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Finite-size effects and bounds for perceptron models

B Derrida, R B Griffithst and A Priigel-Bennett}
Service de Physique Théorique§, CEN-Saclay, F-91191 Gif-sur-Yvette Cedex, France.

Received 26 March 1991

Abstract. In this paper we consider two main aspects of the binary perceptron problem:
the maximat capacity when random patterns are stored (model A}, and its generalization
ability (model B). We have extended previous numerical estimates of critical capacities
and studied thermal properties of systems of small sizes Lo test recent replica predictions.
We have also considered some simpler versions of these models. The discrete spherical
versions can be solved exactly using Gardner’s replica calculation for the spherical model
and are shown to give a rigorous upper bound and lower bound on the capacities of
models A and B, respectively. Toy versions of models A and B are solved in detail and
provide information which is useful for interpreting the finite-size effects present in the
numerical studies of models A and B.

1. Introduction

Ever since it was realized that tools employed for studying disordered systems could
be applied to models of neural networks, the investigation of such models has become
a part of theoretical physics [1, 2]. An important question is whether a given neural
network architecture can perform tasks such as storing information, classifying it, and
generalizing from examples. The simplest architecture which has been proposed is the
perceptron [3, 4]. In this paper we are concerned with two aspects of a perceptron:
its maximal storage capacity (model A} and its ability to generalize (model B).

The problem of the optimal capacity of the perceptron can be formulated in its
simplest version as follows: given P input patterns S¥, 1 g p € Pand 1 < N,
and P outputs T*, is there a configuration of synaptic weights or couplings J,,
1 £ ¢ € N, such that each input pattern gives the desired output, i.e.

N
T# = sgn (E J,.s;‘) (L1)

i=1

for every u? As the number P of patterns increases while the number of couplings
N is fixed, it becomes harder and harder to find a choice {J;} which satisfies (1.1).
The maximal capacity P, is the maximum number of patterns which can be stored,
in the sense that for P > P, there is no solution to (1.1).
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This maximal capacity depends on the method used to choose the patterns { S/}
and the targets {7T#}. If they are chosen at random in the sense that S!* and T*
are 41 or —1 with equal probability and have no correlations, Cover [5] showed that
the maximal capacity is

P ~a N

for large N, with o, = 2. This result was rederived by Gardner [6, 7], who developed
a replica approach by which the volume in the space of {J;} with 3", J? = N of those
couplings satisfying (1.1) could be calculated for P < 2N, as well as the minimum
fraction of errors [8] for P > 2N. This replica approach was later extended to
several other situations [9-17].

A serious difficulty arose when this replica procedure was applied to the case of
binary couplings J; = +1, which we shall call ‘model A. It gave o, = 4/w ~ 1.27,
whereas one can prove [8, 18, 19] that a, < 1, and numerical simulations [18-22]
yield estimates for o in the range 0.7 to 0.85. Since this calculation assumes replica
symmetry, a possible source for this erroneous «_ was replica symmetry breaking.
However, it was shown that the replica symmetric solution was stable for o < 1.015
[19], excluding the possibility that the true ., which cannot exceed 1, occurs at the
limit of stability of this solution. The sole remaining possibility within the replica
approach was a discontinuous transition from a replica symmetric to a replica non-
symmetric saddle point. Krauth and Mézard [19] found such a transition [23] and
realized that it was similar to the one which occurred in the random energy model
[24], in which the entropy vanishes at the transition temperature at the same time
as the replica symmetric solution remains locally stable [25]. They thereby obtained
a value of o, = 0.833. One of the motivations of the present paper was to use
numerical simulations to test this prediction of the Krauth and Mézard theory and to
improve previous estimates of the critical capacity [18].

Besides the maximal capacity, another property of interest for neural network
models is their ability to generalize [18, 26-32]. For the binary perceptron, the
problem of generalization {model B) can be formulated as follows [18]: the couplings
J; are again +1 and the input patterns {S/'} are chosen at random. However, the
{T#} are now by definition the values given by a ‘tcacher’ {j.-}, which is simply
one possible choice of couplings (e.g. J; = +1 for all ¢). Just as in model A,
the number of configurations satisfying (1.1) for this choice of {T*} decreases as P
increases until a critical value P, ~ a.N is reached, above which the only solution
is {J;} = {J;}. For P < P, the generalization of the network is imperfect, because
there are solutions {J;} # {J;} which give the same results as the teacher for the
P specified patterns which have been ‘learnt’, but different results for patterns not
yet learnt. By contrast, for P > P, the only solution to (1.1) is the teacher itself,
which thus will (by definition!) give correct results in all cases. A rigorous upper
bound of o, € 1.448 as well as numerical extrapolations to o, =~ 1.35 have been
obtained previously [18]; both substantially exceed the value of o, = 1.245 obtained
{26, 27] using the replica approach, which also predicts a freezing transition at finite
temperature for o > a.

The goal of the research reported here was to improve the existing estimates for
the critical capacity for models A and B, and to use numerical simulations to test the
Krauth-Mézard [21], and Gy6rgyi [26, 27] predictions for the nature of the freezing
transitions. To this end, it turns out to be very useful to introduce several variants
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of models A and B, as described in §2: the S/ are allowed to have a continuous
Gaussian distribution (‘Gaussian patterns’), and the 2~V possible couplings {J;} can
be chosen at random on the sphere in RV (‘discrete spherical couplings’). For all
these models, we show that the problem of maximal capacity can be formulated in
terms of the distribution of points or objects in various cells: for a > o, of model
A, most of the cells are empty, and for o > o of model B, almost all occupied cells
are occupied by a single point. From this perspective, models A and B are different
aspects of a single problem. The discrete spherical models, while rather artificial from
the point of view of neural networks, are interesting in that the A and B transitions
can be found numerically from the results of Gardner’s replica calculations, and these
values are then upper and lower bounds respectively, as shown in §5, of the critical
capacities of the model] with binary couplings and Gaussian patterns.

In addition we introduce, in §3, two simplified or ‘toy’ models corresponding to A
and B, in which the energies of the different configurations (defined as the number of
errors occurring in (1.1)) are independent random variables. These models can then
be solved exactly, and the finite-size effects turn out to be useful in interpreting the
numerical results presented in §4. The latter are of two types: estimates of critical
capacities which extend previous results to larger values of N, and calculations of
thermal properties for systems of finite size which, in conjunction with the results of
§3, allow a test of the replica prediction for models A and B. Our conclusions are
summarized in §6.

2. Transitions in the discrete spherical models

The perceptron model considered here can be characterized as follows. The P
patierns correspond to a Px N matrix 5 with g = 1,2,...,Pand i =1,2,..., N.
A set of couplings .7 is a vector with N components .J;, and for the uth pattern gives
rise to an output

N
R* = sgn (2 Sf‘Ji) - 2.1

which takes values +1. Let the target T be a P-component vector T# = +1. The
energy E attributed to a set of couplings J is the number of patterns for which the
output differs from the target, that is

.x:-u-a

L — TH)2 (22)

Using these energies, a partition function [8] analogous to that used in statistical
mechanics can be defined:

7 o T‘-—HE(J’\ i s B Y
L= ) e e, 2.3)
{(n

We shall assume that the elements of the patterns are chosen randomly: the N x P
numbers S/ are independent identically distributed random variables. For Ising
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patterns, each S/ is +1 or ~1 with equal probability. For Gaussian pattems, each S¥
is chosen from a Gaussian distribution with zero mean,

The term binary couplings will refer to the case in which each J; is +1 or ~1 and
spherical couplings when the J; are real numbers satisfying

N
Y Ji=N. @4)

i=1

A third possibility is that of discrete spherical couplings in which a set of e™* couplings
are chosen randomly as vectors on the sphere defined by (2.4). Typically we shall
assume that b = In 2, giving the same number (2%) of possibilities as the binary case.

The two types of patterns and the three kinds of couplings give rise to a total of
six distinct but related models which can be studied for large N as a function of the
parameter

a= P/N. 2.5)

In the case of Ising patterns and binary couplings we shall consider only the case where
N is odd so that the sign in equation (2.1) is well defined. It has been asserted [21],
on the basis of replica studies, that Ising and Gaussian patterns give rise to identical
results as N — co. Nonetheless, it is useful to distinguish them because the behaviour
for finite IV will be different, and because a certain inequality (see §5) relating the
binary and discrete spherical couplings can be proved for Gaussian patterns but not
(at least by the same methods) for Ising patterns.

