b), and T4(b ) of the moments (Z2), (Z3), 
and ( Z  4) versus b. 
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From (22) one can easily calculate (Z , , )  for the Gaussian distribution 
(4), 

( Z . ) = b  2~-~ le2" 2/T2 (34) 

and one can deduce from (33) that for T >  T2(b) the free energy F,(T) per 
unit length is given with probability one by 

(2+) lim F~(T)= lira - 2n_ I = - T  l o g b +  (35) 

It is interesting to recover here a feature which has been found in the study 
of directed polymers in finite dimensions(27'28): above a certain temperature 
T2(b), the free energy is known exactly (see Section 9). One should notice 
that the fact that ~Z2)/~Zn) 2......+ 1 as n ~  ~ implies that logZn is equal 
to log (Z~)  with probability one. However, it could happen that 
(log Z , ) # l o g ( Z ~ )  due to rare events with Z ,  close to 0. 

One should notice that the fact that we know that (35) is valid above 
T2(b) does not imply that the transition temperature To(b) is T2(b). This 
is because (33) might remain true even when ( Z , ) Z / ( Z  2) ~ O. However, 
it is easy to see that (35) cannot remain true down to T =  0 [the entropy 
calculated from (35) would vanish 132'33) at T =  (2 log b) 1/2]. This implies 
that log Z~ must undergo a transition above this temperature. Therefore, 
the free energy is given with probability one by (35) down to a certain 
transition temperature To(b) for which we have the following bounds: 

(2 log b) -~/2 <~ T~(b) <<. [log(b - 1)] -1/2 (36) 

By looking at the two-dimensional mapping (z2(n), z3(rt))---~ 
(Zz(n-+-l), z3(n+ 1)), Eq. (29), one can get the phase diagram of ( Z 3 ) .  
The analytic form of the transition line T3(b) is not as simple as (32): one 
can show (but it would be too long to give the explanation here) that for 
b < 2.303 .... T3(b) = Tz(b), whereas for b > 2.303, T3(b) is obtained by the 
condition that the point (z2(1), z3(1)) lies on the stable manifold of the 
fixed point (z2= 1, z3= 1/(b 2 -  1)). The transition line T3(b ) versus b is 
shown on Fig. 2. 

In a similar way, the transition temperature of ( Z  4) can be obtained 
by studying the three-dimensional mapping (z2(n), z3(n), z4(n))~ 
(za(n + 1), z3(n + 1), za(n + 1)). One finds a transition temperature T4(b) 
shown on Fig. 2. As for T3(b), T4(b) coincides with T2(b ) for b close 
enough to 2 and then it is given by the condition that the point (z2(1), 
z3(1), z4(1)) lies on the stable manifold of the fixed point (z2= 1, z 3 = 1, 
z4= 1/(b 3 -  1)). 



100 Cook and Derrida 

Looking at Fig. 2, one expects that higher integer moments would 
have higher transition temperatures Tn(b). 

The main reason that it is interesting to calculate the moments ( Z  p )  
is to try to use a replica approach. In principle, if one could calculate @p(n) 
defined by 

1 
Op(n) = ~ 7  log ((Zn) p ) (37) 

for all p, the replica approach would give the average free energy Fn(T) by 

- T  ~11( ) Fn(T) = .--;~-r_ ~ (log Z , )  = - T  lira Tp,n, (38) Z" - p~0 p 

From the previous relations (22)-(30), one can get expressions for the 
~p(n) for p = 1, 2, 3, and 4. One finds, as usual for models on hierarchical 
lattices, ~34'35) that the results are given by a sum 

tPl(n) = 1 - log b + 2 T  

logb+2r---z 
n 1 1 1 

+ ,~1-= ~ og{1 + ( b -  1 ) [ Z 2 ( / ) 3  2 } (40) 

( , )  9 
O3(n)= 1 - ~  logb+2T-- 5 

+Z.= log 
(4l) 

O4(]q)  ~- 1 - -  ~ log b + 2T ~ 

-= ~ l o g  l + 4 ( b - l ) \ z 3 ( i ) j  

+ 3 ( b -  1) [ z 4 ( i ) ] 2  I- 6 (D - -  1 ) (D --  2 )  ( z 4 ( i ) ' ~  2 
[z2(i)] 4 \z2(i).] 

+ (b - 1)(b - 2)(b - 3)Ez4(i)] 2} (42) 
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Looking at these expressions, it is easy to guess an extrapolation to 
arbitrary p of the first two terms of the right-hand sides of (39)-(42). 
However, for the last term, this extrapolation seems much more difficult. 
We will see in Sections 5 and 6 that at least for b close to 1, one can 
calculate the moments for arbitrary (integer and noninteger) p and thus 
that this extrapolation can be done when one expands around b = 1. 

Exactly as it was possible to deduce the recursion (22)-(25) from (5), 
one can also write when p is an integer />2 a recursion for ~bn(p) which is 
defined by 

~.(p) = (X . (Z . )  p- = ) (43) 

where X. is defined by (10). For arbitrary p, the knowledge of ~b.(p) would 
give the overlap Q.(p) between two walks among p walks by the formula 

d 
Q.(p) = ~yy log[~b.(p)] (44) 

y=O 

and the overlap q2(T) of Eq. (13) could be calculated by 

q2(T) = lim Q.(p) (45) 
p ~ 0  

For p = 2 ,  3, 4 one finds that the overlap between two configurations 
satisfies 

rt--1 1 

Q,,(2) l ' -I  
t_l 1 + (b - 1 ) ( ~ )  ~ 

(46) 
i= 

n --] 1 1 -b (b  - -  1 )(Z3/Z2) 2 

Q.(3)=  i=~ l + 3(b-1)(z3/zz)2 + ( b - 1 ) ( b -  2)(z3) 2 
(47) 

Q.(4) = 1 + 2(b - 1 ) + (b - 1 ) + (b - 1 )(b - 2) 
i= 1 \ Z 3 J  ( - ~  \ Z 2 / /  -I 

/ z4 \  2 (z4)2 + 6(b l ) ( b _  2) (z4)  2 • 1+4(b-1)i,7 ) - \z2/  

]1 
+ (b - 1)(b - 2)(b - 3)(z4) 2 (48) 

where in (46)-(48) z2=zz(i), z3=z3(i), and Za=z4(i). As for the expres- 
sions (39)-(42), it is not obvious from these expressions what the 
generalized expression for arbitrary p would be. 

It is clear that expressions similar to (46)-(48) could be found for 
overlaps of more than two walks. Again looking at the expressions for the 
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overlaps of m walks for p = 3, 4, it is hard to guess an expression valid for 
arbitrary p. 

We have seen in this section that several properties concerning the 
integer moments of Z can be calculated on the hierarchical lattice. The 
calculation of the second moment allowed us to obtain the exact expression 
(35) for the free energy above the temperature Tz(b) given by (32). The 
exact expressions for the first moments (39)-(42) or for the overlaps 
associated with these first moments (46)-(48) were, however, too com- 
plicated to allow us to guess a generalization of these expressions to 
noninteger moments. We will see in Sections 5-7 that such generalizations 
can be obtained at least in a perturbative way for b close to 1. 

4. M O N T E  CARLO S I M U L A T I O N  OF THE SPECIFIC HEAT A N D  
OF THE O V E R L A P S  

Despite the simplicity of the recursion (5), we do not know any 
analytic way of calculating ztn(Z) [defined by (6)] for arbitrary n and b 
to obtain the free energy ( log Zn> as a function of temperature. As we will 
discuss in the next sections, we were only able to get an analytic expression 
in the limit b close to 1. 

For arbitrary b, it is, however, possible to estimate the quantities of 
interest rather accurately by numerical methods. The method we use here 
is a Monte Carlo sampling which has the advantage of being easy to 
program. The idea is the following: although we cannot calculate 7z,(Z) 
analytically, we can sample it. So we can represent ~n(Z) by N (N = 5 • 10 4 

or 2 x 105) different values of Z: Z(, ~ ..... Z(~ u~. For example, to represent 
rCl(Z ), we choose N random Gaussian numbers ei and we obtain N values 
Z~ i) by 

Z~ i) = exp( - ~/T) (49) 

Then, to represent rc2(Z ) by N values Z~ ~, we choose for each i, 2b random 
indices j l ( i )  . . . . .  j z b ( i )  between 1 and N and we calculate Z~ ~) by 

Z(i) (Jl) (J2) (J2b- 1) (j2b) n + l = Z n  Z ,  + . . - + Z ,  Z ,  (50) 

for n = 1. Once the N values Z2 (i~ have been calculated this way, one can 
calculate N values Z~ i~ to represent zt3(Z ). Again one chooses for each i, 2b 
new random indices j l ( i )  . . . . .  Jzb ( i )  and one calculates each Z(3 i) by (50). One 
can iterate this procedure many times and at the nth step, one gets N 
values Z~ (i) (1 ~< i ~< N) which represent the distribution ~z,(Z). 
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Then if one needs to estimate the average of a function of Z, averaged 
over n , (Z)  (e,g., log Z), one replaces it by the average over the Z~i): 

log Z n , ( Z )  d Z  ~- - -  log(Z~ n) (51) 
N i = l  

In practice, we often need the first or the second derivative of Z with 
respect to temperature, Z '  and Z"  (to obtain the energy or the specific 
heat). It is easy to write from (50) the recursion for these derivatives and 
at each step one represents the distribution by N triplets ,_,tl (i), dZ~i)/dT, 
dzZ(~i)/dT x) which are calculated by the same procedure. 

