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Abstract. At a sufficiently IOW noise level the two-dimensional Toom model (North East 
Center majority vote with small errors) has two stationary states. We study the statistical 
properties of interfaces between these phases, with particular attention lo a stationary 
interface maintained in the third quadrant by mixed + - boundary conditions. The Auctu- 
ations in this interface are found numerically to be much smaller than in equilibrium 
interfaces; they have exponents $ or i, depending on the symmetry, rather than i. The 
correlations exhibit long-range behaviour reminiscent of self-organized criticality. We 
constmct several approximate theories of the interface which reproduce this behaviour, at 
least qualitatively. Thhe most accurate of these leads to a novel nonlinear partial differential 
equation lor the asymptotic probability distribution of the fluctuations along the interface. 

Dedicated to Michael Fisher on the occasion of his sixtieth birthday. 

I. !rtr&!etins 

There is much current interest in the structure of states of lattice systems obtained as 
stationary measures for various kinds of stochastic dynamics. These states typically 
do not correspond to equilibrium Gibbs ensembles with any reasonable interactions. 
They can exhibit behaviour quite different from that familiar for equilibrium systems, 
e.g. power law decay of correlations corresponding to generic scale invariance (or 
self-organized criticality) [ 1-31 and coexistence of multiple phases, i.e. non-ergodicity, 
under a wide range of perturbations of the dynamics [6]. 

Examples of non-equilibrium stationary states are those obtained from various 
types of majority rule dynamics used as models for pattern recognition and for 
error-tolerant computations. Models of this type include cellular automata with noise: 
systems in which spins are updated stochastically at integer times, simultaneously at 
all sites of some regular lattice. These models were first investigated in detail in the 
Soviet literature of the late 1960s and early 1970s [4]. (Toom et a l [4]  provide a recent 
review of Soviet work.) They are now generally referred to as stochastic or probabilistic 
cellular automata (for recent physics-oriented work see [SI), and may he considered 
to include deterministic automata as special limits. 
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A particularly interesting probabilistic cellular automaton is the Toom model [6]. 
This is the only non-equilibrium model without traps we know of for which one can 
prove rigorously the existence of a phase transition as the amount of noise added to 
a deterministic majority rule is changed. There is a unique stationary state-the system 
is e r g o d i c a t  high noise levels, and there are (at least) two stationary states, so that 
the system is not ergodic, a t  low noise. The low-noise phases are stable against arbitrary 
small changes in the dynamical rules, in striking contrast to coexisting phases under 
dynamics with detailed balance, where a small change generically moves the system 
away from the line of phase coexistence. 

We shall consider here the Bennett-Grinstein version (the NEC or North East Center 
majority rule) of the two-dimensional ( 2 ~ )  Toom model [ 7 ] :  the system consists of 
king spins (u; .~  = * l )  located on a square lattice which evolve in discrete time. At 
each time step, all spins u;,~ are updated according to the rule 

r.:--,-  ,_\ I - ,.\ I - ,.,, ...:A'. ~--.L.L:.:.~. 1 
~ W l ~ ~ < , j + ,  I t  I T W t + l . j i  1 I T U(, j l 1  I I W l l n  p I U D d O l l l l y  I - p  - 

q j { t + l ) =  +1 with probabilityp (1.1) 
1-1 with probability q. 

For p = q = 0 we have a deterministic evolution: each updated spin becomes equal to 
the majority of itself and of its northern and eastern neighbours. Non-zero p and q 
represent the eiiect of a noise which favours the + sign with probabiiity p ana the - 
sign with probability q. When p = q ,  the two orientations + and - play symmetric 
roles, whereas p # q introduces a bias. It has been proved by Toom that for low-enough 
noise ( p  and q sufficiently small, but otherwise unrestricted) two phases exist, in which 
the spins are predominantly +1 or -1, respectively. We refer the reader to [S-111 for 
more discussion of the Toom model. 

ubirig sulraoir initial ur ouuriuary tiuIiu1twns uric can iniruuuce a non-equiiionum 
interface between the two low-noise phases. It is such interfaces which are the object 
of study in this paper. Let us first produce the interface by initially filling some half 
space with the + phase and the complementary half space with the - phase. The 
directionality of the dynamics-information Rows to the southwest-introduces inter- 
face motion at zero noise: an interface which makes an angle 6 with the x-axis is 
".-*: --"-. : c o r r n  - i q i " - ~  _-.. ~ r . -  th-r . \ . . t l . . . .n l t :c~)rr -~i  -1 . .  ...-": -.._=- 

of l / f i  is attained when 8=3rr/4. At low but non-zero noise strength, heuristic 
reasoning and computer simulations indicate that the interface remains Rat on a 
macroscopic scale and attains a constant, orientation-dependent velocity (which will 
still be zero for some orientations). For example, the velocity of the interface at 6 = 3 ~ 1 4  
decreases, while vertical and horizontal interfaces acquire a velocity directed to the 

7 ;  see also figure 8.) On finer scales the interface fluctuates and broadens. The interface 
motion explains the stability of the low-noise phases [ 7 ] :  whenever a droplet of the 
wrong phase is formed it is wiped out at constant speed by the interface travelling 
southwest and thus has no chance to stabilize. 

