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DIRECTED POLYMERS IN A RANDOM MEDIUM 

B. DERRIDA 
Service de Physique Thhorique’, de Saclay, 91191 Gif-sur-Yvette Cedex, France 

The problem of a polymer in a random medium can be formulated as follows: consider a 
regular lattice with on each bond ij a random energy Ed,. The energy E, of a self avoiding walk 
w on this lattice is the sum of the energies of all the bonds visited by the walk. Then the 
problem is to compute the partition function Z = C, exp(- EJT). Several recent results will 
be presented: (1) The mean-field version of this problem can be solved exactly and one 
observes a low-temperature phase similar to the spin-glass phase. (2) For finite-dimensional 
lattices, one can derive bounds on the transition temperature in high enough dimension. (3) 
For hierarchical lattices, the problem can be reduced to finding stable laws when one 
combines random variables in a non-linear way. For example: Z = Z,Z, + Z,Z,. 

1. Introduction 

The problem of directed polymers in a random medium is a problem in the 
theory of disordered systems in which a lot of progress has been made recently 
[l-6]. The problem in its lattice version can be formulated as follows [7]: 
consider a regular lattice with a random energy (or potential) qi on each bond 
ij of the lattice. These energies are statistically independent and they are 
distributed according to a given probability distribution p(eii). On this regular 
lattice, we consider all the directed walks of length L starting at a fixed origin 
0. By definition, the energy E, of a walk w is 

E, = IX Eij 7 
ij 

where in (1) the sum runs over all the bonds g visited by the walk (a directed 
polymer is, by definition, a walk stretched along a single longitudinal direction 
with fluctuations only in the transverse directions: the simplest example of a 
directed walk in dimension d + 1 is to consider a usual random walk on a 
hypercubic lattice and to take the time direction for the longitudinal direction). 

Three kinds of properties can be studied for such a system: thermal 
properties, overlaps and geometrical properties. 
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1.1. Thermal properties 

Thermal properties are those which can be obtained from the partition function 

Z. 

Z = c exp(-EJT) . 
w (2) 

In (2), the sum includes all the directed walks of length L starting at a fixed 
origin 0, and T is the temperature. 

As usual, from the knowledge of Z, one can calculate the energy and the 
specific heat as a function of the temperature and one can study the phase 
diagram. In sections 2-4, we will see that, in the thermodynamic limit (L+ WI), 
one can observe phase transitions between a high-temperature phase where the 
effect of disorder is weak and a low-temperature phase very similar to a 
spin-glass phase. 

At zero temperature, the problem becomes an optimization problem: the 
problem of finding the walk of lowest energy. In addition to the value of the 
ground-state energy, one can study its fluctuations [3-51 which are character- 
ized by an exponent w which depends on the dimension of the lattice, 

(E2,,) - (E,,)* - L2” > 

where ( ) means an average over disorder. 

1.2. Overlaps [7,8] 

Because one can think of the low-temperature phase as a phase where the 
directed walks get trapped in deep valleys, it is useful in order to study the 
statistical properties of the landscape to define the overlaps between two or 
more walks and the probability distribution of these overlaps. 

By definition, the overlap 0 s q2(w, w’) s 1 between two directed walks is 
the fraction of their length that they spend together. The average overlap 
between two walks is then given by 

z-2 c 2 q2(wy w’) exp 
E, + E,. 

w w’ 
T >> ’ 

One can define in a similar way the overlap between m walks w(l), . . . , w@) 

and an average overlap q,. 
As for spin glasses [9, lo], we will see that in the mean-field case, the overlap 

is not self-averaging and that its probability distribution P2( q), defined by 
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p2(4) = ( Z2 C C exp( - Ew +TE”‘) S( q - q2(w, w#))) , 
w w’ 

73 

(5) 

remains broad even in the thermodynamic limit (L + 03). 

1.3. Geometrical properties 

The effect of disorder is to influence the transverse fluctuations of the 
directed walks. These can be characterized by an exponent v,. 