The following perspective in these models is sometimes helpful. Formula (2.1)
assigns each set of couplings J, each of which can be thought of as an object or
‘particle’, to one of 2F categories or ‘boxes’ labelled by the P numbers R#. Thus
a particular set of patterns S! gives rise to a histogram consisting of the number of
particles in each box. The target T is a particular box which has zero energy, while
the other boxes are assigned energies relative to T by means of (2.2). The partition
function (2.3) is a sum over particles, each assigned the energy of the box in which it
is located. Note that as long as the distribution for each S} is symmetrical about zero
the choice of the target is arbitrary in that any choice will yield the same statistics.
This fact can be used to speed up numerical studies, because once a histogram has
been constructed, sets of energies can be computed for various targets. (The resuits
are correlated, but not biased, and by using several histograms corresponding to
independent choices of patterns, it is possible to make error estimates by standard
procedures.)

Both models A and B are determined by the same histogram, and thus can be
thought of as two aspects of a single model. The difference is that for model A,
any one of the 27 boxes may be chosen at random to define the zero of energy,
whereas for model B, one of the particles is chosen at random (it is, by definition,
the ‘teacher’), and the box containing it is assigned the energy zero. The critical o
for model A, denoted by a,, is the value such that for & < a, a box chosen at
random will contain at least one particle, whereas for o > a, the typical box will be
empty. The critical o for model B, denoted ag, has the property that, for a > ag,
almost every particle is alone in the box which it occupies, whereas for o < op it
almost certainly has the company of at least one other particle in the same box, i.e.
a ‘student’ is able to yield the same result as the ‘teacher’. These definitions can be
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made more precise by appropriate uses of the phrase ‘with a probability approaching
one in the limit as N tends to infinity’. Unfortunately there are no proofs (known
to us) that the desired limits exist, or that o, and ag are well defined in the sense
that there exists no intermediate phases: for example, a range of o values for model
A in which the probability that a typical box is empty is neither zero nor one.

A peometrical representation of the ‘boxes’ introduced above is obtained by imag-

ining that for each u, the S¥ are the components of a vector normal to a hyperplane
in an N-dimengional snace TD!N The P hvnernlanes corresnondine to the P nattems

in an N-dimensional The P hyperplanes corresponding to the P patterr
cut this space into a set of 2P convex reglortl’s {some may have zero volume) and
these regions intersect the sphere (2.4) in a corresponding number of cells, with the
property that ali the points in a particular cell are, by (2.1), mapped into the same
set of outputs. Thus these cells correspond to the ‘boxes’, while the ‘particles’ in a
particular box are those sets of couplings J corresponding to points on the sphere
(2.4) inside the cell in question.

In the case of the discrete spherical model, transitions A and B can be discussed
in terms of the volumes of these cells, where ‘volume’ denotes the appropriate rota-
tionally invariant measure on the sphere (2.4). (For example, for N =3 and P =3
the cells are spherical triangles, and the ‘volume’ is the corresponding arca on the
surface of the sphere.) It will be convenient to assume this measure is normalized,
so that if vy is the volume of the cell Jabelled by R = {R*},

Svp=1. (2.6)
R

A cell R will be said to be of ‘size’ k provided its volume lies in the interval
eNk < vg < eN(k+Ak) (2.7)

where Ak is a small positive number, and k takes on a discrete set of values de-
termined by Ak. Let exp{N c(k)} be the number of cells with volumes in the
interval (2.7). Of course, c(k) is a random variable which depends on the choice
of hyperplane normals {S/}. We shall assume that when N is large, the typical
c(k)—the one occurring with high probability—approaches some limit, of which a
plausible form is sketched in figure 1. The normalization condition (2.6) then reads

ZeN[c(k)'i-k] =1 (2.8)
k

and, assuming the sum is dominated by its maximum term, we conclude that
0=clkyg)+ kg 2.9

where (see figure 1} kg is the value of k& which maximizes c(k) + k, the point where
de/dk = -1.

Since in the discrete spherical model a set of ¢™? points or ‘particles’ are chosen
randomly on the surface of the sphere, the average number (k) falling into a cell
of size k will be proportional to its volume:

v(k) = eNbaNE eN(k—rc) (210)
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Figure 1. Sketch of the distribution of cell sizes.
where « = —b is a sort of negative chemical potential. Its significance is that cells

of size k < « are essentially all empty, while those with k& > « contain a large
number of the e/ particles. Note that the vast majority of cclls have a size k & k,,
corresponding to the maximum of ¢(k), figure 1, whereas almost all of the volume
is associated with cells of size k ~ k. Consequently the vast majority of particles
(whatever the value of «) will be in cells with k ~ kg.

Now consider what happens if, for a given set of cells, « increases continuously
(corresponding to a decreasing number of particles) from a value less than &, to a
value greater than k, (figure 1). For k < k;, all cells (with a probability approaching
1) will contain at least one particle, whereas for £ > k, there will be a large number
(though a negligible fraction of the total) which are empty. For « > k,, almost all
the cells are empty. Thus x = k, corresponds to the A transition for this model.
Similarly, as the vast majority of particles are in cells with k = kg, for K < kg most
particles are in cells containing other particles, whereas for « > kg most are isolated
in separate cells. Thus « = kg corresponds to transition B. Finally, as x passes k,
the last cases of more than one particle in a cell disappear.

The foregoing discussion needs minor modifications if some of the cells have zero
volume, and are thus not represented by c(k). If their number is a small fraction of
the total, the only modification is that when « passes k, the ‘transition’ involves only
those cells with non-zero volume. (Of course it is also possible that k, is at —oo, 50
there is no transition of this type in any case.) However, if the majority of cells have
zero volume, there can obviously be no A transition as « varies, even if ¢(k) has a
maximum. There can still be a B transition, described in the same way as previously.

The same considerations apply if b is held fixed and « varied, for changing o will
change the (typical) distribution c(k). The A transition occurs when kx = —b = k,,
which means that the volume of the typical cell is e=™?, or 2=/ in the case b = In 2.
Gardner’s replica calculation indicates that this value occurs at &, = 0.847. (This
value is obtained by finding the value of o for which the G{g) in [7, equation (23)]
is equal to —In 2. This has been previously calculated by Krauth and Mézard [19].)
The B transition will occur when k = —b = kp = —c(kg), which is to say, for that
o for which c¢(kg) = In 2. The corresponding o can be determined from Gardner’s
replica calculation of the moments

(") = 27" > (o) (2.11)
R
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of the cell-size distribution. Here v is the volume of some specific cell (by symmetry
it does not matter which cell is chosen), and the angular brackets (- -} indicate an

average over all possible sets of the P patterns.
Let us define g(n) by

N9 = 37y = FeNe(btni) (2.12)
R k

for a typical distribution ¢(k). Replacing the sum by its maximum term, we have
g(n) related to e(k) by a Legendre transform,

g{n) = m’?x[c(k) + nk). (2.13)

Assuming c(k)} is differentiable, this tells us that

g(n) = (k) + nk (2.14)
where k is the solution of

n=-c'(k) (2.15)
and, by differentiating (2.14) with respect to n,

k= g'(n). (2.16)

Now kg, is the value of k where ¢/(k) = —1. This corresponds
and hence, by (2.9) and (2.16), to

e(kg) = —kg = —g'(1). @17)

Consequently the o corresponding to the transition B for the discrete spherical model
is the one for which g’(1) = ~1In 2.

Note that g(n) is defined, (2.12), for the typical case, whereas the replica calcu-
lation yields j(n) defined by

e} = <Z v;1,> =27 (v"). (2.18)

R

Since ), v} is non-negative, its typical value (that achieved with high probability)
cannot be larger than its average value times a factor very close to one, although it
might be much smaller.

As a consequence one has

afn)l > alfnd
L ARA N AN

—
b
ot

S

In addition, the normalization condition (2.6) tells us that

g(1)y=g(1)=0. (2.20)
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As a consequence of (2.19) and (2.20)

(1) =4'(1) (221)

assuming the derivatives exist.

The nth moment of the volume (v™} was calculated by Gardner [7, equations
(14)-(17)). Assuming the replica symmetric ansatz, which allows analytic continuation
of (v") to non-integer n, yields the formula

o(m) = 2B = 2 (1) log(1 - g) + S log(1 4 (n = 1)q)

N
+ alog {/Dz [H (—‘fﬁl:__?-;)]n} (2.22)
where
Dz = e-Z’”% H{z) = /:o Dz (2.23)

and where ¢ is the Edwards—Anderson parameter given by the fixed point equation

_ n(n—1)g
I A -D@ +2-n)g- 1]
z/q n—l gz?

_an/Dzz [H( '__l—q)] exp(-—-ﬂ—-—z(l_q))

ny —1
x 1 2[2mq(1 — 31/2/Dz[H(i)]} . 2.24
{212ma1 - o1 i @24)
Using this equation, one finds that §'(1) = —1n2 when &g = 1.197, which is

therefore the critical capacity of the discrete spherical model B.