Moving interfaces are intrinsically non-stationary; to maintain a static interface 

with the NEC rule, dynamical information travels southwest. Thus, in order to enable 
the boundaries to determine the bulk, we consider the system in the third quadrant 
only, and require the spins along the negative x-axis to be all +1 and along the negative 
y-axis to he all -1: u ; , ~ =  +1 and U,,( = -1 for all i < O  and all f. With these boundary 

,,.:-- ... :..L*. 1~.1.:.1 ..L 1 ^.__I:.I-~.. .... :-&..A . ..~~:%:L-:~~-. 

JL"L1"'LaL.' 'A " c L", '", LJ 'all" lLl""CD L" L l l L  D Y U L L l W C I L  I I  " c L'" / i, I #  J, a l l l aAl l l l" l l l  "PL'C" 

".est end soE!h, respecti.Je!y. (!:terf.ce ve!ocit;, is discEssed in maore detail in sedion 

one mus! impose sul!.b!e boundary conditions. As a!ready noted, i n  the Toom mode! 
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conditions the Toom model with non-zero noise establishes a unique steady state in 
the long time limit. When the noise level is kow (hut still non-zero), an interface 
separates the + phase in the upper portion of the quadrant from the - phase in the 
lower portion; since the interface must pass through the origin, we will refer to it as 
an anchored interface. Figure 1 shows typical steady-state configurations of the system 
for p = q = 0.02 and p = 0.032, q = 0.008, The major objective of our undertaking here 
will he to investigate the interface fluctuations in this steady state, which appear to be 

The remainder of the paper is organized as  follows. In section 2 we introduce a 
low-noise approximation to the Toom interface. In spirit this is comparable to an SOS 

approximation for equilibrium interfaces [12,13]. The dynamics of the interface slope 
is then described by an effective spin interchange dynamics in a I D  semi-infinite lattice, 
with the interface fluctuations corresponding to the steady-state fluctuations in the 
magnetization of the I D  system. In section 3 we present numerical results on the I D  

system, discussing the mean and variance of the magnetization and the spin-spin 
correlations in the steady state. These correlations are negative and go to zero only 
very slowly, which explains the great suppression of fluctuations in the Toom interface 
as compared to the corresponding equilibrium one. The steady state ofthe spin exchange 
dynamics is characterized by certain stationarity relations. We discuss these in section 

spin-spin correlation function (the slope-slope correlation in the interface). 
In section 6 we investigate an approximation of a different sort: we assume that the 

average value of the spin Sn+, at site n + 1 ,  conditioned on certain information about 
the preceding spins S,, . . . , S,,  actually depends only on the magnetization M. = 
Z;=, q. The approximation leads to recursive relations for various expectations, which 
we iterate numerically for finite n. The large n limit can be treated analytically in terms 
of certain nonlinear partial differential equations, which determine scaling exponents 
and functions in at least approximate agreement with the numerical results. Another 
approach is taken in section 7, where we apply the continuum theory of Kardar, Parisi 
and Zhang to Toom interfaces. The theory takes into explicit account the directional 
flow of information in the Toom model and seems to provide a fairly coherent picture 

ing and the propagation of excitations along the interface convert the usual growth in 
time of the interface width to a broadening as a function of position in the steady 

--acb s--a!!e: ;hac they wou!d be in a jimi!a; *qii!ib+Wi in:eiface. 

4, 2nd then "re the- iz reaiL?z 5 to derive 2n app:L?ximate sca!izg k?:m kx the 

of!he ir?terf.re P.??G!.ltionS. Moreover, we Pnm."!er some r?oue! fel!"res: the znchnr. 

. 

l a 1  Ibl 

Figure 1. Typical steady-state system configurations for ( a )  p =  q=O.O2 and ( b )  p =0.032, 
q = 0.008. 
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state, and in the unbiased case ( p =  q )  the symmetry properties of the model change 
the exponent associated with this broadening. Finally, we give in section 8 some 
concluding remarks; three appendices contain additional material. 

2. The low-noise approximation 

At the zero-noise level ( p  = q = 0) the Toom model has a variety of time-independent 
ioiifigiiiatioiis. Iii pxtiiiilai, we aie iiiieresied ifi  ihose defined by a single inierface 
which is a directed path in the southwest direction; that is, the interface is a staircase, 
and all spins are - below it and + above it (cf figure 2). 

+ +  

+ * + + + + + + + + + + + J -  
t + * + + t * + + + + +  

t + + + + t + + + + + + - -  

* * + + * * + * + * + + - -  
+ + + + + + + / * + + + - -  
+ * + + + + t * + * t . - -  

+ + + + * f + + + * + - - -  + + + * + + + t t +:a : /  ... - - - 
i + :  i i i i + : +  

I f + + + + f * + + : + I :  I 1 
: : ; ;,:F 

* + + +  + . . _ .  