2-l C (T(w))~ exp(-EJT) - L2” , 
w 

where T(w) is the projection of the walk on the transverse directions. 
The exponent v depends on whether the system is in its weak- or its 

strong-disorder phase. 
The exponent v is i in absence of disorder or in the weak-disorder phase [6], 

whereas larger values of Y have been predicted and measured in the strong- 
disorder regime [3-51. It is in dimension 1 + 1 (1 longitudinal + 1 transverse 
direction) that the problem is best understood. Analytic predictions based on 
several approaches [3-51 as well as numerical simulations give v = $ and w = f . 

In dimension d + 1 > 3, it has been shown that at high enough temperature [6] 
v = i whereas below a certain temperature, disorder is relevant and v > i and 
numerical simulations indicate that v changes slowly with dimension [4]. 

In the present talk, only a few aspects of this problem will be discussed. 
First, the solution and the properties of the mean-field model [7] will be 
described (analogy with travelling waves, a low-temperature phase similar to a 
spin-glass phase with a broken symmetry of replica). Second, the case of 
finite-dimensional lattices will be considered. We will see that in dimension 
d + 1 > 3, there exists a phase transition and that one can obtain bounds for the 
transition temperature [3]. 

Lastly, the model on a hierarchical lattice will be discussed. We will see that 
that problem can be reduced to finding stable laws when one combines random 
variables in a non-linear way [8-111. Several results obtained recently for 
hierarchical lattices will be summarized. 

2. Polymers on a tree and travelling waves 

There exists a mean-field version of the problem of polymers in a random 
medium which can be solved exactly. This version consists of choosing a tree 
for the regular lattice. Several methods give the free energy as a function of the 
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temperature: the analogy with travelling waves, the replica approach, the 
results known on the GREM [12]. In this section, I will describe the analogy 
with the problem of travelling waves and I will summarize the results [7]. The 
replica approach is briefly presented in appendix A. 

Consider a tree [or more precisely the branch of a tree (see fig. l)]. On each 
bond ij of this lattice, there is a random energy eii chosen according to a given 
probability distribution p(e,). If Z,+,(T) is the partition function of the 2L+1 
walks of L + 1 starting at 0, one can write a recursion relation, 

Z,+,(T) = e-‘oA’TZy’(T) + e-‘oB’TZr)(T), (7) 

where l OA and ear, are the energies on the bonds OA and OB and Zi*’ and 
ZF’ are the partition functions of walks of L steps on the branches starting at 
A or at B. Since the energies cij are random, the partition function is itself 
random. It is then natural to consider the probability distribution or a 
generating function of ZL+ 1 (T). It turns out that there exists a generating 
function G L+l(x), defined by 

GL+,(4 = (exp(-e-“‘TZL+l(~))) , (8) 

for which recursion (7) takes a simple form: by replacing ZL+i, given by eq. 
(7), in (8) and using the fact that eoA, Lou, Zp’ and Zy) are independent 
random variables. one can show that 

G,+,(x) = [I P(E) G,(x + 4dr]x 7 

where K is the branching rate of the tree (K = 2 in the case of fig. 1). 
One should notice that this recursion does not depend on temperature. The 

only temperature dependence comes from the initial condition 

G,(x) = exp(-e-“/r) , (10) 

since the partition function Z, = 1 for a walk of 0 step. 

0 

A B &A 
Fig. 1. Self-avoiding walk on a tree for K = 2. 
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So the whole knowledge of the probability distribution of 2 is reduced to the 
study of recursion (9) with initial condition (10). 

From (8) and (lo), one can easily check that 

G,(x)+ 1, as x--, +a,, 

G&)+0, x+ --c4, 

so GJx) the shape a front a kink). (9) belongs a class 
non-linear equations the diffusion type and properties similar 
the KPP Petrovsky, Piscounov) [ 131, 

(12) 

Let me just summarize here what is expected [7] for the solutions of (9). In the 
limit L + m, these solutions become travelling waves W which move with a 
velocity u , 

GL(x) = W(x - uL - cL), for large L , (13) 

where c,lL + 0 as L + CQ. The velocity u depends on the initial condition; if 
the initial condition has the following shape for x--,m, 

G,(x) = 1 - eeyX (14) 

(with the restriction that G,(x)+ 0 as x+ --oo and that G,(x) is monotonic), 
then the velocity u is given by 

u = 1 log Y p(E) e-” de , 1 for Y c 3/mi. T 
= urnin = &- log P(E) emyminf de , 1 for Y 5 Ymin , Ill,” 

where -ymi,, is the value of y which makes u minimum, i.e., such that 

(15) 