The curves of the specific heat obtained for a lattice built up to the 
n = 1 6  generation for b = 2  and b = 5  (for N = 5 x 1 0 4  and 2x105 ) are 
shown in Figs. 3a and 3b. We see that for b = 2 ,  the specific heat is a 
smooth function of temperature, whereas for b = 5 there is a sharp maxi- 
mum at a temperature Tc = 0.75 _+ 0.05 which seems to be strictly smaller 
than T 2 - 0.8493. 

Above T<,, the numerical data agree well with the prediction 

C = 1/T  2 (52) 

for the specific heat per unit length which follows from (35). For b = 2 the 
specific heat can be seen to approach the form given by (52). It is not clear 
whether the specific heat has the form (52) above a certain finite transition 
temperature T C or whether T c is infinite. The same procedure can be used 
to obtain the overlaps. As discussed in Section 2, one has to calculate the Z ,  
and X, through (5) and (10) in order to obtain ~,,(X, Z). Our procedure 
consists in representing 7r,(X, Z )  by N pairs (X  (i) and ~n Z n ). Thus, we 
calculate each pair Iy(n and 7u)  ~ by choosing for each i, 2b ancestors ~-'~n + 1 ~ n + l !  
Jl,---, J2b and by using (50) and 

-'n)(" (i)+ 1 = J~n(Jl)~n(J2) _[_ . .  --4- ~(J2bn l)~(J2b)__n 

(Jl) (J2) z(J2b 1 )zn(J2b)) 2 +(Z, ,  Z. + - - - +  

(Jr) (J2) 2 ( (J2b-l)  (J2b) 2 -I - (z .  zn ) + . . . +  z .  z .  ) ]  (53) 

Then, as above, the averages of functions of X and Z can be calculated as 
in (51). When one only wants derivatives of X, at y = 0  [see (10)], one 
usually iterates Z and derivatives of X at y = 0 instead of doing a numerical 
derivation by choosing a small value of y. 

The overlaps q2 and q3 obtained using this Monte Carlo method are 
plotted on Figs. 4a and 4b for a hierarchical lattice of n = 16 generations 
using N =  5 x 1 0  4 and N =  2 x 105. We see, as for the specific heat, a smooth 
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temperature dependence for b = 2, whereas for b = 5 both q2 and q3 seem 
to vanish at 

Tc=0.75 • (54) 

The Monte Carlo method used here has the great advantage of being 
simple to implement. Its main disadvantage is that as the number n of 
iterations increases, the N values Z ,  (i) become more and more correlated 
(because they are calculated from the same series of Z~ i) 1 instead of being 
independent as they should be). It is hard to estimate how the error due 
to these correlations depends on the number n of iterations and on the 
number N of evellts used to represent the distribution. It seems reasonable, 
however, that the larger N is, the better the results are. So we usually 
repeated our calculation for two different large values of N ( N =  5 x 1 0  4 

and N =  2 x 10 s) and we believe our results to be reliable when they are 
identical for these two sizes. Also, for each size N, we did two independent 
runs (which are plotted on Figs. 3 and 4) in order check that the fluctua- 
tions are not too large. 

5. THE FREE ENERGY A R O U N D b = I  

It was mentioned in Section 2 that when b = 1 the problem becomes 
simple. This simplification can be used to provide a base for a perturbative 
treatment of the recursions obtained in Sections 2 and 3. In this section the 
perturbative approach is presented and used to derive an expression for the 
free energy first to first order in the small parameter e, where 

= b - 1 ( 5 5 )  

and later to higher order in e. 
When b = 1 the recursion (5) for the partition function reduces to 

(1) (2) Z,+~=Z, Z, (56) 

and so the average, over disorder, of log Z ,  obeys the simple relation 

( log Zn+ 1 ) = 2( log  Zn)  (57) 

Suppose that the probability distribution of the energies p(s~) is given by 
(4). From Eq. (7), the probability distribution of Z1 for the first generation 
of the lattice, gl(Z),  is given by 

rtl(Z ) = (2~z)1/2 exp - ~ -  (log Z )  2 - -  log Z (58) 
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Hence it is easy to show that the probability distribution of Z~, n,,(Z), at 
the nth generation of the lattice will be of the form 

1 e x p [  1 (l~ Z)2 l o g Z ]  (59) 
ten(Z) (22Z)1/2o~ n 2 5~ 

where 

5 .  = x/2Y-~/T (60) 

So, for b = 1, the stable law of the recursion (5) is Gaussian in log Z, as 
stated in Section 2. 

Now returning to the case of b > 1, we proceed to seek an expansion 
around b = 1. To do this, it is helpful to write the recursion for ( log Z~+ 1) 
in the following manner: 

( log Z .+  t )  = (t) (2} ( log(Z .  Z. ) )  

"Jv (t) (2) (2b-- 1) (28) (1) (2) ( log (Z .  Z .  + + Z .  Z .  ) . . . .  l o g ( Z ,  z. ) )  

(6~) 

where the expression occurring for b =  1 has simply been added to and 
subtracted from the right-hand side. 

Using the integral representation of the logarithm 

fo  e t--e-tX log x = dt (62) 
t 

one can rewrite the above as 

( f /  dt {exp(-tZ(~l)Z(.2)) ( l~ Z"+ l )  = 2 ( l~  Z ' )  + t 

- e x p [  (u (2) (28 } )  - t (Z ,  Z, + ... + Z n 1)Z~(28})] 

= - t z .  z .  )) 2 ( l ~  t [ (exp(  (1) (2) 

- (exp( - tZ~ 1 )Z~ 2}) )~] (63) 

using the fact that the Z~ (*} are independent random variables. 
It is useful to define a function jz,(t) such that 

jT(t) ( exp(_ tZ(~)  (2) = Z ,  ))  (64) 
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Then the recursion, valid for all b, can be written as 

lid, (log Z~+ ~> = 2(log Z~) + 7 { L ( 0 -  fL(t ) ]~} (65) 

This can clearly be seen to reduce to the correct recursion when b = 1. Now 
Eq. (65) can be expanded about b = 1, in powers of e, where 

e = b - 1  

(log Z n + , )  = 2(log Z,,) - z L ( t )  log L ( t )  

d t L ( t )  log 2 L ( t ) +  ... (66) 
23o t 

To obtain the recursion to first order in a, it is only necessary to determine 
~,(t) to leading order, i.e., zeroth order in e, or, when b = 1 

L(t)  = <e -'<'<2~ > 

= (e ,zo+~) + O(e) 

= f  ~ n + L ( e  x/ )-~exp - t e  x/r dx+O(z )  

= f ( t ,  2~/2~) + O(e) (67) 

where 

1 e -  x2/2 e -  '~~ dx (68) 
f( t ,  ,~)- (2~)~/~ _ ~ 

Hence, to first order in e, 

~ ~ dt t, ( l o g Z ~ + t ) = 2 ( l o g Z ~ ) - ~ j 0  t f  ( 21/2~,)logf(t, 21/2(~)+O(e 2) (69) 

Using this recursion it is then easy to show that, to first order in e, the 
average free energy per unit length of the system at the nth generation is 
given by 

F , -  2,_ 1 ( l o g Z , ) = T e  ~ ~ f t, l o g f  t, t (70) 
i = l  

It will be shown in Sections 6 and 7 that the overlaps and moments of the 
partition function can also be obtained to order e by the same approach 
and that they also can be expressed in terms of the function f ( t ,  )~) only. 
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Having obtained the expression for the free energy Fn to first order in 
e, the energy En and specific heat Cn of the system at the n th generation 
can be obtained to the same order by differentiating F,  with respect to 
temperature T. The specific heat obtained in this manner is shown as a 
function of temperature in Fig. 5 for a lattice of n = 8 generations. We see 
that the shape (linear at low temperature and the maximum at T-~ 1.0) is 
rather similar to the results of the Monte Carlo method for b = 2. 

At low temperature, using the asymptotic forms of f(t, 2) for 2 --, o% 
it is possible [see Appendix A, Eq. (A16)] to simplify the expression for the 
free energy to obtain 

,, 1 1 ] ,~ 1 ---~+ [(F(1)(1)):(1)_F(z)(1)]_K1T: ~, 1 
i =  1 23i/2 

+ K 2 T  3 / . ( 1 ) ( 1 ) / . ( 2 ) ( 1 ) _ 5 ( / . ( 1 ) ( 1 ) )  3 3~J1) 1 i=1 ~ +  O(T4) 

(71) 
where 

t e  - -  t2'/2 
g l - = - f ~ l o g l f m e - - ~ 2 / 2 ( 2 ~ ) l / 2 ] d t = O , 9 0 3 2 0  (72) 

{ 1 - t=~  e -':/: K2=f \---f--j~loglf~e-"=/2(27c)l/2]dt=0.29782 (73) 

0.3 

0.2 

0.1 

Specific Heat 

Temperature 
I i I I L 

1 2 3 ~ 5 

Fig. 5, The specific heat of a lattice of eight generations calculated from the perturbative 
expansion [Eq. (70)]. It looks rather similar to the results for b = 2 shown in Fig. 3a, 
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In the limit that T tends to zero the ground-state energy obtained in ref. 23 
is recovered. 