+ . . .  -0;- . . . .  
................. , 

: ; ; ;,:I: 1 : 1 
* + +  + . . _ .  

+ . . .  -0;- . . . .  
................. , +I. . . . . . . .  

-1 

. . .  

. . .  

. . .  

. . .  

Figure 2. Staircase configuration of anchored interface in third quadrant. At very low noise, 
an error at one of  the circled sites causes a transition 10 a new staircase indicated by the 
corresponding broken line. 

In the presence of a very weak noise, small fluctuations are created. If one starts 

of the fluctuations created by the noise (for example a - sign in a sea of + spins) have 
a very short lifetime: after such a fluctuation, the system returns quickly to its previous 
configuration WO. When the noise flips a spin u , , ~  directly below a horizontal piece of 
the interface or directly to the left of a vertical piece, however, the system will jump 
rapidly to another configuration, as shown in figure 2. Thus the problem in studying 
this interface i s  to understand how; under the effect of a weak noise; the interface 
fluctuates among its various zero-noise configurations. 

Since the zero-noise interface is a directed walk, one can represent it (up to a 
uniform shift perpendicular to the interface) by a sequence of Ising spins S, = * I :  one 
takes the spin S, to be + I  if the nth link along the interface, southwest of the line 
i+j = -1, is vertical and to be - 1  if this link is horizontal. Thus, each possible shape 

tion is that n increases in a southwest direction along the interface. A transition of the 
type shown in figure 2 consists in flipping both the spin S,, which corresponds to the 
link adjacent to the spin uj,j and the first spin following S ,  which has a sign opposite 

wit!! a zero-noise configuration %U of the stairr2se type considered &eve, then most 

of the interface is represented by a sequence S ={. ... S- ,  . So,  S , ,  S 2 , .  . .); our conven- 

to S". 
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A little thought now shows, and a formal argument whose conclusions are summar- 
ized in appendix 2 confirms, that this dynamics of the interface slope can be represented 
in terms of a I D  model of k ing  spins with the following (continuous time) spin exchange 
dynamics: 

During an infinitesimal time interval d f  each spin is updated independently. A + 
spin is exchanged with the first - spin to its right with probability A, d f ;  similarly, a 
- spin is exchanged with the first + spin to its right with probability A -  df. The ratio 
of these rates, A A + / A _ ,  corresponds to the limiting value of the ratio q / p  as the 
noise is reduced to zero. 

More formally, the spin exchange rate c( i, j )  between two sites i and j ,  with i < j ,  
is given by 

To study the anchored interface in the third quadrant, we use the same dynamics 
but restrict ourselves to the semi-infinite system {S. 1 n = 1,2,3,  , . .}; the spin S, now 
describes the orientation of a link whose north or east end is at (-$, -+), The resulting 
stationary state will be independent of initial conditions as long as the initial spin 
configuration contains infinitely many + and - spins (see the discussion of finite-size 
effects below). The height of the anchored interface relative to the 45" diagonal 
corresponds in the I D  model, up to a factor &, to the magnetization 

M , =  1 S,. (2.2) 
* = I  

Clearly the quantities of interest are the steady-state fluctuations in the magnetization 
and the correlation functions of magnetization and spins. 

 ne semi-infinite sysiem has a very unusuai property, reiiecting the behaviour of 
the Toom model in the third quadrant: there are no finite-size effects. Specifically, if 
we restrict attention to the subsystem 1 S n =z L and extend the dynamics so that a 
+ (-) spin with no spin of opposite sign to the right is simply flipped with probability 
A, d f  ( A -  dt) in time interval df, then the dynamics of the subsystem is identical to 
the dynamics induced from the infinite volume ( L  = m) system, as long as the infinite 
""IUIIIC: bybrsnr CU'lLdlllD 'Ill l l l l l l l l L C  llulllurl U, sp1rra U, UUUl brgL1S. 111 p""LC"l"r, io 
compute any correlation which involves only the spins S,, . . . , SL.  at equal or distinct 
times, we need consider only the subsystem 1 s n s L. This permits in theory the exact 
calculation of any correlation function; for example, we find that in the steady state 

-. 