(16) 

So the exponential decay y of the initial condition determines the velocity u. 
For y < Y,,,~, (slow decays), the velocity depends on y whereas for y 3 -ymin, the 
velocity remains constant (u = umin). 
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From (8) and (13), one can translate these properties of travelling waves 
into properties of the partition function. One can show in particular that -u is 
the free energy per unit length and, therefore, 

pmm i logZ,(T)=log p(~)deexp(-E/T) 1 , for T > T, , 

(174 

P(E) de exp(-e/T,) , 
I 

for T < T, , 

(17b) 

where T, = llymi,. 
From (17), one can show that the entropy vanishes in the whole low- 

temperature phase. This low-temperature phase is completely frozen. Another 
consequence of (13) is that the width of the probability distribution of log Z, is 
of order 1. Therefore, the exponent w (defined in (3)) vanishes in the case of a 
tree. 

From the analogy with travelling waves [7] or other approaches (GREM [12] 
or replica), one can obtain other properties of interest. For example, the 
averaged overlaps q2 between 2 walks and q, between m walks are given, for 

T-C T,, by 

q2 = 1 - TIT,, 
r(m - TIT,) 

qm = T(m)T( 1 - TIT,) 

and they vanish above T,. The distribution P2( q) can also be obtained, 

P*(q)=+(q)+ l-f S(q-1). 
C ( > C 

(18) 

(19) 

We see that Z’*(q) is more complex than a single delta function and this means 
that the low-temperature phase is analogous to the spin-glass phase [9, lo] of 
the Sherrington-Kirkpatrick model. 

3. Finite dimensional lattices 

We have seen that the mean-field version of the problem possesses a 
low-temperature phase similar to the spin-glass phase. One can then wonder 
whether this phase is still present in finite dimension. We are now going to see 
that if d + 1 > 3, there exists a phase transition [6] at a certain temperature T,, 

and that one can give an upper and a lower bound [8] to T,. 
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We consider here a site version of the problem [g]: the polymer lies on a 

(d + 1)-dimensional lattice. At each time step L+ L + 1, the polymers oc- 
cupies a site r of a regular hypercubic d-dimensional lattice. Suppose that at 
step L, the polymer is on site r. Then at step L + 1, by definition of the model, 
the polymer is allowed to occupy any of the 2d neighbors of r. If Z,(r) is the 
partition function of a polymer of L steps, which ends at point r, one can write 
the following recursion relation 

Z,+,(r) = 2 e-'L(r)'TZL(r + ej) . 
j=l 

(20) 

Using this relation, 
that 

one can show [8] that there exists a temperature T, such 

is finite, if T > Tz . (21) 

For T < T2, this ratio is exponentially large in L. The temperature T2 is a 
solution of the following equation [8], 

where ( ) represents the average over E. 
By using and generalizing (21), one can show that, for T > T2, the free 

energy is equal to the annealed free energy with probability 1, 

lim i log Z,(r) = log(2d) + log 
L+m 

( ‘), forT>T,. exp - T (23) 

So T2 is an upper bound for the transition temperature. 
From the free energy given by the right-hand side of (23), one can calculate 

the entropy as a function of temperature and show that this expression of the 
entropy (which is correct only in the high-temperature phase) vanishes at a 
temperature To (and becomes negative below T,,). This implies that (23) 
cannot remain valid for T < To. So this proves that there exists a transition at a 
certain temperature T, which satisfies 

To s T, =G T2 , (24) 

where T, can be obtained by comparing (Z’) and (Z)’ (see (21)) and To is 
the temperature below which the annealed free energy would give a negative 
entropy. 
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For d = 3 (i.e., for directed polymers in dimension 3 + l), on the lattice 
described above and with energies E distributed according to a Gaussian 
distribution of width 1, one gets [8] 

0.528 < T, s 0.963 , (25) 

The problem of directed polymers in a random medium is analogous, at least in 
its mean-field version, to spin glasses. In finite dimension, we see that one can 
go much further in the case of the polymer problem since one has the exact 
expression of the free energy in the high-temperature phase (23), one can 
prove the existence of a transition temperature and even obtain bounds on the 

temperature (25). 