The replica calculation applies equally to Ising or Gaussian patterns, and thus
(assuming it is correct), the values of &, and &g given above for the discrete
spherical model are also valid for both cases.

The notion of cell-size distribution can also be employed in the case of binary
couplings by defining the ‘volume’ of a cell as the number of hypercube vertices (J
with J; = £1) which it contains, dividing by 2" to ensure normalization (2.6). This
rew definition gives rise to a larger number of empty cells than in the preceding case.
The A transition occurs again, at the value of o at which k,, the value of k where
c(k) has its maximum, is equal to —1n 2 and the B transition when c(kg) is equal
toln 2,

3. Toy models A and B

In this section we introduce and solve two simplified models: toy models A and B.
These models are simplified versions of the models A and B with binary couplings
and Ising patterns introduced in the previous section. Their main simplification is that
the energies of the different configurations are independent random variables. This
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simplification allows one to calculate the free energy exactly in the thermodynamic
limit (N — oo) as well as finite-size corrections in approaching the limit.

These solutions can serve as a guide to interpreting the numerical results obtained
for other models (defined in §2) which are too complicated to be solved exactly. These
toy models also provide bounds on the free energy of the true models A and B defined
in §2.

The reason for these bounds is the same as for other random energy models [18,
24] and can be explained as follows: the partition function Z is always given by

Z=) N(E)e &/T (3.1)
E

where N E) is the number of configurations at energy E. However, one is interested
in the value Z,, of Z in a typical case, one which occurs with a high probability,
say 1 — ¢, where ¢ is a small number. To calculate this one needs to know the typical
value, N, ( E), rather than the average (M E)). Because N'( E) is non-negative, its
average can obviously not be much smaller than its typical value

(N(E)) 2 Niyp(E) (32)

Neyp
where, if we want to be precise, the right-hand side can be multiplied by (1 — ¢).
And since N(E) is an integer, N, ( E) will be 0 if (M ( E)) is small compared to 1.
In the corresponding toy model, the 2V configurations are independently assigned
energies at random (as described below) in a manner which makes the average
Nioy(E) equal to (N(E)) for the corresponding real model. However, the typical
Nioy(E) is close to its average value [24] when the latter is large compared to 1,
maklng (3.2) an approximate equality, whereas in the true model the two sides can be
very different, with, for example, the average (N ( E)) quite large even when N, .( E)
is Zero. As a consequence

typ(E) Moy(E) (33)

in the large-N limit. (The seeming contradiction with the fact the sum over E is
2™ in both cases is disposed of by noting that A, (E) can exceed X, by a small
fraction at energies where both quantities are exponentially large and essentially
equal.) Hence one has

<N 'InZ

N-'lnZz (34)

wp S toy

in the large-N limit, which means that the free energy (multiply both sides of the
inequality by —T) of the toy model is a lower bound for the true free energy and the
toy ground state, a lower bound for the true (typical) ground-state energy.

Another consequence of (3.3) is that

a (true) € a (toy) (3.5)

because o is the largest value of o for which A’(0) > 1 in model A, or N(0) > 2
in model B.
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3.1 Toy modei A

3.11. Definition and thermodynamic properties. In toy model A the output R* for
each pattern and for each of the 2%V configurations {J;} is chosen at random, so that
the energy E of each configuration is a random number chosen with probability

Pr(E) = 55 W(E) = 55 ( F) G6)
where
ey =2-* () EX)

is the average for the true model A with binary couplings and Ising or Gaussian
patterns. As explained above, the typical value of N, (E) is 0 for (N ( E)) substan-
tially less than 1 and equal to (M( E)) when the latter is large compared to 1. One
can show that N, (E) has a distribution which is approximately Poisson [33], and
the values for different E are approximately independent. (They are not completely
independent, because their sum is 2V.)

Now let

e=E/N (3.8)
be the energy per coupling, and define

InN,, (N
sy = 1im Me(Ve) (3.9)
N—oo ¥ i )
which, by using (3.7) and applying Stirling’s approximation, gives
s(e)={(1-—a)ln24+ alna—-clne—{a—¢)ln{a—€). (3.10)

In view of the preceding remarks, we see that s(¢) is the (microcanonical) entropy per
coupling whenever it is non-negative; when the right-hand side of (3.10) is negative,
N,yp for the corresponding energy is 0 and s is —oo. In particular, for o < 1, s(e)
is positive for all € > 0, implying that the ¢ = 0 ground state has a finite entropy.
This entropy vanishes linearly in (1 — «) as a approaches its critical value, 1, from
below, similar to the Krauth and Mézard prediction [19] for the behaviour of the true
model A (where the critical value of o is, of course, less than 1). For o > 1, on
the other hand, there is a ground-state energy in the range 0 < €, < «/2 where the
right-hand side of (3.10) vanishes.
The temperature T is given by the usual formula

1/T = ds(e)/de (3.11)

as long as s(e) > 0. Using this one finds that, for a > 1, the entropy vanishes at a
critical temperature T_ related to « through

In2
“= In2~1In(1 4 e¥/7) T1(1 + e~ 1/Te)-1"
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Alternatively the thermodynamic properties can be obtained from the (typnca]) parti-
tion function for the toy model—we hereafter omit the subscript ‘toy’—which is

InZ

—~ ={1-0)ln2+ala(1 + e /T (3.13)

for T > T, (including all T for a £ 1), and

In Z 1 —a
N (rﬁr‘) 319

for T < T, and a > 1. At T = T, the specific heat drops discontinuously to zero
and for T < T, the system is in a frozen state with constant (ground-state) energy
and zero macroscopic entropy and specific heat. This is the same behaviour observed
in the random energy model! [24], which differs from the toy model A (and toy model
B) mainly in the fact that in the former E is a continuous variable.

3.1.2. The critical capacity o, of toy model A. The critical capacity «_ for a perceptron
of finite size N can be defined in the following way [18]. Assume the targetis T# =1
for all p. (Any other choice of target will, of course, give the same result.) One
starts with 2™ configurations, and as each pattern is added, those configurations
which do not give the correct output, R* = 1, are discarded. If there are still some
configurations remaining after P, patterns, but nonc after P, 41 patterns, the number
of stored pattems is defined as P.. Clearly P, is a random variable depending on
the patterns S¥, and we define the critical capacity

(F)

a (V) =3¢

(3.15)
in terms of its average over the corresponding probability distribution.

An equivalent expression can be obtained by introducing random variables
Y, Yo, ... defined as follows: yp = 1 if, after P patterns have been added, there
are still some allowed configurations, and 0 if there are no allowed configurations. If
the number of stored configurations is F,, then, obviously, yp =1 for 1 P P,
and yp = 0 for P > F,. In other words

= yp (3.16)
P=1

and, consequently,

[=2]

(M) == 3 (up). (3.17)

Note that, because the patterns are all chosen independently, (yp) is simply the
probability that given any P patterns (not necessary the first P), there is at least one
of the 2V configurations which gives R* = 1 for each of these patterns.

For toy model A, the output for each pattern and for each configuration is chosen
at random. Thus the probability that a particular configuration gives R#* = 1 for each
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of P patterns is 2~F, and hence the probability that none of the 2V configurations
gives R* = 1 for each of these patterns is

1-{yp) = (1-2"P)*", (3.18)
If this expression is inserted in (3.17), the result when N is large is
1 — g _om e
ac(N)=1+ﬁ(—e+’;(l—~e T _em? ))+O(N tg-N)y, (3.19)

Thus for this model, «_ (N) converges to 1 with a 1/N correction. This will be
compared with more complicated models in §4 below.

3.1.3. The low-temperature phase in toy model A. In the low-temperature T < T,
phase, only a small number of configurations near the ground state need to be
considered. The number of configurations at each energy E is given by a Poisson
distribution with average (V( E)} and the explicit dependence of this average on E,
(3.7), can be approximated by an exponential,

(N(E)) =~ AE-E) (3:20)
where

A=eTe=(a—¢)/e, (3:21)
and E_, the value of E where (N ( E)) is 1, is given by

In[2rNe (a—e€.)/a]
2In[(a—e¢)/e]

E . =Ne +

C

(3.22)

Of course N( E) is only defined when E is an integer, and the value of E_, (3.22),
which makes (3.20) a good approximation for E near E_ will, in general, not be
integer. The tendency of the fractional part of E, to oscillate as N and P vary thus
gives rise to oscillations in certain properties of the ground state, as we shall see.
The fact that the A'( E) are independent Poisson variables means that the prob-
ability that the ground state has an energy E and is n-fold degenerate is given by

NN exp (— > (N(E'))) (6:23)
n:
E'SE
from which it follows that the average ground-state entropy is given by
A(E-Eon A(E-E.)
_X_:m nz:l exp (-—-—-1-—__-—3—) Inn. (3.24)

Here the lower limit —oo rather then 0 for E produces a negligible error (expo-
nentially small in N). Changing E_ by an integer obviously leaves this expression
unchanged (alter the dummy variable E by the same amount). On the other hand,
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as is easily seen if one does the sum numerically, S depends on the fractional part
of E., and thus S oscillates as a function of N and P. The average ground-state
energy shows similar oscillations superimposed on a smooth dependence on N and
P. We have looked for similar effects in our numerical studies of the true model A
(§4) but have not seen anything definite.