In the high-temperature expansion, it is not possible to get an analytic 
expression for the coefficients. The reason is that the infinite-temperature 
fixed point is an unstable one (6n+l=21/Z~n) and therefore the values 
of some coefficients of the high-temperature expansion depend on 
the functions at all points 6,, 6n small, n<{ (log T)/log x/2, an large, 
n >> (log T)/log x/2, and also intermediate values 6n where no analytic 
expression can be obtained. Nevertheless, from Eq. (70) one expects the 
leading behavior of Fn at high T to be 

lim F n ~ - g T  (74) 
n ~ o o  

In the remainder of this section we will show how the perturbative 
approach can be extended to higher order in e. To do this, it is necessary 
to determine the function f,,(t) defined by (64) to higher order in e. Below 
we show how to obtain the first correction to Yn(t). 

Let us define a new function Fn(t) by 

Pn(t) = (e  ,zo) (75) 
Then, from (64), (75), and (5) one has, lot all b, that 

F ,+ ,(t) = [L ( t ) ]  b (76) 

Hence, F ,+ ~(t) is related to Yn(t). Now we need to find another relation to 
obtain fn(t) from F,(t). We could not do this for arbitrary b. However, for 
b close to 1, one can consider that the probability distribution R,(Y) of the 
quantity Y=log  Zn is the sum of a Gaussian distribution and a small 
correction, 

1 _ exp + (77) 

It is then clear that the probability distribution r.(y) of the quantity 
(1) (2) y = l o g ( Z  n Z n ) i s g i v e n b y  

r~(y) = .f R,,( Y) R~(y - Y) dY 

- (2~r)1/221/26~ exp - 4~5-~2 

2~ C (f--7) e-(r-Y)2/2a2"dY+ O(e2) (78) + (2rc),/262 : ~0, 

From Eq. (75) and (77), Fn(t) can then be expressed as 

L(t) = f Rn( Y)8 teY d Y = f ( t ,  3.) + eG.(t) ( 7 9 )  
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where 

G.(t) = f (p.( Y) exp( - te e" Y) dY (80) 

Similarly, from Eqs. (64) and (78), we see that jT.(t) is given for b close to 
1 by 

= [ r.(y)e L(0 
e_y2~ 2 

= f(t ,  21/2~n) + 2a j ~ Gn(te a'y) dy (81) 

Now, using the relation between jT~(t) and P ,+j ( t )  of Eq. (76) and 
expanding it for b = 1 + e, one can find a recursion for G,,(t), which reads 

y2/2 

G~+l(t)=f(t,  21/26n) logf ( t ,  21/26~) + 2 f 
e 

Gn(te a"y) dy (82) 

Carrying out this recursion, with the initial condition that ~01(Y ) = 0, G.(t) 
can be computed explicitly and we find from Eq. (81) that 

~ ( t ) = f ( t ,  21/26~)+e ~ 2 " - ' f  texp 
vo i= 1 

xlogf(texp[(2"-2_i)I/Zy] ~ exp(-y'/2)d' T J '  r // ~ - - ~  Y -1- O(~;2) (83) 

Having determined )7.(t) to first order in e, it is now possible to use 
Eq. (66) to calculate the free energy, and indeed the overlaps and moments 
to be discussed in the next sections, to second order in e. For example, the 
free energy now becomes 

F.(T)=eT Y,12-- t f  t, l o g f  t, 

a oo dt 

+,;o 
f:'[ ( 4)]" + e  t l + l o g f  t, ~ 2' - j  

j = l  

.So,(,exp[12' 
xlogf(texPI(U-~)'/'Y],~2TJ)exp(-y'/2)d' 1 (2.) I/2 

--{- 0 (~  3 ) (84) 

822/'57/'1-2-8 
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6. P E R T U R B A T I V E  T R E A T M E N T  OF O V E R L A P S  

Following the same approach as in the previous section, expressions 
for the overlaps will now be obtained to first order in e. The low- 
temperature behavior of these quantities will then be considered. 

First let us consider the average overlap between two walks, 
(qz(m, m')). As discussed in Section 2, it is convenient when dealing with 
this problem to use the generating function X , ( T ,  y )  defined in (10). These 
generating functions were shown in Section 2 to obey the recursion given 
in Eq. (11). When b = 1 this recursion reduces to a simple expression: 

X~+I (T ,  y ) = X , ( T ,  y ) (1)X , , (T ,  y)(2) (85) 

Using the same procedure as in Section 5, we consider the quantity 
~b,(v + 2) = ( X n ( T ,  y ) Z ~ ) .  For  an arbitrary power v, the following recur- 
sion can then be written as 

< X n +  1 Z V +  1 > 

+ (1) (2) (2b-l) (2b) <(x. x .  + . . . + x .  x .  ) 
X (Zn(l)zn(2)  --~ - . . .  - } -  --nZ(2b--1)z(2b)]V)--n ; - -  \()((l)-y(2)(z(ljZ(2)]vx)--n - - n  " , - - n  - - n  , / 

(1) (2) . . .  + Z ,  Z n ) ) -  _}_<(Z n Zn _}_ (b 1 ) ( 2 b ) v + 2  <(z(nl )z(2))v+2> 

(1) (2) 2 (2b 1) (2b) 2 - ( r (z .  z .  ) + . . .  +(z .  z~ )1 
(2b-- 1) (2b) v x(Z~(1)Z~(2)+ . . .  + Z  n Z n ) ) + ( ( Z ~ I ) z ( ~ 2 ) )  v+2)  (86) 

Following the spirit of the previous calculation, we introduce the function 
~y,n(t, t ')  defined as 

- t Z  n Z n ) e x p [ - t X ( ~ l ) ( T ,  y ) X ~ 2 ) ( T ,  y ) ] )  (87) gy,,(t, t ' ) =  (exp( o) (2) 

and we appeal to the following integral representations of Z ~ to help 
linearize the problem: 

f ?  dt t - ~ - 1  Z v = - -  e tz F(- -v )  v < 0 (88a) 

f?d 
t t p - v -  1 d p 

Z v ----~ ~-p-~  { ( --1)P - ~  [ e - tz ] 

v > 0  and p > v ,  pinteger  (88b) 

(For clarity the case v = - 2  will be considered first and the results for 
v > 0, which follow in exactly the same manner, will be given at the end. 
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- 2  < v < 0 can be considered in the same way.) Equation (86) can then be 
rewritten in the form 

dt t - v - I  
(~Xn+ iZV+ 1) = (XnZV)  2 -  ~0 ~ 

r ( -v )  

d 
•  { EL,.(t, c)-I ~- L,.(t, c)},,=o 

+ f o  dtt-~-3 ?~-~ z }) { [L(t)-I ~-L( t ) }  
(89) 

ff 
dtt v-1 d 

+ r ( - v )  &' {E~o,~(t, t')] ~- ~o..(t, c)},,=o 

defined in Eq. (64), and we have used the fact that where Yn(t) is as 
Xn(T, 0) = Z 2. It is now simple to expand about b = 1. Again, to obtain an 
expression correct to first order in e, the functions fn(t) and gy n(t, t') will 
only be required at b =  1. To this order fn(t)=f(t ,  x/~/T), '  as shown 
earlier [Eq. (67)], and 

dt' ~y,,,(t, t') = -exp(2ny) d2f - -  ~ t, (90)  
0 

since 

d c=o dt---;' ~y,.(t, t') 

= -  (X(~I)(T, y) X(~2)(T, y) exp( -tZ.(1)Z.(2)) ) 

=_([exp(2.y)](Z(1)Z(2))Zexp( (x) (2) -tZ,, Z. )) (91) 
Hence Eqs. (89) reduces to 

dt t -v-  i 
(Xn+lZV+l )  = (~nZV)2--8(1  -e2"Y) fo  

r(-v) 

+eJ'o~176 dt t-~-3F(-v--2) f(t'~)l~ ~) (92) 

Carrying out this recursion to first order in e, we obtain an expression for 
(XnZ])  in terms of the initial condition 

(v+_ 2)21 
( X , Z ~ ) = ( e x p y ) ( Z ~ + 2 ) = e x p  y-~ 2T 2 _] (93) 
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which reads 

1 
2,_ 1 log<X,,Z~ > 

= y +  
(v + 2) 2 

2 T  2 

fa,s x [ e x p ( - 2 ; y ) -  1] J F( -v )  

d2f(t, 6;+~) [1 + log f(t ,  c5,+ ~)] 
x ..... dt 2 

( dtt  '--3 f(t ,  6i + )logf(t ,  6,+l)} 
- [ exp( -Uy) ]  d F ( - ~  - 2) (94) 

For v > 0 and p > v, it can be shown that a similar relation holds: 

1 
2,,_ 1 log(X=Z,~ ) 