. . - I  ^^_.^ :-- -- :_c_:.- L^_ .P .-L. ^ P  L^.L .:--. I- _--:-..I-- 

1 - A  12A 
(S ,  S,) = 1 - 

(2A+l)(A+2) (SI) =1+A 
There are simple formulae for the probability that the first n spins have the same sign: 

Expressions for other correlation functions quickly become complicated, and we see 

While very little more can be said with rigour about the steady state for the 
semi-infinite system, we can easily determine the steady state on a ring with periodic 
boundary conditions; in this case, a spin exchanges with the first spin of opposite sign 
in a counterclockwise direction. Consider a given spin configuration, in a ring of N 

"0 way af obtai.i.g asymptotic behaviour hy this direct appmach. 
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sites, with N+ + spins and N- = N - N+ - spins, in which neither N+ nor N _  is zero. 
Then there are exactly N+ (N-1 exchanges occuring at rate A+ ( A - )  which change this 
configuration, and one can easily check that there are the same number of exchanges 
at these rates which change other configurations to this one. Thus, for each N + ,  N _  
there is a unique invariant measure in which all configurations with these numbers of 
+ and - spins have equal weight. The thermodynamic limit ( N e w )  then yields 
invariant measures for the infinite system which are uniform product measures; any 
average magnetization p = (So) = IimN--( N+ - N - ) / N ,  with Ipl =s 1, is allowed. 
Geometrically, the magnetization determines the slope of the corresponding (infinite) 
Toom interface: the angle a of the interface with the x-axis is given by 

1 - P  tan a=- 
1+p'  (2.5)  

It seems likely, but we have n o  proof, that these product measures are the only invariant 
measures of the doubly infinite system, and that the measure in the semi-infinite case 
is asymptotically a product measure far from the origin. 

It follows that for a block of length L in the doubly infinite system, or in such a 
block located far from the origin in the semi-infinite system, the magnetization has 
fluctuations of order a. The naive 'equilibrium' guess would be that boundary 
conditions do  not matter and that therefore also ( M i ) =  n for the semi-infinite chain. 
In fact, as we will see, the fluctuations in this chain or equivalently in the anchored 
Toom interface at low noise grow much slower: there are strong anticorrelations due 
to the boundary. This is already evident from (2.4); for a product measure, the 
corresponding probability would decrease exponentially rather than factorially. 

To understand the behaviour of the anchored interface it is useful first to calculate 
the current J ( p )  produced by the spin dynamics, on the doubly infinite I D  lattice, for 
a given value of the bias A and of the magnetization p. The current through some fixed 
bond of the lattice, say (0, l ) ,  is determined by the fact that each spin exchange between 
sites on opposite sides of the bond contributes +2 to the current if the + spin is 
orginally to the left of the bond, and contributes -2 otherwise. Thus the average current 
through the bond is 

~ ( p ) = (  E c ( i , j ) ( + s j )  = E nc(o ,n ) (sO-s , )  . ( 2 . 6 )  

Using (2.1) and the fact that ( ) is a product measure reduces (2 .6)  to a geometric series 
which sums to 

i = O , j = l  ) ("1, ) 

A + ( I + ~ ) ~ - A - (  1 - p ) 2  

1 - p 2  
J ( P )  = 2 

Note that J ( p )  + m as 1p1e 1; this is the analogue of the divergence of the diffusion 
constant in a model with related dynamics, studied in [3] as an example of self-organized 

velocity of the corresponding doubly infinite Toom interface is 
for bias A the current vanishes at magnetization 

1 - V 5  
p = x i '  

For the semi-infinite system the current has to vanish; otherwise + or - spins would 
pile up somewhere. If we assume, as seems from simulations to be correct, that 
asymptotically the stationary state for this system is a product measure at, some 
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magnetization p. then (again asymptotically) the current must satisfy the condition 
J ( p )  = 0; (2.8) is indeed confirmed by simulations, as discussed in the next section. 
Thus, one expects that at low noise the anchored interface will asymptotically make 
an angle ct with the x-axis determined by (2.8) and (2.5): - 

tan a =a= J: (2.9) 

3. Numerical results 

In this section we present the results of Monte Carlo simulations of the in spin model 
introduced in the previous section. We assume that A s  1 for definiteness. The algorithm 
is then straightforward: for a chain of L spins we choose at each step a spin n s L at 
random. Then, with probability A if S,, = +1 and probability 1 if S, = -1, we exchange 
it with the first spin of opposite sign which follows it or, if no such following spin 
exists between n and L, we flip S, without any other change. We have already noted 
that this dynamics gives results for the distribution of spins S,, S,, . . . , Sh which are 
independent of L as long as La k, i.e. there are no finite-size effects. 

As in other Monte Carlo simulations, we have to acknowledge, however, the fact 
that the successive configurations which are produced by the algorithm are not statisti- 
cally independent. We may give a bound for the correlation time as follows. Consider 
two systems with distinct initial configurations subjected to the same dynamics, includ- 
ing noise, i.e. for which the spins are updated in the same order. The two systems will 
agree up to site n + 1 (except for an overall sign) after the event in which spin 1 is 
updated, then spin 2, then spin 3 , .  . . continuing through spin n. Thus, they will agree 
completely, up to an overall sign, after Monte Carlo time To with 

L 

T o s  T =  1 th (3.1) 

where the times tk are independent identically distributed geometric random variables 
with E ( t , )  = L/h.  If one defines a rescaled time T by 

T = ( L, /A)T  (3.2) 

h = l  

then the density of T becomes, for large L, 

(3.3) 

Thus, after a time of order L2, the system has certainly forgotten its initial state. Note 
that this time is on the simulation scale, which differs by a factor proportional to L 
from the continuous time-scale introduced earlier. 