The exponential approximation, (3.20), is also usefu! in an analysis of the low-
temperature properties of the random energy model [33, 34]. The main difference
is that in the latter E can take on any real value, and is not restricted to integers.
As a consequence the random energy model always (with probability 1) has a non-
degenerate ground state, whereas toy model A can have a degenerate ground state
leading to a finite (order 1, not order N) average ground-state entropy. Both models
also exhibit macroscopic fluctuations in the magnetic susceptibility, as defined and
discussed in appendix 1.

3.1.4. Finite-size effects in toy model A near the freezing temperature. Finite-size effects
round the singular behaviour at a phase transition. These can be computed expficitly
for toy model A for T near the freezing temperature T, with o > 1, and the results
will be of use in discussing our simulations of the real model A in §4 below.

In the low-temperature phase, the decrease of e~ E/T dominates the growth of
(M(E)) as E increases, which justifies the exponential approximation (3.20). These
two effects become comparable for T =~ T, so that (3.20) is no longer adequate.
However, it suffices to expand (V' E)) to second order in E— E_ yielding a Gaussian
approximation:

— E- Ec (E — Ec)2b
(N(E)) = exp ( T ~ ) (3.25)
with
1 a - - l 1 _1_
i:ln( - ) and b‘z(a—ec+ec)‘ (3.26)

Once again, we make use of the fact that A(E) can be treated as independent
random variables with a Poisson distribution corresponding to the average (3.25). The
average of the logarithm of the partition function can be obtained using

(In 2) = fom E‘t‘—t(e-ﬂ dt 327

where independence of the A( E) (see also appendix 2) leads to the expression

{e7*?) = exp (Z(N’(E))[exp(-te"E/T) _ 1])

E

= exp (Ze(E—Ec)/Tc—(E—EC)?b/N [exp(—te_E/T)—I]) . (3.28)
E

When T — 7., is of order 1/v/N, one can replace the sum by an integral over
w=(E - E_)/V'N, and, as shown in appendix 2, for the value of ¢ of importance
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for the integral (3.27), only the © > 0 part gives a significant contribution, and the
term in the final parentheses in (3.28) can be replaced with ~te~E/T leading to

{e~'%) = exp {—te'Ec/T jom exp [-—bcp2 + VN (?1,: - %‘-)] dtp} (3.29)
and hence
(In 2) = -—‘;J—,C +log {fum exp [—b<p2 + VN (;}: - %)] di.p} . (3.30)

The result is identical to that obtained in the random energy model with a continuous
distribution of energies {34], due to the fact that contributions come from energies
within the order of VN of E, so the effects of discreteness are washed out.

The specific heat per coupling can be computed from (In Z) and is given, again
for T — T, of order 1//N, by

e = =5lh /1~ (h/ I (331)

where

I, = / @™ exp [-—b(,02 + VN (i - l)] dep. (3.32)
A T~ T :

c

Because this is a function of v/ N(T-! — T-!), the curves of ¢{T) corresponding to
different values of N all cross at T = T, at a value

*r—2 1

oT.) = m 2677

(3.33)

which is just (7 —2) /= times the discontinuity in ¢ at T, in the N — oo limit, where,
using (3.13) and (3.14), one finds

1

oTF) = 50

o(TS) = 0. (3.34)

Thus for the toy model, the crossing of the specific heat curves for different sizes
gives a good criterion for T,.
3.2. Definition and solution of toy model B

In model B with Ising patterns and binary couplings, let the ‘teacher’ be the configu-
ration {J;}, and consider a ‘student’ {.J;} which has n of the N couplings identical
with the teacher, that is,

N ~
Y JiJ;=2n-N. (3.35)
i=1

Assuming for convenience that the first » components are identical, one has for any
pattern S} the result

S Jst=Y+z S J4St=Y-2Z (3:36)
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where Y represents the sum over 1 € i ¢ n, and Z that forn + 1 < ¢ £ N. The
probability p, that the teacher and the student give the same output, (2.1), for a
randomly chosen pattern is the same as the probability that (Y| > [Z], which is easily
shown to be

po=2N mz; () :2= (M om)oltn —2m,)? = (N = n—2m,)] 337

where [ - | is 1 when its argument is positive and 0 otherwise; the argument is never
0 when, as we shall assume, N is odd. Note that p, =0, p,, =1 and

PN-n=1—p,. (3.38)
One can also show that the p are equally in pairs: p, = p,, p; = p,, etc, which

follows from the fact that (1:‘:) = (M B 1) + (M - 1) When N is large and

m m-1)}
n=zaN (3.39)
one finds [18]

2 1 x 1/2
Po = v(x)= ;tan‘ (1 ) . (3.40)

- T

With P randomly chosen patterns and n given by (3.35), the probability P, ( E) that
the configuration {J;} has energy E is given by

P(B) = (] ) B = )", (3a1)

In toy model B, one divides the 2™V configurations into sets of (JX) configurations,

cording to the distribution (3.41). Consequently the average number of configurations
with energy E is given by

N
N
W BN =3 (V) Po(E) G42)
n=0
which is identical to (A ( E)) for the true model. For each E in the intervai 0 <
E < P, N,.,( E) has, approximately, a Poisson distribution, and this is also the case
for A, (0) — 1 and A, (P) — 1. And, unlike the true model, A, (E) coincides
with (N (E)) whenever the latter is large. This makes it possible to compute the

partition function in the large-N limit,
In Z,

oy [

(3.43)

where o = P/N and «(=) is defined in (3.40). For T > O the right-hand side
always has a local maximum at z = 1 (corresponding to the ground state E = 0)
and as T decreases this eventually becomes the absolute maximum at a first-order
phase transition where the entropy and the energy fall discontinuously to zero, and the
overlap with the teacher, 2z — 1, jumps discontinuously to one, where they remain for
the whole low-temperature phase. For finite /N these discontinuities will be rounded
out, and one expects the energy (or entropy) against temperature curves to intersect
in a manner similar to the heat capacity curves for model A
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3.2.1. Critical capacity of toy model B. The critical capacity for model B can be
determined in a manner analogous to that for model A: one considers all 2V — 1
‘student’ configurations and as each pattern is added, those configurations which do
not give the same answer as the teacher are eliminated, until with P, 4 1 patterns
there are none left. Equations (3.15) and (3.17) apply once again where (y.) is the
probability that for P randomly chosen patterns, at least one student gives the same
answer as the teacher.
For toy model B, the probability that all the students fail,

oY
1-(y,)= [J11-2F1\" (3.44)

n=0

is just the product of the probability of failure for each student. Thus one has

a(N) = % PZ_I(yP o %2_}1(1 ~e~7F) (3.45)
where
N-1
o= 3 (V)" (3.46)
n=0

For a plot of & ( N} against 1/N see figure 5 below. As N tends to infinity, o (N)
tends to 1.448, the upper bound for model B derived in [18].

4, Numerical studies

4.1. Model A

For the various versions of model A introduced in §2 we have performed some
numerical simulations which are presented in this section. Just as in spin-glass systems,
the energy landscape is rugged [37]. This makes it difficult to use standard Monte
Carlo techniques {22] since the system gets trapped in local minima. To avoid these
problems, we have used exact enumeration—that is, we calculate the energy for
each of the 2% configurations {J;}. The obvious disadvantage of this approach is
that one is limited to studying very small sizes so that analysis of finite-size effects
is upavoidable. We have tested the replica theory [19] by looking at two different
aspects: the critical capacity o, and the phase transition at finite temperature.