(v+2)  2 " 11  I (v+2)252+ ] 
= y +  2T ~ -~ ~ exp . - ~  i=1  2 1 

d e [a2f(t, 6;+1) [I + log f ( t ,  6;+1)1[ 

__ [exp(_2iy)] f dt , ' - ' - I  d "+z } ~ v )  (--1)P dip+----- ~ [f(t, 6,+ t)log f(t,  3;+ 1)1 

(95) 

The overlap <q2(W, W')> can now be obtained by setting v = - 2  in 
Eq. (94) and differentiating with respect to y, to yield 

( q z > = l + e  tdt l + l o g f  t, ~ t, 
i = l  

(96) 

and the overlap of two walks calculated for p + 2 replicas (p > 0) follows 
from Eq. (95), giving 
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(Q,,(p + 2 ) }  = 1 + e exp - ( p + 2 )  2 ( - 1 )  p 

x 2 ~')'~I~')-5"~ t, l + l o g f  t, 
i = 1  

(97) 

As mentioned in Section 2, it is possible, using Eqs. (14), (16), and (88a), 
to compute in the same way the average overlap between rn walks, (q,,}, 
giving 

E ( )1 (qm} = 1 + e(--1)m ,~.= f dttm-lF(m) 1 + log f t, x/-~T dmf(t'x/U~/T)dt m (98) 

It is possible to obtain the low-temperature expansions of these three over- 
laps, (96)-(98). Using the appropriate expansion of f(t, Z), as explained in 
Appendix A, it can be shown that the first correction to (q2} is linear in 
temperature 

(q2)= 1-eKIT y, + O(T3) (99) 

where KI is defined in Eq. (72). A similar expression can be obtained for 
(q~), 

_[F'(m) )"s 1 
(q,,,) = 1 -- sKi 1 ~ f-~--- ~ F'(1) i = 1  

[v"(m) 2V'(l)V'(m) ]n-, ] 
-gK2T2LF--7-~ F(m) ~-2F'(1)2-F"(1) i=~ 2 ~ + O ( T 3 )  

(100) 
It is interesting to compare these results with the expressions of the 

overlaps qm on the tree. (I) For the tree, it would be possible to show (but 
we will not here) that the overlaps (qm} are given by (q,,,}= 
F(m-T/T~.)/F(m)F(1- T/T~). At low temperature, this gives the same 
expression as (100) with eKl Z 1 / x ~  replaced by 1/T~ and tK2 Z 1/U by 
- 1/2T ft. 

To calculate Q, (p+2) ,  it is necessary to know the first p +  1 
derivatives of f(t, x//U*T) with respect to t at t=0 .  However, as these 
derivatives have the simple form 

2i_lp2 
f(P) 0, =(--1)Pexp T2 (101) 
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the leading term at low temperature can be seen to result from taking i = 1 
and the term with the highest possible derivative of f ( t ,  21/2/T). Hence, it 
follows that 

Qn(2) = 1 - ee-2/r2 + ... (102) 

Q , ( 2 + p ) =  1 --2~e-2(p+1)/T2+ . .-, p~> 1 (103) 

It can be seen that Q,(2) obtained in this manner agrees with that 
resulting from Eqs. (46)-(48) expanded for b = 1 + g, as expected. The first 
corrections to Q~(2 + p) are all exponentially small in temperature. We see 
from (99), (102), and (103) that the first-order correction to the overlap 
Q,(2 + v) is exponentially small in the temperature except for v = -2 ,  when 
it vanishes linearly with temperature. Similar behavior will be seen in the 
next section when the moments of the partition function are considered. 

As the polymer problem has many analogies with spin glasses, it is 
interesting to consider the distribution of overlaps P2(q) defined in Eq. (9). 
In the Parisi theory of infinite-range spin glasses the corresponding quan- 
tity, P(q), is a broad distribution, even in the thermodynamic limitJ 29-31} It 
has been debated a great deal whether this property of P(q) persists in 
finite-dimensional spin glasses. So it is interesting to see whether P2(q) 
possesses this spin-glass-like property. 

To determine the shape of the distribution P2(q), let us define y ,  by 

eY~ (X, (T ,  y ) Z ~  2 ) (104) 

Then, from recursion (94) the following recursion for y ,  can be obtained: 

y , + l = 2 " y l  +e ~, 2" - iA~(1-e  -2y~) (105) 
i = 1  

where 

Ai=~o t, 1 + l o g f  t, (106) 

Using a renormalized variable 37 given by 

)7 = 2"yl (107) 

this can be recast as 

Yn+ 1 = P + e  ~ 2 " - i [ 1 - - e x p ( - 2 i - " ) 7 ) ] A i  
i = l  

i = l  

(lO8) 
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where we have taken the limit n--* oc and noticed that, as A i ~  0 when 
i ~ 0% only terms with n - i >> 0 will contribute to the sum. 

Hence we see that 

<X,~(T,Y)Z22>:exp[y(l+ekAi)] 
i ~ l  

(109) 

This shows that, at least to first order in e, P2(q) is a delta function 
at (q2>. For  the problem of polymers on a disordered tree (mean field 
model(I)), it has been found that Pz(q) does have a broad distribution 
(more precisely, it is the sum of two delta functions at q = 0 and q = 1). 
Since one expects that, when b becomes large, the model on the hierarchi- 
cal lattice would behave like a mean-field model, it raises the question of 
whether there is a critical value bc of b above which the mean-field features 
appear [i.e., P2(q) becomes broad]  or whether the mean-field behavior is 
limited to b = 00. 

7. N O N I N T E G E R  M O M E N T S  A N D  R E P L I C A  

We now turn to a consideration of the moments of the partition func- 
tion. First, an expression will be obtained for an arbitrary moment <Z~,>, 
to first order in e, and then the low-temperature limit will be considered. 

Consider, then, the average of the vth power of the partition function 
at the nth generation of the lattice, <Z~> (take v < 0  to begin with). 
Following the perturbative approach of (61) and (86), we can write the 
recursion for this quantity 

<z~+ ~> : <z;> ~ + [<(z~,z(~) + ... + z( ~ x)z(~))v> - <(z~)z~))~>] 

= <zn> + r(-v~---7 {[L(t)]"-L(tt} (1.1ol 

where we have used the integral representation of Eq. (88a) and the usual 
function jTn(t ) defined in Eq. (64). 

Expanding now, to first order in e, we obtain 

< Z V + l > = < Z v > z - q - r - - ~ v  ) d t t - v - l f  t, l o g f  t, (111) 

and so, using the initial condition 

(Z~ >2 = exp(vZ/T2) (112) 
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it can be shown that for v < 0 

1 
2,_ ,  log(Z  v) 

= 2 T  2+e t=l -- 2iexp T2 

x fo~t-V-ldt~-~f (t,--~)logf(t,~) (113) 

For v > 0 we have to use the alternative integral representation, Eq. (88b), 
and then similar expressions can be found for v > 0, i.e., for p > v 

1 
2,_ 1 log (Z,~) 

o-11 
- 2 T  2 f-g Z ~ e x p \  T2 j 

i = 1  

X f? dttP-Vl dP It, N~ii 

It is interesting to note that once again the first correction depends only on 
the function f(t, 2), as did the overlaps and free energy. 

For integer moments, the latter expression reduces to 

1 
2~_1 log (Zp)  

p 2  n I 1 

2T 2+g ~ 2-7 i=l 
•  1 ) d  p ~ )  

T /J l ,=o 
(115) 

The calculation of the derivatives of f(t, 2) logf ( t ,  2) with respect to 
t at t = 0 can be done easily [-see Appendix A, (A3)] and then the above 
equation gives answers in agreement with those obtained from an expan- 
sion about b = 1 of the recursions of the integer moments in (22) and (25). 
However, the perturbative expansion (e small) has also given the interpola- 
tion between integer moments. 

It is interesting to consider whether a similar form of interpolation 
could be used in other problems where only the integer moments of the 
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partition function can be determined. Consider a sequence of numbers a(p) 
( p = 0 ,  1, 2,...). The problem is how to extend them to a function a(v) 
defined at all values of v. By comparing Eqs. (114) and (115), we see that 
the interpolation formula valid here is to construct a function J(t) which 
plays the role o f f ( t ,  2 ) l o g f ( t ,  2), via 

J ( t ) =  ~ Z ( - 1 )  ptpa(p)  (116) 
p=O P! 

and then to decide that for noninteger v with v < p, a(v) is given by 

~oo t p ~ 1 d p 

d t -  ( - 1 )  p a(v)= Jo F(p-v) ~ [J(t)]  (117) 

It is interesting to notice that this procedure will, in principle, only work 
if the function J(t) has a finite radius of convergence and has an analytic 
extension to the real axis. In the case of formulas (114) and (115), 
f ( t ,  2) log f ( t ,  2) has a zero radius of convergence (see Appendix A) and so 
the series expansion (116) does not define a unique function J(t). In the 
polymer problem the function to use is f ( t ,  2) defined by (68), but there 
are other functions which have exactly the same series expansion (116) as 
this function and these would give an incorrect interpolation for the 
moments. 