We also computed ( M L ( 0 ) M L ( t ) )  directly in the simulation of the unbiased case 
and found that the effective decay time for this quantity grows as L3’,. Somewhat 
surprisingly, this behaviour apparently does not correspond with that predicted by the 
second eigenvalue of the master equation which represents the dynamics (the maximum 
eigenvalue, associated with the steady state, is always unity). We computed this second 
eigenvalue for small systems in the unbiased case by a direct diagonalization; for all 
sizes Lz5 (we went up to 15) we found that the second eigenvalue in magnitude is 
1 -2/L. If this eigenvalue 1 - 2 / L  (we can show that for all L, 1 -2 /L  is an eigenvalue) 
remains always the second eigenvalue, this would imply that correlations must at very 
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long times decay with correlation time proportional to L; nevertheless, the L3/2 time 
appears to be the relevant one for our simulations. 

Let us now come to the results of our simulations. 
In table 1, we give results for two values of the bias: A = 1 (no bias) and A =a .  The 

table includes values of (ML) in the biased case ((M,) = 0 for A = I ) ,  the truncated 
second moment ( M i ) T = ( M i ) - ( M L ) 2 ,  and the ratio R L  defined by 

The simulation involved 4 . 6 ~  lo6 updates per site in a system of L =  131 072 sites for 
A =  1, and 2 . 4 4 ~  lo6 updates per site in a system of L =  16384 sites for A\=:; error 
bars represent 95% confidence intervals obtained by subdividing long simulations into 
statistically independent pieces, using the forgetting time estimated above. The table 
includes also results of the collective variable approximation to be discussed in section 6 .  

From these results it is clear that ( M i ) - ( M L ) 2  does not increase as L. Log-log 
plots of this quantity against L are shown in figure 3; these suggest an increase as L1l2 
in the unbiased case, with a larger exponent in the case A =+. (These plots show also 
the collective variable approximation of section 6, which asymptotically grows as L”2 
in the unbiased case and L2/’ for any bias.) To determine the exponent more precisely 
we give in figure 4 log-log plots of ( ( M : ) - ( M L ) 2 ) / L 1 ’ z  against L for A =  1 and of 
( ( M ~ ) - ( L W ~ ) ~ ) / L ~ ’ ~  against L for A =a. (Again the collective variable results are 
included.) From the data, we see that for the range of values 28< L <  L,,, (with 

Table 1. Simulation results and collective variable approximation far the I D  spin model 
with system size L. In the unbiased case ( A  = 1) we give the mean fluctuation (Mi) of the 
magnetization, from both simulation and cv approximation, the asymptotic c v  prediction 
of J3L/2 for this fluctuation, and the ratio R L = ( M t ) / ( M L ) *  from simulation. In the 
biased case ( A  =a)  we give the mean magnetization from the simulation, simulation and 
cv values for the fluctuations (truncated expectations), and the value of R ,  (now calculated 
from truncated fluctuations). 

Unbiased: A = 1 Biased: A = +  

2 
4 
8 

16 
32 
64 

128 
256 
512 

1024 
2 048 
4 096 

8 192 
16384 
65 536 

131 072 
262 144 

1.33 
1.92 
2.73 
3.89 
5.57*0.02 
8.03*0.03 

I1.58-tO.04 
16.7 kO.1 
24.2 + 0.1 
34.9+0.3 
50.610.4 
72.7k1.2 

106k2.5 
1 5 1 1 3  
313*4 
451*7 

3.00 
2.95 
3.00 
3.02 
3.03 
3.04 

3.05 
3.04 
3.04 
3.05 
3.03 
3.04 

3.05 
3.02 

1.33 
1.92 
2.76 
4.02 
5.88 
8.60 

12.53 
18.16 
26.19 
37.60 
53.78 
76.69 

109.1 
155.0 
311.7 
441.6 
625.3 

1.73 
2.45 
3.46 
4.90 
6.92 
9.80 

13.86 
19.60 
27.71 
39.19 
55.43 
78.38 

110.9 
156.8 
313.5 
443.4 
627.1 

-1.02 
-1.77 
-3.22 
-6.02 

-11.5 
-22.4 

-44.1 
-87.2 

-173.1 
-344.6 
-687.0 

-1371 

-2738 
-5471 

1.1810.01 
1.72*0.01 
2.51 - tO.Ol  
3.641 0.01 
5.29 1 0 . 0 3  
7.7310.04 

11.34-tO.06 
16.75-tO.l 
24.7+0.2 
36.8k0.3 
55.6zt0.7 
83.9+ 1.1 

127 1 2.5 
19213.5 

2.04 
2.99 
3.00 
3.04 
3.05 
3.07 

3.07 
3.08 
3.06 
3.07 
3.07 
3.06 

1.18 
1.73 
2.54 
3.74 
5.54 
8.21 

12.16 
17.98 
26.59 
39.43 
58.75 
88.10 

133.2 
203.0 
482.5 
750.9 

1174.1 
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Figure 3. Mean Equare fluctuation in magnetization against system size: (a) unbiased case, 
A = I ;  ( b )  biased case, A = a .  