To study the critical capacity we have measured the capacity o (V') as a function
of N as explained in §2. For the binary perceptron with Ising patterns, N took on the
values 5,7,...,19, while for the other models the simulations were carried out at
all integer values of N between 5 and some maximum value. The method, in brief, is
to choose a pattern at random and discard the configurations {J;} which do not give
the correct response. The process is repeated until no configurations are left; this
occurs, by definition, after P, 4 1 patterns have been used. The value o (N) is then
the average of P./N for many samples. The number of samples used varied with
size from 100000 for the smaller systems to 4000 for the largest systems. Figure 2
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shows o (N) against 1/N for (a) the binary perceptron with Ising and Gaussian
patterns and for (b} the discrete spherical model with Ising and Gaussian patterns as
well as the analytic calculation of a (N) for the toy model (shown on both graphs
(a) and (b)). The error bars show the statistical errors in the mean calculated in the
standard way. The data points are fitted with a best quadratic fit in 1 /N as a guide
for the reader. The simulations were performed using a combination of bit encoding,
Gray code [21] and vectorization where appropriate.

fa) Capacity of true models A {b) Capacity of discrete spherical modeis A
ac(N} ac(N)
110 110, :
1
105] Tay modei 1.05] Tory rocudal
ol 1.00 [_/
1 ]
0.95 | Gaussian patterns. 005
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040 0.0 | -
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085 - {sing petiors oesl ;.
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osof — — 0.80 —e—t ———
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Figure 2. Capacity curves ac(N)} against 1/N calculated for toy model A, and for
() the binary and (b) the discrete spherical versions of model A with both Ising and
Gaussian patterns. The details of the methods used to obtain these curves are described
in the text.

The convergence of o (N) as a function of 1/N seems to resemble that of toy
model A in all cases. In the case of Gaussian patterns the results look as if they will
extrapolate rather well to the predicted value of 0.833 for binary couplings and 0.847

for the discrete snherical cagse. These valuesg are indicated as o, and & respectively

SRR WAL SRR ILEL SR, 2 ubat VRIRLG Siv aWIRDRILN SO Sl X 4,y STV,

on the ordinate. The situation is more worrisome for the case of Ising patterns. For
the discrete spherical couplings, the data cross those for the Gaussian patterns and
look as if they could extrapolate to a higher value. For the binary couplings, it is
hard to imagine that the data will extrapolate to a value as large as 0.833, although
it may be closer to this figure than to the 0.75 estimated previously by the same
method [18]. If one accepts the idea, based on the replica calculation, that Ising
and Gaussian patterns yleld the same o in the Jarge-N limit, there must be very
substantial finite-size effects for N larger than 20, and these cannot, of course, be
excluded by our calculation. Another possible source of difficulty in the extrapolation
is that oscillations with N could be present (see §3) but there is no firm evidence for
this in our data for o (N).

Another prediction of the Krauth-Mézard theory [19] is that, for a > o, as
one lowers the temperature, there is a complete freezing at a transition temperature
T.. At that temperature the specific heat jumps discontinuously to zero and remains
there for the whole low-temperature phase.

In figure 3(e) we show numerical results obtained by exact enumeration of the
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specific heat per coupling at o = 2, for model A with Ising patterns, together with
the replica prediction (broken curve). Because the enumeration method prohibits
the study of large systems, our results are limited to N g 21. For each sample we
compute the degeneracy of energy levels A'( E) and use these histograms to produce
the specific heat curves for different temperatures. For the true model 5000 samples
were used. The data points show the calculated average values with the usual sample
error estimates (the curve through the points are fitted by a cubic spline),

(a) Model A (b) Toy modet A
Spacdific heat Specific heat
08 1.0
» Nz5 P=10 » Nm7, P=14
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Figure 3. The specific heat per coupling against temperature at o = 2 for (a) the true
modei A and (b) the toy model A for finile sizes and with the exact soiution (broken
curve).

While at first sight our results might appear inconsistent with the replica predic-
tions, a comparison with the simulation of toy model A in figure 3(b) shows a similar
behaviour for systems of comparable size. In the toy model one can simulate much
larger systems, because if the A'( E) are treated as random variables (§3), and since
E is discrete, the time needed to simulate a sample of size N is proportional to N
rather than 2. Thus in figure 3(b), each curve is for a system twice as large as for
the previous curve, whereas in (a) the largest system is only four times the size of
the smallest.

The finite-size specific heat curves for toy model A all cross at the transition tem-
perature of the infinite-V limit. Those of the true model A go through a common
point at a temperature slightly less than the transition predicted by the replica calcu-
lation, although closer examination suggests a crossing point moving to slightly higher
temperatures with increasing system size. Hence it is not implausible that were the
simulations of much larger systems possible, the results would eventually approach
the replica prediction.

If for both models the specific heat at T, is discontinuous, as predicted by the
exact solution for toy model A and by the replica calculation for the true model A,
onec expects the specific heat to satisfy the following finite-size scaling form:

en(T)= F(N~5(T~-T,)) (4.1)
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valid for N large and T close to T,. It seems possible that the finite-size scaling is
actually the same in both models (the same exponent = = 1 and the same function F)
corresponding to the same universality class. This would be consistent with the fact
that the crossing point in both cases is close to (1 —2/=) times the total discontinuity
in the specific heat.

However, there is at least one feature which seems to be different in the low-
temperature behaviour of model A and toy model A, reflecting the existence of
correlations of the energies which are present in the true model. In the case of the
toy model A we have seen that to describe the low-temperature phase one could
replace the distribution of energies by an exponential distribution. As a consequence
one expects that the sample to sample fluctuations—defined as ({E?} — (EY)1/?,
where the angular brackets denote average over samples—of the ground-state energy
do not increase as N — co. If the same picture were valid for the true model A one
would expect the sample to sample fluctuations not to increase with N. We observe,
however, that these fluctuations do in fact increase with N typically like N 1/3 (this
behaviour is similar to that found in the Sherrington-Kirkpatrick spin-glass model [36,
37]). This is shown in figure 4: the curves are best fits of the form e N¥. This means
that the picture of an exponential distribution has to be modified, one possibility
being that the position of the exponential distribution shifts from sample to sample.

V(B2 -(E)?
4
PIN=2
PiNad

P/N=8
P/N=16

4 »a o

0 2 a éé1o1'21'41h1'sz'uhz;'2
Figure 4. Sample to sample fluctuations of the energy plotted against N for model A,

The susceptibility and its sample to sample fluctuations were also studied. Unfor-
tunately due to the limited sizes of systems that could be examined and the subtle
nature of the transition (i.e. a cusp), these quantities did not prove to be good indi-
cators of the transition, although they were consistent with a spin-glass-like transition,

4.2. Model B

We have repeated the numerical calculation of the critical capacity and of the thermal
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Figure 5. Capacity curves o (N) against 1/N calculated for toy model B, and for
the binary and the discrete spherical versions of model B with both Ising and Gaussian

patterns. The details of the methods used to obtain these curves are described in the
text.

properies in the case of model B.

In figure 5 we show the critical value o, (V) against 1/N for various versions
of model B. The critical capacity was calculated using the method described in §3,
(3.45). In the case of the discrete spherical model with Ising patterns it is possible
to have a situation in which two configurations are never separated by any of the
2V possible hyperplanes, and consequently the sum in (3.45) diverges. To avoid this
problem we replace the definition of (F.), in this case, by the value of P where
{yp) = %, as determined by linear interpolation between successive integer values of
P. As in figure 2, the error bars show the statistical errors in the mean.

In the case of the discrete spherical model with both Ising and Gaussian patterns,
it is easy to imagine an extrapolation of the curves to the value of &g = 1.197
obtained in §2 on the basis of Gardner’s replica calculation, and indicated on the
ordinate. On the other hand, the results with binary couplings look as if they will
extrapolate to distinct values substantially above the replica prediction of apg = 1.245.
However, the curve for toy model B, (3.45), shows large finite-size effects, and were
an extrapolation based on the part corresponding to N g 20, the estimated o
would be near 1.6 instead of the correct 1.448. If a similar effect is present for binary
couplings, it is not difficult to imagine an extrapolation of both the Ising and the
Gaussian cases to a value near the replica prediction.

Turning to thermal properties we note that, for & > a, the calculation for the
toy model B as well as the replica calculation {26, 27] for the true model B predict a
first-order phase transition. For toy model B, the first-order phase transition appears
as a jump in the energy curve, for example, as a function of the temperature. For
finite systems this jump is rounded and the curves corresponding to different sizes
all cross at the transition temperature 7. as seen in figure 6(b). The curves for the
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true model B are shown in figure 6(a). We observe that the same crossing behaviour
seems to hold (although once again we are limited to examining small systems).

(a) Model B {b) Toy modei B
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Figure 6. The energy per coupling against temperature with o = 4 for (a) the true
model B and (b) the toy model B.
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Figure 7. The specific heat per coupling against temperature with o = 4 for (a) the
true model B and (b} the toy model B. Note the difference in scales. The apparent
negative specific heat is an artefact of the cubic spline curve fitting.

As well as a jump in the energy a first-order transition gives ris¢ to a delta peak
in the specific heat. For small systems this peak becomes rounded. Figure 7 shows
the curves for the specific heat for various different system sizes for (a) the true
model and (b) the toy model. For the true model the peak is apparent but not very
pronounced. In the toy model where much larger sized systems can be studied the
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peak is very much clearer. Notice that there is an apparent common crossing point
for the true model around T' = 1.5, but comparison with the toy model B—where
the crossing points are observed to move towards higher temperatures—suggests that
this is unlikely to be a true fixed point but is an artefact of studying systems very
close to each other in size.