To learn more about the character of the interpolation, let us consider 
the low-temperature expansion of (113)-(115). Details of these expansions 
are given in Appendix A. For v < 0 the low-temperature behavior can be 
shown to be (A19) 

<ZV+l  > -- ~ZV> 2 

=zexp v~ r ~ jk  

_ log ((2n)T22"/2) 

2 . 1y2 1 

T 2 2 

) vF'(-v) ] 
+ F ( _ v m + l o g F ( - v ) +  ... (118) 

So, the dependence upon T is dominated by the exponential factor. 
For v > 0 one can show that the leading behavior is of the form 

<ZV+ l>  v 2 {2n-- ly2~ 
-(Zn> = e e x p \  T2 } (119) 

So, again the first correction is exponential in termperature. 
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We see that the expressions for v > 0 and v < 0 are quite different. It 
is, however, possible to reconcile them by considering that as T ~  0, the 
ratio v/T remains fixed. Then from (111), by choosing t = exp(,,/~u/T), 

<z~+, > - <z,~> ~ 

- - T  J ~o e x p  

~fexp(-z2/2) ( ~ f e x p ( - z 2 / 2 )  ) 
X (27t)1/2 dzlog (27C)1/2 dz (120) 

This expression shows that as v and T are small, the result depends only 
on the ratio v/T. For v/T~O, one recovers the free energy result (71), 
whereas for v/T~ +_oo it becomes consistent with (118) and (119). So we 
see that the limits v ~ 0 and T ~ 0 do not commute and that it is only if 
one takes v/T~ 0 as T ~  0 that the replica approach leads to the right free 
energy. 

It is interesting to notice how the width A,, of the distribution of 
log Zn behaves. Expanding in powers of v, it is easy to show that 

~,2 

log(Z~,} = v(log Z~} + ~- [ ( log  2 Z , }  - (log Zn} 2] + -.. 

v2zJ 2 
n = v(log Zn} + --~--- + ""  (121) 

Hence A ] can be computed by expanding either Eq. (113) or (114) in 
powers of v, to give 

2 L . n~lF'(1)dt ( - -~ - )  ( ~ - )  
An=T-7+2L~i=12' - - - ~ f t f  t, l o g f  t, 

(122) 
i = 1  

where L = 2 n- ~ is the length of the polymer. 
The first summation in Eq. (122) is proportional to the free energy per 

unit length of the polymer Fn given by (70). Hence, as n --+ 0% this term is 
proportional to L. The second summation does not tend to a finite limit as 
n--+ oo. Instead, as n--+ oo (i.e., 2--+ oo), it can be shown, using the 
asymptotic expansion of f(t, 2) given in Appendix A, (A8), that each term 
in the  series tends to -2eK2 [where K2 is defined in Eq. (73)]. Hence, this 
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last term in Eq. (122) is proportional, for large n, to L log L. Indeed, as n 
increases, 

L L A 2 ~ 5 [ 1 - 2 T F ' ( 1 ) F , ( T ) - 2 e K 2 ]  T21og2 l o g L  (123) 

We see that as L increases, the corrections increase faster than the leading 
order and so this expression can only be trusted for e l o g L ~  1. For  
e log L >> 1, one should "renormalize" the problem as was done in ref. 23. It 
is, however, easy to show that (123) is consistent with the results of ref. 23, 
which claimed that in the limit n ~ ~ ,  the width A n behaves for large L as 
L ~ and that An+I/A,~)~=U ~ If we consider from (123) the ratio 
A n + 1/3 n, we find that 

An+l = 21/2(1 _ eK2) (124) 

and 

1 eK2 
co - (125) 

2 log 2 

8. G E N E R A L I Z A T I O N  TO O T H E R  H I E R A R C H I C A L  LATTICES 

] 'he results obtained so far have been restricted to the kind of 
hierarchical lattice described in Section 2, characterized by the lattice 
parameter b. It is possible to extend these results to other sorts of hierarchi- 
cal lattice. 

An obvious development is to follow the prescription for building the 
lattice given in Section 2, but to allow more freedom by having a bonds in 
each branch, rather than fixing this at two. The results obtained will then 
simply be modified by replacing the characteristic x / ~  by x//-~. 

The hierarchical lattices discussed so far can only be constructed for 
integer b. The e expansion done in Sections 5-7 relies on the analytic con- 
tinuation of the properties to noninteger values of b, although these lattices 
are not physically realizable. This analytic continuation could produce 
unphysical results (for example, negative specific heat). We will now see 
that it is possible to construct physical lattices, which are described by 
a continuous parameter similar to b, to which the results obtained in 
Sections 5-7 can be extended. 

Another way of building a lattice similar to the abstract b = t + e lattice 
is to introduce a probability p. Suppose that the (n + 1)th generation of the 
lattice is given by dividing each bond at the nth generation into two bonds 
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Fig. 6. The 

t probability 1- p 

+ probability p 

b branches 

iterative construction of the hierarchical lattice characterized by the 
probability p. 

with probabili ty 1 - p  and by introducing b branches of two bonds with 
probability p (see Fig. 6). This lattice can be built for any value of p. If we 
choose p to be small, this lattice is close to the original lattice with b = 1 
and so should be similar to the b = 1 + e lattice, but with p as the small 
parameter. 

For this lattice the recursion corresponding to (5) is 

Zn + 1 = Zn (1)Z(2) with probability 1 - p 

(1) (2) (3) (4) ..jff z(2b- 1)z(Zb) = Z  n Z n + Z ,  Z .  + . . .  

with probability p (126) 

The free energy can be obtained by evaluating log(Z,~)  and then 
taking the limit v ~ 0, 

F .  = - T ( l o g  Z . )  = - T lim log(Z~ , )  
v~O V 

(127) 

Let us therefore consider ( Z ~ + ~ )  with v < 0. Using recursion (126), we can 
write this as 

( Z ~ + I )  ( Z ~ 2  (1) (2)v (Z(1)Z(2) (2b 1) (2b)v = p<(Z. z .  ) - , _ , _ .  + . . . + z .  z .  )> 

= ( Z ; ) 2 - P  E l - v )  f t, - - f  t, + O ( p  2) 

(128) 

where we have used the integral relation of Eq. (88a) and noted that when 
p = 0 we have the same probabili ty distribution of Z ,  as with our original 
lattice with b = 1. 
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Taking the logarithm and then carrying out the recursion formula, 
with the intial condition that 

( Z ~ )  = e v2,/2T2 (129) 

we see that 
/ v l o g \ Z n )  

V 2 n ~ l fo~dt /?1 - -  2"-  1 2T 2 ~ 2 i 

t ~-1 [ (t,X/-~\ /t  {--v22i-1~ 
• T ~ _ _  V) U f ---T--)- f ~ ,  ~T2')b] exp \ ~-5 ] (130) 

and so finally taking the limit v--+ 0, we obtain the average free energy per 
unit length for this lattice: 

F,=Tp Ufo f t, - f  t, (131) 

So the formula for the free energy of this lattice is very similar to that 
for the lattice considered originally (70), the only difference being the 

replacement of f(t, x~i/T)logf(t,  x~ii/T) in the original formula by 

f(t, x/~/T) 6 - f ( t ,  x~i/T). Making this replacement in the other formulas 
for moments and overlaps will yield correct answers for the new lattice. 

Hence we see that the results obtained for the type of hierarchical 
lattice considered initially can easily be extended to another more physical 
type of hierarchical lattice. 

9. F I N I T E - D I M E N S I O N A L  C A S E  

For the hierarchical lattice defined in Section 2 we saw that one could 
obtain the expression for the first integer moments [Eqs. (39) (42)] at any 
temperature. From the knowledge of ( Z )  and ( Z 2 ) ,  it was possible to 
show that: 

1. For b >2,  there exists a phase transition at a certain transition 
temperature To(b). 

2. For T >  T,(b), the free energy Fn(T) per unit length is given with 
probability one by 

1 
lira F,(T) = - T l o g  b - - -  

3. To(b) must satisfy the following bounds [Eq. (36)]: 

[(2 log b)] -5/2 ~< Tc(b ) <~ [log(b - 1)] - ' / :  
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We are going to show in this section that these results can be extended 
to finite-dimensional lattices. 

Consider a directed polymer on a (d+ 1)-dimensional lattice. At each 
time step L (L is the length of the polymer) the polymer occupies a site of 
a regular hypercubic d-dimensional lattice. Suppose that at step L, the 
polymer is on site r. Then at step L +  1, by definition of the model, the 
polymer is allowed to occupy any of the 2d neighbors of site r. If ZL(r) is 
the partition function of a polymer of length L which ends at point r, one 
can write the following recursion relation: 

2d 

ZL+ l(r) = ~ {exp(ec(r)/T)} Zc(r + ej) (132) 
j = l  

where -eL(r) is a random energy on point (r, L) of the (d+ 1)-dimensional 
lattice, and the ej are the 2d unit vectors which connect r to its 2d 
neighbors on the d-dimensional hypercubic lattice. Notice that, for con- 
venience, we use here site disorder instead of bond disorder (and that we 
have changed the sign of the energy). 

From the recursion (132), we can calculate the behavior for large L of 
the first two moments of Z. 