17 L,,, = 2 for A = 1, Lmax = for A =a) our results are consistent with a power law, 

(ML)- (ML)*=  L" (3.5) 

with 

0.265 i f A = l  
0.285 

v = (  i fA=+ (3.6) 

Clearly the fluctuations of Mr are much smaller than expected from the calculation 
of section 2 for the ring geometry, which would give U = 0.5; again, this is due to 
antiferromagnetic correlations, which we discuss further below. In the next sections 
we shall discuss several approximate treatments which explain, at least partially, these 
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anomalously small fluctuations. These approximate models suggest that in fact (3.5) 
holds asymptotically with 

0.7- 

r 
V 

0.4 

0.3 

0.2 

i f A = l  
i f A # l  

0 L - 128 
x L - 1024 

- \ 

(3 .7)  

111 ohn.lr- :- fin..rpc L - -A 7 ..,harp hnXrn -lnttnA thn ersllm.4 r~rrplnt;nn - i '121C C \  
"1 > L L " W . .  L.. .16UL*' " ".I" I ,  Wl....C .,I . . " V U  &,""LL'Y ...U -\I...*.. ..".,I."..".. \-I-,, 

as a function of ( j  - i)/i"', in the unbiased case, for several fixed values of i. (Figure 
7 also contains a theoretically derived curve, to be discussed in section 5 . )  Whether 
the scaling form (3 .8)  becomes true in the limit L + m or whether it is only approximately 
valid for the sizes L we have considered here is again an open question. 
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X 

Figure 6. Two-point correlation function: results of simulation for various system sizes. 

X 

Figure 7. Two-point Correlation function: results of Simulation for L = b 4  and L-256 
compared with theoretical prediction ( 5 . 8 ) .  

In summary: in the unbiased case, the main effect observed in our simulations is 
that the fluctuations of Mr are of order approximately L114 instead of L’12. Both the 
distribution of ML and the correlation functions appear to be rather simple: the 
distribution of ML seems to be Gaussian whereas the correlations seem to satisfy 
the scaling form (3.8). However, within the accuracy of our numerical data, it seems 
that if, in fact, U =;, R L + 3  and the correlation function scales in the limit L-tm, then 
the convergence to this asymptotic regime is extremely slow; thus, it is possible that 
some or all of these conclusions do not hold. Conclusions in the biased case are even 
less clear; certainly our simulations give at best weak support for the ‘theoretical’ value 
”=?  3 .  
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Of course, it is possible that our numerical data suffer from some small systematic 
error (i.e. a bad random number generator). In all the tests we did, however, our 
results remained unchanged when we used different algorithms for generating random 
numbers. 

4. Steady-state relations 

For the dynamics of the model defined in section 2 ,  it is possible to write many 
stationarity conditions which express the fact that the system is in its steady state. We 
are going to derive a few of these relations which we shall use later on to develop 
several kinds of approximations. 

The main idea to obtain a stationarity condition is to choose some function Y ( S )  
of the spin configuration S = {S! i . .  . SLj and to write that the expectation (9) remains 
unchanged under the dynamics; 

d 
- (Y)  = 0. 
dt 

More explicitly, (4.1) can be expressed as 

Here c ( i , j )  is the spin exchange rate (2.1) and Sv denotes the spin configuration S 
with the spins at sites i and j interchanged. 

For simplicity, let us first consider the unbiased case A = 1 .  Let K ,  be defined as 
the number of successive spins directly preceding S, (including SE itself) which have 
the same orientation as S,. Clearly K,  satisfies 

1 +s;s.+, 
Ki 2 

K ,  = 1 K j + , = l +  (4.3) 

from which we may derive 

Having introduced K., we can now obtain some stationarity relations. 
We first take Y to be an arbitrary function @ of the magnetization M,. Then, during 

an infinitesimal time interval dt, M ,  remains unchanged with probability 1 - K ,  dt and 
M .  becomes M ,  -2s" with probability K ,  dt. Therefore the stationarity relation (4.1) 
becomes 

( K n @ ( M ) ) = ( K n @ ( M o  -2sn)) (4.5) 

or, equivalently, 

( K ( a ( M n - 1  + S n )  -@(M"-I - & ) I )  (4.6) 

Since @ ( M )  can be anything, one can choose @(M)= M 2 .  Then (4.5), (4.6) become 

( K . K S " )  = ( K . )  or (K,S ,M,-J=O.  (4.7) 
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Relations (4.5)-(4.7) are valid for any n 2 I;  (4.7) should be compared with the 
corresponding result for a product measure with (Si) = 0, for which (K.S.M,_,) + 2 as 
n + m. In fact, one can notice that a consequence of (4.6) is that 

( &%q5 (Mn-3 )) = 0 (4.8) 

for all functions q5, so that the random variable K,S,, which is the signed size of the 
block to the left of n, has zero expectation for every value of the magnetization M,-, . 