5. Bounds for o, and ag

Let o, and ag be the values of o for the A and B transitions in the case of binary
couplings. As the number of particles is 2™V and the number of cells is 27, it follows
that

ap <1< ag 61

(for « > 1, the number of cells is much larger than the number of particles, and
s0 most cells must be empty, whereas for a < 1 the reverse is true, and thus most
particles must be in cells which contain other particles). The first inequality in (5.1)
also follows, as noted in §3, from the fact that the critical o for toy model A is an
upper bound on o,. An additional bound

ap < 1.448 (5.2)

was obtained by Gardner and Derrida in [18, equation (26)}. It is also a consequence
of the fact, also pointed out in §3, that the right-hand side of (5.2) is the critical o
for toy model B. Note that (5.1) and (5.2) hold both for Ising and Gaussian patterns.

In the cace nf (Ganecian fhut nat fcing) nattarne 1t 1 nnccihla tn actahlich tamn
AdL RALMW WMDY WA W R WOWTRAL LR \U MY BV i\,llls} l’u LRl iy JL b Puaalul\t AW WwIOLULUALILE LYYW

additional inequalities:

Qr

ap S Oy (5:3)

ap 2

o
b+

(5.4)

where &, and &g are the values of o for the A and B transitions for discrete
spherical couplings. In fact, the values of &, and &p are determined by properties
of the distribution of cell sizes (§2), and Gardner’s calculations [6, 18] using replica
methods, yielding the values

&,y =0847 &g =1.197. (5.5)

Tb be sure, one must always be cautious regarding the results of replica calculations,
but assuming (5.5) is correct, the bounds (5.3) and (5.4) are a substantial improvement
over (5.1). A comparison with our numerical estimates has already been made in §4
above. That & , is close to the value «, obtained by alternative methods was noted
in [19].

In addition, the arguments leading to (5.3) and (5.4) are of interest because of
their general character: they employ no property of the binary couplings apart from
the fact that there are 2V of them. That is, &, is an upper bound on a, for any
model with 2" configurations and Gaussian patterns, and similarly &5 is a general
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lower bound for ay. This generality is reflected in the statement of the two theorems,
A and B below, in which (5.3) and (5.4) are established. Furthermore, in order to
emphasize their geometrical character, the theorems are expressed in terms of two
hypotheses, HA and HB, the latter in two versions, related to the distribution of cell
sizes introduced in §2.

In HA and HB, and in the theorems, we assume that a sequence of values P
and N is given, tending to infinity, with P/N tending to a specified value . The
notation Pr(£) stands for the probability of the event £. Volumes of cells, denoted by
v, correspond to the normalization (2.6). The hypotheses and theorems apply equally
well to any cell R = { R*}, by symmetry of the probability distribution or measure for
S, denoted by (S), even though it may be convenient to think of a particular cell,
say R = 1, which means R¥ = 1 for all u. Hypothesis HB is stated in two versions
which are actually equivalent because of the spherical symmetry of »(S); the reason
for doing so is to make explicit the point where this symmetry enters the argument,
and thus the gap which has thus far prevented us from extending the argument (5.4)
to the case of Ising patterns,

Hypothesis HA. Let v be the volume of the cell R = 1. Then there are positive
numbers ¢ and n, depending on N and tending to zero as N — oo, such that

Pr(vz e27N) < 1. (5.6)

Hypothesis HB1. Given any point specific J on the sphere (2.4), let v be the volume
of the cell which it occupies. (The probability that J falls on the boundary between
two or more cells is zero.) Then there are positive numbers € and n, depending on
N and tending to zero as N — oo, such that

Pr(vg e 27Ny < . (5.7

Hypothesis HB2. There is for each N at least one specific point J on the sphere
(2.4) for which (5.7) holds.

Note that in both HB1 and HB2 the point J remains fixed while § varies. Also note
that HA and the pair HB are independent in the sense that the values of o where one
holds have no necessary relationship with the values where the other holds. Clearly

HB! implies HB2, and the spherical symmetry of v(S) for Gaussian planes implies

that the two are equivalent, for the probability is mdependem of the point chosen
(see appendix 3).

Theorem A. (a) If for some «, HA is satisfied, and if for each N, C,, is some
arbitrary collection of 2V points on the sphere (2.4), then, given that (S) is invariant
under rotations, the probability that the cell R = 1 (or any other particular cell)
contains at least one point from Cp; tends to zero as N — oo,

(b) For a > &, (transition A for the discrete spherical couplings), condition HA is
satisfied.

(c) In the case of Gaussian patterns, &, is the infimum of those o for which HA
holds, and consequently o, € & 4.

Note that part (b) of the theorem does not require the spherical symmetry of (5,
0 it is also valid for the case of Ising pattetns.

In stating theorem B, the following terminology is helpful. A member of a
collection C,, of points on the sphere (2.4) is said to be isolated for a given set of
hyperplanes S if it falls in a cell which contains no other points from C;.
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Theorem B. (a) If for some o, HB1 is satisfied, and C,, is for each N some arbltrary
collection of 2™ points on the sphere (2.4), then the fraction f of isolated points in
Cy tends to zero with probability one as N — oo. That is there are positive numbers
€ and 7] tending to zero as N — oo such that

Pr(f > &) < #. (5.8)

(b) For a < &p (transition B for discrete spherical couplings), condition HB2 is
satisfied.

(c) In the case of Gaussian patterns, &g is the supremum of those « for which HB1
(equivalent to HB2) is satisfied, and consequently ag > Gg.

Note that neither (a) nor (b) require the spherical symmetry of »(S), whereas it is
needed for (c). We shall now indicate the intuitive ideas, which are actually quite
simple, ungerlying the technical proofs of theorems A and B, which are in appendix 3.

To begin with (a) of theorem A, HA tells us that the volume of a typical cell—or
the typical volume of a particular cell—is smaller than €2~™V. This means that the
average number of points from the collection C, of 2V points which fall in the cell is
€ or less; the actual location of the points in Cp is irrelevant, because the distribution
v(S) is spherically symmetrical. The only way that this average can be small is if the
typical cell is empty, which is the same (by symmetry among the cells) as saying that
a particular cell is t}:}ncally empty. For part (b), note that o > &, means that if Cp,
is a collection of 2" points chosen at random on the sphere, a typical cell will be
empty. Now because the points are chosen at random, the average number in a cell
of volume v is 2V v, and because the distribution of the number of points in a cell
of a given size is (essentially) Poisson, the only way a typical cell can be empty is if
the average number of pomts from Cp which it contains is smail, meaning that its
volume is small. Hence o > &, implies HA.

Finally, part (¢) is a consequence of noting that a > &, implies HA, but HA,
by part (a), implies a > &,, making &, the lower limit of the o for which HA
holds, and thus—applying (a) to the case where C,, is the collection of hypercube
vertices—an upper bound on o,.

The intuitive idea behind part {a) of theorem B is as follows. Given any coliection
Cy of 2% points, hypothesis HB1 implies that most of them fall in cells which are
relatively large, of volume greater that ¢~12-~, But as the total volume of all the
cells is 1, there are at most €2” of these large cells, and it is obvious that among
the points falling in the large cells, at most €2?V — 1 of them, a small fraction of the
total, can be isolated. (Given a hotel with m rooms and M > m guests, it is clear
that only a small fraction of the guests can be in rooms by themselves.)

For part (b), the reasoning is analogous to that of the same part of theorem A.
For a < &g, an extremely large fraction of the 2~ points chosen at random on the
sphere fall in cells containing other points, a situation which is only possible (given
Poisson statistics) if the average number of points in those cells containing at least
one point is large, corrcsponding to the fact that the cells themselves are large. Onc
thereby establishes a result which is actually somewhat stronger than required for
HB2. However, to obtain HB1, and thus conclusion (c) of the theorem by reasoning
entirely analogous to that employed at the corresponding point in theorem A, the
spherical symmetry of v(S) is important, which is why the argument fails for Ising
patterns.
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6. Conclusion

In this paper we have extended previous work on binary perceptron models in two
directions. First, we have carried out numerical studies on systems of finite sizes
using exact enumeration of states in order to extend previous estimates of the critical
capacity o, and ap of models A and B, and to find the thermodynamic properties
as a function of temperature, for both models. Second, we have introduced and
solved a set of simplified models: the discrete spherical versions of models A and B,
and the ‘toy’ models A and B. These simplified models are interesting because they
provide bounds on the critical capacities of the original binary perceptron models
and in addition because the finite-size effects can be computed in the toy models and
compared with our numerical studies of the real models.