If one averages (132), one gets 

2d 

( Z L + l ( r ) ) = ( e  ~/r) ~ ( Z c ( r + e j ) )  (133) 
j - - I  

The largest eigenvalue 2 of the transfer matrix (133) which relates the 
(ZL(r))  to the (ZL+l( r ) )  is given by 

21 = 2d(e ~/r) (134) 

Therefore in the limit L ~ 0% one expects that 

lim log(ZL(r) ) = log 21 = log 2d+ log(e ~/r) (135) 
L ---~ oo L 

To calculate the behavior of (Z~(r)) ,  one has to write a recursion for the 
following correlation functions (Zc(r) ZL(r')). From (132) one gets 

( z ~ +  ~(r) z,_ + ~(r')) 

= (e~/T) 2 ~ (ZL(r + e,) ZL(r' + ej)) 
i , j  

+ ( ( e 2 ~ / r ) -  (e~/r)2)$, . ,~  (ZL( r+e i )ZL( r+es ) )  (136) 
i , j  



Disordered Hierarchical Lattices 125 

To find the largest eigenvalue 22 of this transfer matrix, we can use the fact 
that the corresponding eigenvector has the form 

(Z(r)  Z(r ')  ) = qo(r - r') (137) 

Therefore the equation (136) gives q~ and 2 as 

2~o(r) = (e~/r)  2 ~ ~o(r + ej - %) + Ba(r) 
j,k 

(138) 

where 

B =  [ ( e  2~/r ) - (e~/r)  2 ] ~ ~o(ej-  ea~ ) (139) 
j,k 

The solution q~ of (138) for arbitrary B can easily be obtained by going to 
Fourier space, 

(p(r) = f dq [exp(iq" r)] G(q) 

and one finds 

G(q)= B {2-- (e~/T)2 ~ exp[iq(ej--ek)]} -1 

(140) 

j,k 

= B  2 -  (e~/V) 2 2 cos q~ 
1 

(141) 

For 2 to be an eigenvalue and cp to be the corresponding eigenvector (138) 
one needs B to satisfy (139). One has just to replace ~0 given by (140) and 
(141) to get an equation for the eigenvalues 2, 

[2,~ dq 1 f~ dq d 1 = [ ( e  2~/r) - (e~/r) 2] Jo - ~  2~ 

(~_d )21 ( ~  )21--1 x 2 cos q~ 2 -- (e~/r) 2 2 cos q. 
# 1 /z=l 

The largest 
equation. 

value eigenvalue 

(142) 

22 of (136) is the largest solution of this 

Clearly one has for L ~ 0% 

lira l~  
L~oo L 

= log )42 (143) 
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For d~<2, the largest eigenvalue 22 given by (142) is a smooth 
function of temperature which is always strictly larger than (2d(e~/r)) 2 and 
therefore 

lim l o g ( Z ~ ( r ) )  l og (ZL( r ) )  > 2 lim (144) 
L~oo L L ~  L 

For d > 2 ,  there exists a critical temperature T2(d ) which is gwen 
the condition that 

where 

by 

( e~/T2 ) 2 

(e2e/T2) _ (ee /T2)2  -- I a (145) 

Ia = f ~  dql 2~ dq a ( z d = t  cos q.)2 
2~-"" ;0 ~-~ d 2 -  (~2. a=l COS q.)2 

)~2 = (2d)2 ( ee/r) 2 = )2 

)~ > (2d)2 ( e~/r) 2 = 22 

and one can show that 

for T >  T 2 

for T <  T 2 

(146) 

(147) 

So we see that in dimension d > 2, there is a high-temperature phase where 

lira lo,~,_L.e(Z2.) 2 lim l o g ( Z L )  (148) 
L~or L L~o~ L 

This situation is similar to what occurred in the hierarchical lattice (above 
T2, we had ( Z 2 ) / ( Z ) 2 ~  1 as the number n, and therefore the length L, 
increases). Here the condition (148) is weaker, since it does not allow us to 
conclude that the distribution of Z becomes a delta peak in the limit 
L --+ oe. It is, however, possible to prove (see Appendix B) that for T >  T2, 

lim log Z / .  = log 2d+  log(e  ~/T) (149) 
L ~  L 

with probability 1. The idea we use in the Appendix to prove (149) is an 
adaptation to the model studied here of the proof given by Imbrie and 
Spencer. (27'2s) This implies that for T >  T2, the free energy F(T) per unit 
length is given with probability 1 by 

F(T) = - T l o g  2 d -  Tlog (e  `/r) (150) 
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However, it is not known down to what temperature the free energy is 
given by expression (150). So, as for the hierarchical lattice, one can only 
deduce from (150) bounds for the transition temperature To(d) with b 
replaced by 2d and one gets 

(2 log 2d)-1"2 < Tc(d) < Tz(d) (151) 

where the lower bound is obtained again as the temperature where (150) 
would give a negative entropy and T2 is the solution of (145), which for a 
Gaussian p(e) becomes 

+ Id]_] (152) 

The integral (146) can be related easily to a well-known integral in the 
theory of random walks (37) 

and this gives 

i d=  _1 + d -~dql ~2~dqd(d (153) 2~z "Jo ~ \  - cosq~ 
,u=l 

I d= OV if d~<2 

=0.5164 if d = 3  

1 
= ~ +  -.- for large d 

(154) 

which leads to the following bounds for the transition temperature To: 

0.6 ~< T~. for d = 2  

0.528 ~< Tc ~< 0.963 for d = 3  (155) 

(2 log 2d)-i/2 ~< T,. <~ (log 2d)-1/2 for large d 

It is interesting to notice that one can obtain bounds very similar to 
(155) for the problem of a polymer on a tree with coordination number 
z + l ,  

(2 log z) 1/2 ~ Tc ~< (log 2) -1/2 

and that in that case the exact solution (1~ gives that T c is identical to its 
lower bound. 

822/57/1-2-9 
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10. C O N C L U S I O N  

In the present work, we have shown that the problem of a polymer on 
a random hierarchical lattice can be reduced to the study of stable distribu- 
tions when one combines random variables in a nonlinear way [-see (3) and 
(5)]. The temperature T enters only in the initial distribution nl(Z). In the 
high-temperature phase the distribution of log Z becomes a delta function 
as n increases, whereas in the low-temperature phase the width of this 
distribution increases with n and ( log 2 Z ) - ( l o g Z ) 2 ~ L  2~ where co 
depends on the lattice. (8) 

We have also seen that for b = 1 + e, with e small, one can extend to 
finite temperature the calculation of ref. 23 and calculate thermal properties 
(free energy, specific heat), (70) and (71), as well as geometrical properties 
(overlaps), (96), (98), and (100). This expansion method is nevertheless not 
sufficient to study the phase transition, since the high-temperature phase 
seems to exist only for b > 2. However, it allows one to describe the low- 
temperature behavior of several quantities: linear specific heat at T = 0 ,  
Eq. (71); anomalous fluctuations of the free energy, Eq. (125)(23~; and a 
distribution P2(q) of overlaps which consists of a single delta function, 
Eq. (109). 

We have shown that from the knowledge of the first two moments 
( Z )  and ( Z  2) of the partition function, one can give bounds (36) on the 
transition temperature Tc(b ) and one can find the exact expression of the 
free energy above a certain temperature T2(b ) [where T2(b) >1 Tc(b)]. The 
argument which leads to the bounds on Tc(b) and to the expression of 
( log Z )  in the high-temperature phase can be extended to finite-dimen- 
sional lattices (Section 9). 

Lastly, in calculating the moments ( Z  v) of the partition function we 
obtained an interpolation formula (116)-(117) which allows one to obtain 
( Z  v) for noninteger v from the knowledge of the integer moments (Zn ) .  
It would be interesting to study the validity and the limitations of this 
expression and to compare it which the replica techniques. 

There are several questions on this problem of polymers on a 
hierarchical lattice that we were not able to answer: first, we could not 
calculate the transition temperature T~(b) for b > 2. So we have the expres- 
sion of the free energy in the high-temperature phase, but we do not know 
down to what temperature it is valid. It would be interesting to find a way 
of calculating To(b) for the hierarchical lattice because this could probably 
be generalized to finite-dimensional lattices. 

O n e  of our motivations in studying the problem of polymers on 
random lattices is that in the mean-field limit, the problem has many 
properties similar to those of mean-field spin glasses. (29'3~ So we wanted to 



Disordered Hierarchical Latt ices 129 

know whether properties such as a broad distribution of overlaps or non- 
self-averaging would persist in lower dimensional systems (for b finite). Our 
e expansion (b close to 1) does not indicate this mean-field property, but 
we cannot exclude that above a certain value of b, these effects appear. It 
would be interesting to investigate this question because the problem of 
polymers on random lattices is in many respects a simpler problem than 
that of spin glasses. 

APPENDIX A 

This appendix discusses some of the properties of the function 

f ( t ,  2 ) = f + ~  du ( 1 ~ ) - ~  (2~z)~/2 exp - ~ u - -  te ~u (A1) 

It is organized as follows. First the radius of convergence of the series 
expansion of f ( t ,  2) about t = 0 is considered. Next the various asymptotic 
expansions o f f ( t ,  2) for large Z are derived. Lastly the method of obtaining 
the low-temperature expansions used in the main body of the paper is 
presented. 