4. Hierarchical lattice 

Except for the free energy in the high-temperature phase (23), it is hard to 
obtain analytic expressions for other quantities in the finite-dimensional prob- 
lem. Even T, is not known (24). 

This led us to consider a problem of intermediate difficulty [ll, 81 between 
the mean-field case (section 2) and the finite-dimensional lattice, the problem 
of polymers on hierarchical lattices. Hierarchical lattices [14, 151 have been 
often used to build models in statistical mechanics which can be solved exactly. 
All kinds of spin models (Ising, Potts, . . .) defined on hierarchical lattices can 
be reduced to the study of a simple renormalization transformation and 
properties like the critical temperature, critical exponents can easily be ob- 
tained from the dynamical properties of the transformation. 

In presence of disorder [16,17], despite the simplicity of the renormalization 
transformation which consists in combining random variables in a non-linear 
way, the problem can only be solved by numerical or perturbative techniques. 

The hierarchical lattice [8, 111 that we considered is the so-called diamond 
lattice represented in fig. 2. The lattice is built by an iterative rule. The first 
generation consists of one bond and two sites. In the second generation, the 
bond is replaced by a set of 26 bonds (b = 2 in fig. 2a), each of which is 
replaced by a corresponding set to form the third generation, etc. We shall 
consider directed walks from A to B on such a lattice. On a lattice at the nth 
generation which consists of (2b)“-’ bonds, the length L of these walks and the 
number 0, of different walks are given by 

L = 2”-1; QL = bL-' . 

The partition function 2 is the sum over all these fiL walks (2). 
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Fig. 2. The iterative construction of the hierarchical lattice (fig. 2a b = 2). 

Because the lattice at generation n + 1 can always be viewed as the combina- 
tion of 2b lattices at generation n, one can write the following recursion for the 
partition function, 

Z n+l = zl”p + . . . + z-zy ) (26) 

where Z, + 1 is the partition function of a lattice at the (n + 1)th generation and 
Zlf’ are the partition functions of 2b (different) lattices at generation n. 

At generation n = 1, the partition function Z, reduces to 

Z, = exp(-e/T) , (27) 

where E is the random energy (of a single bond on the lattice) distributed 
according to a given distribution P(E). 

Since all the Z,, are random (see (27) and (26)), one has to consider the 
probability distribution II, (log Z,) of log Z, . 

Although the recursion (26) is very simple, one (or at least we) does not 
know how to obtain the properties of ll,(log Z) for 12 large from those of 
flr(log Z). One can only prove that if b >2 and flr(log Z) is narrow enough, 

(Z:> <(b - NZ,)’ 7 (28) 

the distribution fl,(log Z) becomes a delta function (one can show easily from 
(26) that if (28) is satisfied, then (Z,‘)/(Z,)“+l as n+w). 
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If b < 2 or if (28) is not satisfied, the distribution II,(log 2) either becomes a 
delta function as IZ--, ~0 or becomes broader and broader and takes the form 

Il,(log 2) - L 3 -‘Fb 
log 2 - Ly 

Lu6 , (29) 

where y and 6 depend on the initial distribution Ill(log Z), but the shape Fb 

and the exponent o do not. The function Fb is a stable law for recursion (26), 
since if one chooses 2b variables, log 2:) distributed according to (29) and if 
one combines them according to (26), then log Z,,, is again distributed 
according to (29) with renormalized values of y and 6 (6 --, 2”s). 

A typical shape of the function Fb is shown in fig. 3 for b = 5. The fact that 
the stable law Fb is the same for a large class of initial distributions has been 
observed numerically [ll] for several initial broad distributions (i.e., in the 
low-temperature limit), but this has not been proved. It is rather easy to get 
numerical estimates of the exponent w which decreases when b increases. 

It is much harder to understand the existence of a stable law and to calculate 
the coefficients y and S in (29) by analytic methods. We were only able [8, 111 
to develop a perturbation method which is valid for b close to 1, 

b=l+e. (30) 

0.6 

r 
F&d ’ I 

Fig. 3. The shape of F,(x) for b = 5. 
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For E small, the lattice construction is rather questionable since the lattice 
exists only for integer E (it is, however, possible to build other lattices [8] which 
depend on a parameter similar to E). 