While the upper bounds on o, and ap provided by the toy models were known
previously [18], those given by the discrete spherical models, an upper bound &, for
a, and a lower bound &g on ag, are new. (In fact & , was calculated previously [19];
the fact that it is an upper bound is new.) They are also a noticeable improvement
on previous values, assuming that the actual numerical values provided by Gardner’s
replica calculation are correct. It seems likely that there are other contexts in which
such discrete spherical bounds might be useful, in particular in cases where the energy
function would be different (more complicated cost functions [38], other architectures
[39, 40]). So far as we know, there is no rigorous lower bound (greater than zero)
oh oy, and cur efforts in this direction have proved futile. Finding a rigorous lower
bound seems surprisingly difficult.

The finite-size properties of the toy models turn out to be extremely useful in
interpreting our numerical results for the temperature dependence of thermodynamic
properties of models A and B in systems of finite size, By comparing the toy and real
models, one can make a very plausible argument for phase transitions into a ‘frozen’
low-temperature phase with vanishing entropy occurring at a finite temperature: a
continuous (second-order) tramsition for model A and a first-order transition for
model B, provided o exceeds the corresponding critical capacity. Such transitions
have been proposed on the basis of replica calculations by Krauth and Mézard [19]
for model A and by Gybrgyi [26] and Sompolinsky, Tishby and Seung [27] for model
B, but given the usual uncertainty about the limits of validity of replica studies, we
think that our numerical calculations as interpreted with the help of the corresponding
toy models provide an important confirmation.

Our estimates of the critical capacities a4, and oy based on numerical studies of
small systems, while they have been extended to larger systems than previously studied
(up to N ~ 21), are somewhat disappointing in that the [inite-size corrections are
still not very well understood and make it difficult to obtain any precise extrapolation
to N = oc. The numerical evidence for model A with Ising patterns taken by
itself suggests an o, which is significantly less than that for Gaussian patterns, and
although we cannot exclude the possibility that the difference is solely a consequence
of finite-size effects, it is worth pointing out that there are no completely compelling
arguments for their equality in the N — oo limit.

The situation in the case of model B is, if anything, even worse. If one had only
numerical evidence, one might plausibly suppose that Ising and Gaussian patterns give
different values for «p, and these well in excess of the replica estimate. However,
the toy model B shows extremely large finite-size effects of a type which would make
a reliable extrapolation based on a maximum N of only 21 out of the question. If
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the real model has a similar behaviour, it is easy to imagine the curves of figure 5
bending over for larger N and reaching the replica value.

By contrast, the corresponding extrapolation for the discrete spherical versions of
model A and B are consistent with a smooth extrapolation as N — oo to the &, and
&g expected from the replica calculations, and with results identical (in the same
limit) for Ising and Gaussian planes.

It seems clear that further progress in the direction of estimating critical capacities
from the study of finite systems would benefit from a better understanding of finite-
size effects.
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Appendix 1. Fluctuations in magnetic susceptibility

In this appendix we consider fluctuations in the magnetic susceptibility x (suitably
defined) for toy model A and for the random energy model [24], in their low-
temperature phases.

To begin with, we suppose that 27 configurations, labelled by subscripts a and b,
have energies E, which depend on the sample, and thus the Boltzmann weights

e~ EalT
be—b I ) N -

are random variables. The configurations are then independently assigned random
magnetizations M, between — N and N according to the probability distribution

Pr(M,) —2‘”( N A \ (Al2)

g
e
=
e
T
b
~

For large N, M, /V N is, to a good approximation, a Gaussian random variable with
zero mean and unit variance, which means that

(M) = (M) =0
(MH=N (M} =3N? (AL3)

while M, and M, for a # b are uncorrelated. Note that M, and W_ are indepen-
dent random variables.

The susceptibility x is defined in terms of the thermal fluctuations in the magne-

tizatin
[4F 18 uu,

2
X = K}'T' S MW, - (Z MaWu) (Al.4)
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and is, of course, sample dependent. Its average and variance are easily calculated
using (Al.3); one finds:

00 = El — (WA = (1 - (13) (ALS)

(x*} = (x)* = 2(Y3) - 4(¥y) + 3(¥7) - (¥y)* (A16)

where the variables Y, are defined by

=y wk (ALT)

_ TeN(E)etEIT
T [CeN(E)eET)

(AL8)

where A ( E) is the number of configurations of énergy E. Using the integral repre-
sentation

= ﬁfo th-le-t2d¢ (AL.9)

along with the fact that in the case of toy model A and the random energy model
the A'( E) are independent Poisson variables, onc arrives at the expression

Vi) = l"_(lk_) jom Thint (ZE:(N(E))exp( —kE/T - te-E/T))

X exp ( - 2 NV(EN1 - exp(—te‘”’”‘)]) . (AL10)
\ E!

/

A similar procedure can be applied to obtain averages of moments of Y'* or the
products Y, Y, etc.

We now consider the low-temperature phase T < T_, where the exponential
approximation (3.20) for {N(E)} can be employed for toy model A. The resulting
expressions are rather complicated. They simplify considerably if one considers the
random energy model, in which E is a continuous variable not restricted to integer
values, and where at low temperature the A(E) are again independent Poisson
variables, with the average number of configurations with an energy between E and
E + AFE given by

(N(E)) = AE elB-E/Te, (AL11)

In this case one finds

_ Tk-T/T)
(Yy) = L(kra-1/7T)

(AlL12)



4934 B Derrida et al

and
T 2
(Y2 = % [3 ~ 5 +2 (%) ] (AL13)
and thus
1
x) = T (Al.14)
(X - {x)* = % (1 - %) : (AL.15)

Hence for T < T in the random energy model there are macroscopic (order 1) fluc-
tuations in the susceptibility from sample to sample, while the average susceptibility
remains constant. In toy model A, there are also macroscopic fluctuations in x for
T < T,. However, in addition (x) diverges as T goes to zero, due to the fact (not
true for the random energy model) that the ground state can be degenerate.

Appendix 2. Discussion of (3.28) and (3.29)

If one inserts (3.28) in (3.27), the result is a value of —oo for {In Z) due to the
fact that as { — oo the right-hand side of (3.28) does not go to zero, but tends to
an exceedingly small constant, This is a spurious effect arising from the fact that
the Poisson approximation allows A'( E) to be simultancously 0 for all E (yielding
Z = 0 because there are no configurations) with an astronomically small probability.
The cure is simply to cut the integral off for some large value of t; as shown in the
analysis below, the result is essentially independent of the cut-off in a suitable range.

The justification of (3.29) is subtler because of the fact that one must show that
it is adequate for all the ¢ values which dominate the integral (3.27), as well as for
derivatives of this integral with respect to temperature, for the latter are used in §3
for calculating the heat capacity. For this purpose it is convenient to replace ¢ with
the variabie

T = te~PE: (A2.1)
where 3 = 1/T and 3, = 1/T_ in what follows. Then (3.27) becomes

{in Z) + BE, = jﬂm dTT[e-f —e~27)] (A2.2)
where

(1) = \/me dep[1 — exp(—re~VNO#)|gVNvhcbe® (A2.3)

results from replacing the sum over E in (3.28) with a corresponding integrai. Note
that z( =) is monotone increasing, z(0) = 0, and its derivative

2'(0) = @exp (—I-V—(-%Ecl’i) (A2.4)



Finite-size effects and bounds for perceptron models 4935

at 7 = 0 is an upper bound on 2'(r) for all + > 0. In the following analysis we will
always assume that |3 — .| is at most of order 1/+/N. Given this assumption, z’(0)
is of order v/N.