A1. Radius of Convergence 

It is stated in Section 7 that the series expansion of f ( t ,  Z) about t = 0 
has a zero radius of convergence. This can easily be verified by considering 
the form of the Taylor series about t = 0: 

L tk 
f ( t ,  Z)= ~y f(k/(0, Z) 

k = 0  

(A2) 

The derivatives of f ( t ,  2) evaluated at t = 0 are 

1 u~ . du )kek:~21~ 

(13) 

Hence the coefficients of the series expansion about t = 0 increase with k 
faster than any exponential, and so the series (A2) has a zero radius of con- 
vergence. The fact that the derivatives o f f ( t ,  2) with respect to t, evaluated 
at t = 0 ,  have such a simple form allows the integer moments (115) and 
overlaps Q(2 + p), (97), (102), and (103), to be calculated relatively easily. 
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A2. A s y m p t o t i c  Expansion 

We now proceed to consider the asymptotic expansion (large/-, which 
corresponds to the low-temperature limit) of the function f ( t ,  2). The 
asymptotic form of f ( t ,  2) depends upon the range of t considered. It is 
necessary to consider three cases: (i) log t ~ 2, (ii) log t ~ 22 with log t > 0, 
and (iii) - p 2 2 <  log t < - ( p - 1 ) 2 2  with p a positive integer. These three 
cases will now be considered separately and the relevant asymptotic form 
of f ( t ,  2) obtained. 

(i) log t ~ 2  

Consider making the change of variable t = e xz. If now the derivative 
of f (z ,  2) with respect to 2 is considered, it is found to have ,the form 

d2 -,:o (27r) v2 ( u + z )  exp 2 ( u + z ) - ~ u  - e x p [ 2 ( u + z ) ]  

(A4) 

and so only the immediate region of u = - z  contributes substantially to the 
integral. So, letting u = - z  + v/2, (A4) becomes 

df (z, 2) - exp(-z2/2)  C dv [ ZI) I) 2 ] 
/-2 .I ~ V  exp vq 2 2/. 2 exp(v) (A5) 

Expanding the bracketed exponentials in powers of v/2 and noting that 

f o~ vP exp[v-exp(v )]  dv=F(P)(1) 
- - o C  

(A6) 

[-where F(k)(1) is the kth derivative of the gamma function evaluated at 1], 
one finds 

elf(z,/-)= 
d2 

(2rc)1/2/- 2 v('(1) +~ r(2)(1) +~2 ~ (z 2-  1) v(3)(1) + o 

(A7) 

Hence we see that f ( t ,  2) can be written as 

exp( -- log 2 t/222) 

(2rr) '/: qogtA (271:) 1/2 exp + 

[ ~  r(2)(1)l~ r(~)(1)/log:t ) ] 
x -k 22 ~ 2 + - - ~ 2 - - ~ , - 7 5 - - -  1 + --- (A8) 
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where it has been noted that 

f f  du f (z, oo )= e ,2/2 
(2u) :/2 

(A9) 

It will. be found useful to define 

f7 f(z) = (2rc)1/: 
- -  e u2/2 (AlO) 

(ii)  l og  t ~ ]42 with log t > 0 

To derive the asymptotic form of f ( t ,  2) in this case, 
change of variable z = te ~u. This converts (A1) to 

1 ( - l o g 2 t )  fodZZ(~og,>2 l e x p ( _ z _  - 
f ( t ,  ]4)- (27c)1/214 exp 2]42 

consider the 

log2 {) 
2). 2 / 

(AI!) 

The integrand is exponentially damped for large z. So it is valid to expand 
the final exponential for small arguments to obtain 

1 [ - - l o g  2 t~ 
f ( t ,  2 ) -  (27:)1/214 ~exp ~ )  

• fo d: Z{'~ ')/~:- :[ l l~ z ()7)1 - 2 2 ~ + O  exp(-z)  

1 [ --  log  2 t'~ 
- ~  ~exp ~ )  

[ - / l o g t \  1 F{2)(logt ~ ( ~ ) 1  

(iii) - p 2 2 <  log t < - ( p -  1)22, p a positive integer 

It has been shown for a very similar integral (Appendix of ref. 32) that, 
for this range of t, the asymptotic form of f ( t ,  ]4) is 

t 2 e 2"12 t p - : f ( t ,  ]4) = 1 -- te ~2/2 +-ft. " + .. .  + ( - 1 ) P  1 ~ e(p - 1)2),2/2 
( p - 1  

\ ]4: j + o  
(A13) 
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A3. Low-Temperature Expansions 

Having obtained the asymptotic forms o f f ( t ,  5~), we will now consider 
how to obtain the low-temperature expansions stated in Eqs. (71), (99), 
(100), and (118) (120). In each case it is necessary to calculate an integral 
over the variable t with an integrand which is a product of some power of 
t and a simple function of f(t, 2). We have just seen that f(t, 2) has dif- 
ferent asymptotic forms depending upon the range of t. Hence, to evaluate 
the required integrals we must first determine which of the asymptotic 
forms of f(t, 2) it is necessary to use. We will see that for all the integrals 
required, the integrand is sharply peaked in one of the three regions of t 
considered. Hence it is only necessary to use one of the three possible 
asymptotic forms of f(t, 2) for the calculation of the integrals. So, the low- 
temperature expansions fall into three classes, depending upon which range 
of t dominates the integrand. We will deal with each class of expansion 
separately. 

(i) In the low-temperature expansions of free energy [Eq. (71)], 
(q2)  [Eq. (99)], (qm) [Eq. (100)], and moment with v = 0  [Eq. (120)], 
the integrals are dominated by t in the range log t ~ 2 .  Consider the 
calculation of the free energy as an example of this class, in which we need 
to consider the integral 

fod--ttf(t"t)l~ ~176 d(logt)f(t, 2)logf(t, 2) (A14) 

Consider first case (i), i.e., log t ~ 2. Then, setting log t = 2z, the integrand 
behaves as 

f(t, 2)log f ( t ,  2) ~ F(z) log f(z) 

where F(z) is defined in (A10). 
Now take case (ii), log t ~ 22, where the integrand has the behavior 

1 / log 2 t ) 
f(t, fi)log f(t, fl),-~ 2 e -I~ ~ + log 2 

This has its maximum value near (log t)/fl 2= 0, which is the boundary of 
region (ii), and that means that the range of t which dominates the integral 
is elsewhere. 

Finally let us consider case (iii). For -p22 < log  t < - ( p - 1 ) 2 2 ,  

f(t, 2) log f(t, 2) 
- -  t e  22/2 

1 
-(27c)1/2 ~ e l~ 

for p > l  

+ . - -  for p = l  
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Each of these terms is exponentially small, i.e., ~exp(-const..~2), and so 
again the integrand is very much smaller for this range of t than for case 
(i). Hence we see that the integral (A14) is dominated by log t ~  2. Similar 
consideration shows that this is also true for the integrals in (99) and (120). 

Now it just remains to evaluate (A14) using the appropriate 
asymptotic form of f ( t ,  2), (A8): 

,~ dt t 
Jo t f ( '  2 ) log/ ( t ,  2) 

=2  dz F(z)logF(z)+-~(2rc)l/------sF~l~(1)[l+logF(z)] 

-z~ r(l,:(1)] l F z e -  z2/2 e 

+27~s v(2~(1)El+l~ 2rr F(z) J 

+ ~51 [z 2~- 1 (27~) 1/2e -z;/2 F(3I(1)[I+logF(z)  ] 

ze  z2 /~(1)(1)/~(2)(1) e -3z2/2 /~(1)3(1)7]u 

4~ F(z) (-2~-~ 6 - ~ ) J  J 
+ 

Hence, via (70), we obtain 

i ( ) n i l  F.=~ -K~ Z i +  r"'~(1)-r'~'(l! <r~ Z 23,/2 
i=1 ~ 2 i=l 

+{ v(3)(1) 2v(3'(1).} 3 + F(1)(1) F(2)(I) K2T3 

(A15) 

i= 1 ~ q- O(Z4) 

(A16) 

where K1 and K2 are as given in (72), (73). 
The low-temperature expansions of (q2), (qm), and the moments 

with v = 0 are obtained in exactly the same manner. 

(ii) The integrals contained in the expression for the negative 
moments of the partition function and the overlaps Q(2 + v) with v < - 2  
are dominated in the low-temperature limit by t in the range log t ~ +)2. 
As an example, we will consider the negative moments (113), (118), for 
which we must evaluate the integral 

o~ l-v-1 

fo dtF~-~_v)f(t, 2) logf(t ,  2) 

f ~ d(log t) 
= _~ F(-v------) t -v f ( t '  )~) logf( t ,  ,!) (A17) 
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First we show that the integrand is sharply peaked for log t ~  "~22 and 
then we will derive (118). 

For log t ~--2 we again make the change of variable log t = 2z to see 
that the integrand behaves as 

t-vf(t,  2)log f ( t ,  2) ~ e-V~ZF(z)log F(z) 

For case (ii), with log t ~ +22 the integrand has the form 

e ~ log ,  / l o g  2 t ] - -  ~, log2 t/2~2 t-~f(t '2) l~  2 ~ + l o g  2 / 
This has a maximum near log t = - v 2  2 and at this point it takes a value 
of the order 2 exp(v222/2). 