The reason which makes an expansion possible around b = 1 is that for 
b = 1, recursion (26) becomes 2, + r = Zr)Zr) and, therefore, the stable law 
for log Z is a Gaussian distribution. So the stable distribution Fb can be 
expanded around a Gaussian shape. 

This expansion method [ll] allows one to obtain the shape Fb as well as the 
exponent w, 

2” = v2 (1 - EK*) ) (31) 

where the constant K2 is given by a complicated integral [ll] and is equal to 

K2 = 0.29782 . . . . (32) 

The expansion method can also be used to obtain thermal properties, overlaps 
or the distribution P,(q). At low temperatue, one gets [8] 

lim 
log Z, K, 1 
- = e- ~ -((P(l))’ -r”(l)) 

L-m I, T e-1 2(2X 1) l + O(T2ii3) 

where the constant K, is also given by some integral [ll], 

K, = 0.903197. . . , 

and [8] 

4, = 1 - E ( r,(m) - r’(l)) * . 
qm> 

(34) 

(35) 

From (33), one can see that the specific heat is linear in T at low temperature. 
This behaviour is also observed in numerical simulations [8] for b = 2. By 
comparing (35) with the mean-field result (18), one can see that at low 
temperature the dependence of q, is very similar in the two problems. Lastly, 
the calculation of P,(q) to order E gives that F’,(q) is a single delta function, 
and so for E small, the mean-field property (broken symmetry of replica) does 
not seem to be present. 
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5. Conclusion 

The problem of directed polymers in a random medium is very similar to the 
problem of spin glasses, at least in the mean-field limit. It is, however, simpler: 

(i) in the mean-field case; the free energy has a simple expression, eq. (17), 
at all temperature; 

(ii) in finite dimension, one can prove the existence of a phase transition and 
give bounds for the transition temperature. 

The problem on hierarchical lattices raises the interesting question of stable 
laws when one combines random variables in a non-linear way, eq. (26). In 
some limit (b + l), it allows one to calculate properties such as the free energy 
or overlaps perturbatively. 

One interesting direction of research would be to investigate whether the 
low-temperature phase in high, but finite, dimension remains a phase with a 
broken replica symmetry. This seems to be a question with an attainable 
answer since one can develop a method which gives the l/d expansion of the 
free energy. This method and its results will be exposed, I hope, in a 
forthcoming work. 

Appendix A 

In this appendix, the free energy (17) and the distribution P2( q) of the 
overlaps will be obtained using the replica approach. The calculation is very 
similar to the section 6 of ref. [12]. 

We are going to calculate (2”) using the replica approach. We assume that 
(2”) is dominated by sets of n walks which are organized in the following way: 

(i) the 12 walks follow the same path from the origin to a certain length Lq, ; 
(ii) from Lq, to a length Lq,, they are grouped into m, groups of n/m, 

walks each; 
(iii) from Lqi to Lqi+, , they are grouped into mi groups of n/m, walks each. 

We have, in general, 

The contribution of these arrangements to ( 2” ) is 
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(A.3) 

For large L, ( 2”) is dominated by the { qi} and {m,} which maximize (A.3). 
In the limit n+ 0, following Parisi [9, lo], one has to invert inequality (A.2), 

1=m,3m,2~**~mM=n=0, 64) 

and, if one takes a continuous limit (M+ w), by defining 

mi = nlx(q,) , G4.5) 

where qi becomes a continuous variable 0 s q s 1, one gets from (A.3) in the 
limit fz + 0 

logK+log(/p(e)exp(T))ds]. 

64.6) 

As usual in the replica approach [9, lo], the function x(q) has to satisfy 
O<x(q)<l. 

Because there is no explicit q dependence in 
constant. 

integral (A.6), x(q) is a 

Depending on the temperature T, one finds that the extremum is either 

x(q) = 1, ifT>T,, or 

x(q) = TIT, = TY,,,~“, if T < T, , 
(A-7) 

where T, = llymin and -ymin is defined by (16). In the replica approach [9], the 
distribution PZ( q) of overlaps is given by 

dx( 4) P*(q) = dq 7 (A.8) 

which gives two delta functions at q = 0 and q = 1. 
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