One can obtain other stationarity relations by considering other functions "(SI, 
for example 

" ( S )  = StS, (4.9) 

where we take i < j .  In this case we first remark that the spins S, and S, can exchange 
with each other only if S, = S,,, = . . . = # S,, that is, if X, = IIisxcj( 1 - ShS,)/2 = 1; 
in the time interval df  the probability of this exchange is thus X, df. Now we note 
that during this time interval the pair (S;, S;) becomes ( - S j ,  S,) if either S, exchanges 
with a spin S, with k >  i but k # j, an event which by the above remark has probability 
(1  -X,) dr, or if some spin S, with k <  i exchanges with S., an event with probability 
[Kj_,(1-SiSj_,)/2dt. Similarly, (S j ,  S,) becomes ($, - S j )  with probability 1 d r +  
[Kj+,(I-S&)/2-X,] df. Since in each case the change in Y is d 'P= -2S4, setting 
(d") to zero yields 

4(SiS;) + 
which can be rewritten using (4.3) as 

S J j )  - ( Ki-lS~+lSj) + (K j -  I Si%) - (K j - ,  SiSj_,) = -4(X,) (4.10) 

(KjSiS;)-(K;+,Si-,S;)+(K;S~Sj)-(Kj_tSi&J=-2 ( n !+). (4.11) 
i c h c ;  

When i and j are far apart the right-hand side of (4.11) can be neglected (because 
events for which X, is not zero are rare). Thus, for li - j l > >  1 we have approximately 

(4.12) 

One can generalize (4.11) or (4.12) to an arbitrary number of spins. For example, 
if the sites i, j, k, I are all distant from each other and far from the beginning of the 
chain, one gets 

(K,SiSj) - ( Si- I S;) + ( K;S,Sj) -(&I SjSj_,) = 0. 

( KjS&S,Sl) - (K,+lS;-l SjS,SJ + ( KjS;SjS&) - (Kj-3 SjSj-, SkSJ 

+(K~S,S,S,SI)-(K,_,S;~S~-,SI)+(KIS,S~S~S,)-(KI-,S,S,S,SI_,) =O. 
(4.13) 

One can obtain many other stationarity relations by writing that other expectations 
(Y) are stationary. The main problem with these relations is that they all involve K .  
and hence that, when (4.4) is used, they generate a hierarchy of relations between pair, 
four-point, six-point, and higher-order correlation functions, from which it is hard to 
extract closed expressions for the pair correlations. In the next sections we will develop 
closure approximations for this hierarchy. 

Before doing so, let us give a stationarity relation valid in the biased case ( A s  I ) .  
By writing that an arbitrary function @( M )  is stationary, one gets 

A + ( ( K y ) @ (  M.) )  - (K:'@( M,  - 2))) = A-((KL-)@(Mn + 2)) - (KL-'@( M . ) ) )  (4.14) 
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where K !.+’(K!-’ respectively) is the number of consecutive + spins (respectively -) 
preceeding spin i, including i itself. The reasoning used to derive this relation is a 
direct generalization of that leading to (4.5). Stationarity relations for correlation 
functions, generalizing (4.11) and (4.13), may of course be derived similarly. 

Equation (4.14) can be rewritten as follows. Let W,,(m) denote the probability that 
M ,  = m, and set 

U y ’ ( m )  = A+(KF’l M ,  = m* 1) W,(m* I )  (4.15) 

with ( I )  denoting conditional expectation, so that (4.14) becomes 

( U r ’ ( m  - 1)- U‘,-’(m - l ) )@(m) = E  ( U r ’ ( m  + 1)- Ui-’(m+ I ) )@(m).  (4.16) 
m m 

Since @ is arbitrary, we must have 

u!,+’(m - 1)- u‘.-’(m - 1 )  = U:+’(m + 1)- u‘,-’(m+ 1) (4.17) 

for all integers m ;  since M .  S n and hence U‘,“’(m) = 0 for m sufficiently large, (4.17) 
implies that 

U i + ’ ( m )  = & ’ ( m )  (4.18) 

for all m. Equation (4.18) will play a key role in section 6 .  

5. The scaling form of the pair correlation function 

From the stationarity relations obtained in section 4 one may obtain, by making two 
assumptions, an analytic expression for the correlation function (S&). We will limit 
ourselves to the unbiased case ( A  = 1). 