Lastly, for case (iii), - p 2  2 < log t < - ( p  - 1)2 2, 

t vf(t, )~)logf(t, 2) 

--e vlog tteX2/2 for p > 1 

1 ,o 2t'222 flog t'] 
~ e  - v l ~  - e g / F for p :  1 

(2~)1/22 \ 2 2 ] 

Again all these terms are exponentially small, ~exp( -cons t -22) .  Hence 
the integrand is seen to be peaked for log t ~ 22. 

Now we can evaluate (A17) using the asymptotic form of f(t ,  2) for 
case (ii), (A12). Using the change of variable t = exp(22z), we obtain 

f o  dt t-v 1 
F ( - v ~  f(t ,  2)log f ( t ,  2) 

- F ( - v )  (2~) 1/2 f dz e-V~2Ze ;'2~2n 1_ -F( z )  log[(2zQm2] 
- -  o o  

~222 Z 2 ] 
2 F(z) + F(z) log F(z) + -~ F(2)(z) + ... (A18) 

This can be simplified by making the change of variable y = z + v and 
then expanding the gamma functions for small y, the exponential damping 
out any contribution from large y. Then performing the remaining 
integrals, one obtains, using (111), 

<z;+, > - <z~> 2 

{I)22n l~f 2n-iv 2 ( (27~);22 'l/2 ) 
=e  exp \ T2 ] (  T2 log -- 

vr'(-v) ~} 
F (  - v - - - - ~  + l o g  F (  - v) - + (A19) 
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The low-temperature expansion of the overlaps Q(2 + v) with v < - 2  
is obtained in the same manner. 

(iii) Lastly, in the low-temperature expansions of the positive 
moments (119) and the overlaps Qn(2 + v) for v > -2 ,  the integrals are 
dominated by t in the range - ( p -  1)22> log t > -p22. As an example, we 
Consider the low-temperature expansion of the positive moments with 
m > v > m -  1. Here we need to evaluate the integral 

fo dm dt t "~-~ ~ ( -  1) m d-~ I f ( t ,  2) log f ( t ,  2)] 

f ~  d(log t)e ~ )~~ t 
d ~ 

= . . . . .  1)rod-- ~ r L f ( , 2 )  l o g f ( t , 2 ) ]  (A20) 
--vo 

For log t ~ 2, with t = e ;z, the integrand behaves for large 2 as 

d m 
t . . . .  - ~  Ef(t ,  2)log f ( t ,  2)] ~ e  -~'~~ 

Second, we consider log t ~ 22; then the integrand behaves as 

d m 
t m - ~' - v log t e --[ogZt/222 - ~  I f ( t ,  2) log  f ( t ,  2)] ~ e 

which is of the form exp(-const-22) .  
Lastly we look at - p 2 Z < l o g  t <  - ( p - 1 ) 2 2  . In this range of t the 

integrand has the form 

d m  

t m - ~ -  I f ( t ,  2 ) l o g f ( t ,  2)] --~e-~l~ l~ 
dt m 

This has a maximum when - 2 2 v = l o g  t, when it takes the value 
exp(v222/2). This is much greater than the value of the integrand in either 
of the other regions. So we see that the correct form o f f ( t ,  2) to use is that 
for t in the range - m 2 2 < l o g t < - ( m - l ) 2 2 .  Having determined the 
dominant range of t, it is now straightforward to evaluate the low- 
temperature expansion for the positive moments from Eq. (114), using the 
same approach to evaluating the integrals as explained for the treatment of 
(A18). This yields the results of Eq.(119). The overlaps Q , (2+v)  for 
v > - 2  can be evaluated by the same method. 

A P P E N D I X  B 

In this appendix we will show that for the model defined by (132) 
2d 

Zc+ , ( r )=  ~ {exp[sc(r) /T]  } ZL(r + ej) (B1) 
j = l  
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with Zo(r ) = 1, one has, for T >  T 2 I T  2 is given by (145)] 

lira lOgZL= lira l ~  (B2) 
L ~  L L ~  L 

with probability 1. 
We will first show that (B2) is true with a nonzero probability [see 

(B8)]. Then we will explain how this nonzero probability can be made as 
close to 1 as wanted. 

First let us calculate, for T >  T2, the ratio 2 2 ( Z r  } / ( Z L  ) �9 Following 
the idea of ref. 27, one can write 

where W1 and W2 are two random walks of length L on a hypercubic 
lattice of dimension d starting at O and N(W1, W2) is the number of inter- 
sections of the two walks (defined as the number of time steps at which the 
two walkers visit the same site). 

In dimension d > 2 and for L---, o% one can calculate the probability 
Pm that two random walks meet exactly m times. One finds, using the 
techniques explained in ref. 37, that 

P m = A  m ~(1 - A )  
(B4) 

P0 = 0 

where the constant A is given by 

A = I -  (~)~)af f l _ ( 1 / d - ~ g - l c o s q , ) 2  

L, (BS) 
Id4- 1 

where I d is defined in (146). Notice that P0 = 0 because the two walks meet 
at least once, since they meet at their starting point. Then from (B3) and 
(B4), one gets that 

lim ( Z 2 )  - B  (B6) 
L ~ o ~  < Z ~ >  ~ 

where B is given by 

f<e2 ,T>  m_ 
8= em\ j 

m = 0  

(1 - A ) ( e2~ / v } / ( e~ / r )2  

1 - A (eZ~/T}/{e~/r}z (B7) 
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From the definition of T 2 [Eqs. (145) and (146)], one can see that when 
T varies from ~ to T2, B goes from 1 to ~ .  

Let us now show that (B6) implies that 

lim = lim l o g ( Z L )  with probability at least ~ (B8) 
L ~c ,v  L ~ o o  L 

To do that, we will use (27) Chebyschev's inequality: from (B6), it is clear 
that for any constant C 

Therefore (27) 

lim (-ZT) C = B - 2 C + C  2 (B9) 
L ~ o o  

 rob I (" ~ZL) D2 C2) (B10) 

As long as D < C, the fact that [C- -ZL/ (ZL)  [ <D implies that 

lim l o g Z L =  lira l o g ( Z L )  (B l l )  
L~oo L L ~  L 

Therefore (B11) is true with a probability at least 

B - 2 C + C  2 
1 D2 (BI2) 

for any choice of C and D with D < C. This probability is maximal when 
D --* C and C ~ B and one gets that (B11) is true with a probability at least 
1lB. So we have shown that for T>T2,  ( B l l )  is true with a nonzero 
probability. 

Now we are going to show that this probability can be made as close 
to 1 as needed. The idea is that by removing the first steps of the walk, we 
can make B in (B6) as close to 1 as needed. To do this, let us first write 
the inequality 

e . . . .  ' v Y ( L - - n , d ) < Z L < ( 2 d ) n e n " / T y ( L - - n , n  ) (B13) 

where Y(L', n) is the partition function of a walk of L' steps starting 
anywhere in a finite hypercube of linear size 2n and a is a bound on the 
energy s of each site [so the support of p(s) is assumed to be bounded with 
]sl < a]. For  the upper bound of (B13), exp(na/T) is larger than the energy 
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contribution of the first n steps of each walk; each walk after n steps 
belongs to the cube centered at 0 and of linear size 2n and the number of 
walks of n steps reaching each point of this hypercube is less than (2d) n. 
The lower bound can be obtained in the same way: the energy contribution 
of the first n steps is clearly larger than e x p ( - a n / T ) ,  whereas the number 
of walks reaching each point of the cube of linear size n/d and of center 0 
is at least 1. 

One can calculate ( (Y (L ,  n ) )2 ) / (Y (L ,  n) )  2 in the same way as was 
done for ( Z 2 ) / ( Z )  2 [see Eqs. (B3)-(B7)].  One finds that 

where 

((Y(L,n))2) 
lim - B ~  (B14) 

L~ ~ ( Y ( L ,  n ) )  ~ 

(e2~/r)/(e~/r) 2 

B,  -- 1 -- Q,, + Q,, 1 - A(e2~/r)/(e~/r)2 (B~5) 

where Qn is the probability that two random walks starting at two random 
points in a hypercube of linear size 2n will ever meet. This probability Qn 
can be calculated exactly from the theory of random walksJ 37) It is clear 
that in d > 2 ,  the further apart the starting points are, the smaller the 
probability is that the two random walks will ever meet. So for n large 
enough, Qn can be as small as needed, and B, can be as close to 1 as 
needed. 

Therefore, for n large enough, using the same reasoning which leads 
from (B6) to (BS), one gets from (B14) 

log Y(L, n) log(  Y(L, n) ) 1 
lira lira with probability at least ~ (B16) 

L~oo L L ~  L 

Then from (B13) and using the fact that 

one gets that 

( Y(L, n)> = (2n)a(ZL)  

l o g Z  z l o g ( Z c )  

L L 

(B17) 

(B18) 

with a probability 1/B'n, where Bn can be as close to 1 as needed. This 
proves (149). 
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