It will be convenient to split the integration interval in {A2.3) into two pieces,
@ 2 wo(r) and @ < py( 1), where

InT
eolT) = < A2.5)
0 ﬁ\/ﬁ (
i.e. the value of ¢ where
re”VNAe = 1, (A2.6)
We then use the approximation
—VNge
1- exp(—‘re_ﬁﬁ"”) ~ ¢ TE @ 2 o(7) (A2.7)
1 ® < @y(7)
to obtain z(+) as (approximately) the sum of
o0
£,(r)= VN e exp[VN(B, — B)p — be?] (A2.8)
PolT
and
wolr)
= (T\;\/j-\.f_ [ dine‘{n(1/—:f\‘_]ﬂ U's_bus'z\_ flA_H )
-\t ¥ -I—oo ¥ Py Mo ¥ 7 NSRSy

In fact, this sum is an upper bound on z(7) because the right-hand side of (A2.7)
is always larger than the left-hand side for = > 0. Setting b = 0 in (A2.9) produces
an upper bound

z_(r) = B leVNeobe o g1 rhelf (A2.10)

for z_(r), and we will Jater show that this is small compared with (A2.8).
To estimate the error involved in using the approximation (A2.7) in the integral

(A2.8), note that as soon as ¢ exceeds ¢, by (In N)/VN, re~YN8% will be at most
N-#. Hence the fractional error from this source is of order (In N)/v'N; remember
that 8- 2 is at most 1/+v/N. A further error of this same magnitude will occur if
the lower limit in (A2.8) is set to zero yielding

2 (1) =7VNJ, (A2.11)
with
Jo= [ do explVR(B~ B¢~ b (A2.12)

provided |y (7)| is at most of order (In N)/v'N, a condition which holds provided

N 9grg N© {A2.13)
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for some ¢ and @ positive and not too large.
In order that (A2.10) be small compared to (A2.11), noting that J, is of order

1, = must not be too small, assuming 3 > 3, or too large assuming 3 < B.. The
crossover where the two are comparable comes at

o~ NB/2B8) (A2.14)

which means that we can always choose ¢ > 1/2 and @ > 0 in (A2.13). We conclude
that in the range (A2.13), z(r) can be replaced by z, (), (A2.11), with fractional
errors which go to zero with increasing N, and hence the right-hand side of (A2.2)
is given by In(J,v/N) plus correction terms going to zero with N, provided the
contribution from r outside the limits (A2.13) also go to zero with N.

The bounds

0<g z2(r) € 72(0) (A2.15)
(see (A2.4)), together with the inequality

0 (e @ —e YK (b—a)T (A2.16)
valid for any

0gagd 120 (A2.17)

can be used to bound the part of the integral (A2.2) corresponding to 0 7 N9
by a quantity of order N~9-1/2, which goes to zero for ¢ > 1/2. As for + > N,
note that the contribution from e~7 is of order exp(—N<), and that from e=*(") is
even smaller for any reasonable cut-off (needed for reasons noted in the introductory
paragraph).

Bounds on the errors in calculating (In Z) using the approximation (A2.11) for
z( ) are not necessarily valid for its derivatives; note that In .J,, (A2.12), is of order
1, and its second derivative with respect to 3 is of order N. However, the integrals
obtained by differentiating the right-hand side of (A2.2) one or more times always
contains an e~*(") in the integrand, and thus the key estimates nceded to show that
the error terms are relatively small are already contained in the preceding discussion.

Appendix 3. Preof of results in §5

We present here the proofs that HB2 implies HB1 if the probability distribution v{.S)
has spherical symmetry, as well as the detailed proofs of theorems A and B.

A3.1. Eguivalence between HBl and HB2

By spherical symmetry of » we mean the following. Let R be an element of the
rotation group in RN, ie. an N x N orthogonal matrix, and let

RS = {RS*) (A3.1)

be the set of hyperplane normals obtained by applying R toeach S* for1 € u € P.
Then v is an invariant probability measure in the sense that

v(RS) = v(S). - (A32)
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Note that in the case of Gaussian patterns, (A3.2) holds for an arbitrary rotation,
while for Ising patterns it is only true for the subgroup of rotations which map all
hypercube vertices into other hypercube vertices.

Let xp(J,S5) be 1 if the point J on the sphere (2.4) falls in the cell R = { R*}
for the set of hyperplanes S, and O otherwise. Clearly the property of being in 2
given cell is preserved if both J and the hyperplanes are subject to the same rotation,

Xr(RJ, RS) = xx(J,S) (A3.3)

as is also the volume of the cell,
va(S) = [W(Dxa(7,5) = va(RS) (A3.4)

where pu(J) denotes the spherically symmetric normalized measure.,

Thus if hypothesis HB2 holds, so that (5.7) is correct for one point J on the
sphere, the invariance of v, (A3.2), means that (5.7) holds for any other point J',
as there is always some rotation R such that J' = RJ. Consequently (A3.2) implies
the equivalence of HB1 and HB2.

A3.2. Proof of theorem A

Theorem A is proved as follows. For part (a), let £ be the event that some J from
the collection Cp, falls in the cell R and that this cell has a volume vy < v, Its
probability is

Pr(&) = ]V(S)XR(J,S)B(vO—vR(S))

= [U(S)xa(RI,5)0(v, - va(S)) (A3.5)

where 6(x) is 1 for # > 0 and 0 for x < 0, and the second equality follows
from (A3.3), (A3.4) and (A3.2). If (A3.5) is integrated over all rotations R using
normalized Haar measure, the effect is the same as integrating over J with the
measure p(J}, see (A3.4):

Pr(&) = /V(S)UR(S)G(UD —vR(S)) € vyPr(vg € vy} (A3.6)

If ng is the number of points of C,; which fall in the cell R, we can write
Pr(ng > 0,v5 € 1) € 2N Pr(€) € 2V v Pr(vg < vg) (A3T)
where the first inequality comes about by noting that the probability that np is
positive, is certainly not larger than the average value of npg, and the latter, with
vp € vp s 2VPr(£) since (A3.6) is independent of the point J in the collection

Cp- What we are interested in is, of course,

Pr(ng > 0)=Pr{ng > 0,vg € vy) + Pr(ng > 0,vg > v,). (A3.8)
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If v, = €27V, then (A3.7) tells us that the first term on the right-hand side of (A3.8)
is no bigger than ¢, while (5.6) gives n as an upper bound on the second term. Thus
Pr(ng > 0) is less than € + 5, which tends to zero as N — oo, by hypothesis HA.

For part (b) of theorem A, note that a > &, means that for any given cell R,
Pr(ng > 0) for the discrete spherical model goes to zero as N — oo, and thus given
some € > 0 we can be sure that

Pr(ng > 0) < /2 (A3.9)

for all N sufficiently large. Since for this model the 27V points are chosen at random

on the sphere, we have P

Pr(ng > 0|vg) =1—-(1—vR)2N (A3.10)
for the conditional probability of a non-empty cell given a cell volume vpg.

Noting that the right-hand side of (A3.10) is monotone increasing in vp and
ignoring cases with v, < 2=, we obtain the inequality

Pr(ng > 0) > [1 - (1 -2 V) |Pr{vg 3 e27V). (A3.11)
Combining (A3.9) with (A3.11), and assuming N is large enough so that

(1-e27 V)2 et (A3.12)
and that € is less than 1, we obtain

Pr(vg 2z e2™V) < ¢ (A3.13)

which is to say, (5.6) with n = e.

Part (c) of theorem A is a consequence, as noted in §5, of first choosing C,;
in part (a) to be the 2™V discrete spherical couplings, and then the 2™V hypercube
vertices.

A3.3. Proof of theorem B

For theorem B, part (a), it is convenient to introduce random variables I; and K,

1 € 7 < 2%, associated with the points of the collection Cp, in the following way: T ;
is 1 if point j is isolated and zero otherwise: K is 1if j is in a cell with volume
v € € 127N, and zero otherwise. The inequality

V=S <Y K; + 2V (A3.14)
i j

where f is the fraction of isolated points, comes about by noting that either j is in
a ‘small’ cell where Kj = 1, whence IJ- < KJ-, or it is in a ‘large’ cell with KJ- = 0.
As the total volume of all cells is 1, there are at most €2™ isolated particles in large
cells.

Upon averaging (A3.14) and using (5.7) we conclude that

(/Y <et+n. (A3.15)
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As f is non-negative, for any ¢ > 0,

Pr(f > <(e+m/¢ (A3.16)
and thus (5.8) holds with
E=f=(=+v/et+n. {A3.17)

Note that if C,, is the collection of hypercube vertices and v(S) is invariant under
all rotations, or at least a subgroup large enough to map any hypercube vertex into
any other (as is the case for Ising patterns), the fact that {I;} does not depend on j
yields the additional result that the probability that any kypercube vertex is isolated
does not exceed ¢ + 7.

For part (b) of theorem B, note that o < &z means that with C, a set of 2V
points chosen at random on the sphere, the probability that a particular one, say
Jj =1, is isolated goes to zero as N — oo, and thus for some small € > 0 we can be
sure that

(I} < bee /s (A3.18)

for all N sufficiently large. Given that this point falls in a cell of volume v, the
probability that it is isolated is

(1-wv)2" -1 (A3.19)

as the remaining 2V —1 random points lie outside the cell. Since (A3.19) is monotone
decreasing in v, a lower bound for {I,) is

(1) > (1= €27 N2V 1pr(p g =127 N) (A3.20)

if we simply ignore cases with v > ¢~*2-N. Combining (A3.18) and (A3.20), and
making the appropriate exponential approximation (always assuming N is not too
small), yields the inequality (5.7), and thus the hypothesis HB2, with n = e.

Part (c) of theorem B is established by the same type of argument as for part {c)
of theorem A.
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