First, we assume that, in the asymptotic regime, the pair correlations are much 
larger than four-point correlations and any higher correlation functions. Then, by 
neglecting the higher correlations, we may replace the stationarity relation (4.12) by 
a relation for the pair correlation only. To do so we insert the expression (4.4) for K; 
into (4.12) and discard all correlation functions higher than pair correlations; we obtain 

(5.1) 

for i >> 1, j >> 1 and li-jl>> 1. Second, we assume that in this regime (Si&) has the 
scaling form (3.8) 

2-p( ( Sj-,Sj) + ( Sj.9_,) - ( Si-,-&,Sj) - (S,S;_ I + p ) )  = 0 
P=O 

For large i and j, and writing x =  ( j - i ) / i ” ’ ,  we then have 

(5.3) 

(5.4) 

(StSj-p) =7 1 F ( x )  -7 P F ’ ( x ) + p  P 2  F ” ( x )  + O(i-* )  
1 

1 P P (Sc+,,S;) = 7 F ( x )  +T F ’ ( x )  +- 2i3/2 ( F ( x )  + x F ’ ( x )  + p F ” ( x ) )  +0( i-*). 

By substituting (5.3) and (5.4) into (5.1) we obtain for the leading non-vanishing order 

I 

F ( x ) + x F ’ ( x ) + 6 F ” ( x )  = 0. ( 5 . 5 )  



Dynamics of an anchored Toom interface 4819 

The general solution of (5.5) is 

F ( x ) =  A exp( -$) + B  exp( -;) exp($) d t  (5.6) 

If we assume, as suggested by simulations, that the correlation function decays faster 
than l /x  for large x and that ( M : )  does not increase linearly with n, then we must have 

B = O  Iom F ( x )  dx = -f (5.7) 

and therefore 

This expression for the scaling form of (S;Sj) is plotted in figure 7, together with the 
results of the numerical simulation. We see that the agreement with the data for the 
largest size ( j = 2 5 6 ,  i<j) looks excellent. However, figures 6 and 7 suggest that 
the scaled correlation function at that size has not yet reached its large n limit, so it 
is possible that the result (5.8) of the above apprxoimation is not the true scaling 
function. 

One can try to extend this approach to calculate other quantities like ( M i ) ,  higher 
moments of M., or the correlation functions in the biased case. In all these cases, one 
has to make some additional assumptions; for example, to calculate ( M i )  for large n, 
one needs to know the leading correction to the scaling form (5.2), or alternatively 
the four-point correlation (see appendix 1). In  the biased case, odd correlation functions 
are also non-zero, making the above assumptions even more delicate. 

In any case, we have not succeeded, so far, in extending the above assumptions in 
a way which would satisfy all the stationarity relations that we have and which would 
give a good agreement with our present numerical data. However, it is reasonable to 
think that, if some scaling holds for large L, then by introducing the right scaling forms 
for the correlation functions in the stationarity relations, one could get the exact 
analytic expressions for the asymptotic properties of the magnetization. 

6. A collective variable approximation 

In this section we introduce an approximate treatment of the stationarity condition 
(4.18) which leads to an (approximate) recursive scheme for calculating the distribution 
of the total magnetization in our model. One way to view this approximation is as the 
construction of an approximate measure which satisfies some of the stationarity 
conditions obtained in section 4, specifically (4.5) and (4.6) in the unbiased case or 
more generally (4.14). 

Our starting point is the recursive equation satisfied by the probability W.(m) that 
M .  = m, which, with the definition 

(S,+,IM.=m)=HAm) (6.1) 

becomes 

W,,+,( m )  =$( 1 + H a (  m - 1)) Wn( m - 1) +f (  1 - H.( m + 1)) W,( m + 1) (6.2) 
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and (4.15), which we write in the form 

U','?,(m) = A* 
m 

k Prob{K?>, = k, M,,, = m * 1) 
k = l  

m 

= A ,  Prob{S,+, = *1 I M,  = m }  W,(m)+A,  1 k Prob{K?' = k, M ,  = m }  
h = l  

x Prob{ &+, = *1j K F )  = k, M. = m } .  (6.3) 
We now define approximations I?'*', k and fi of U(*', W and H by retaining the 
recurrence (6.2), 

kn+,(m) = $ ( I +  fin ( m  - 1)) k n ( m  - 1) +$(I - H n ( m  + 1)) k n ( m  + 1 )  (6.4) 

and the equality (4.18), 

f i i + ' ( m ) =  & ' ( m )  (6.5) 
and making the collective variable approximarion 

(S,+, I K!,*' = k, M. = m ) =  (&+, I M, = m )  (6.6) 

in (6.3), to obtain 

f i Z , ( m )  = f(1 * f i n ( m ) ) ( A * k m ( m ) +  f i ? ' ( m  T 1)). (6.7) 

Let us denote the common value (6.5) by &. Equating the results of the evolution 
(6.7) of and fi(-) yields 

&+, ( m ) = f ( 1 - g,, ( m ) 1 ( A  - Gn ( m )  + e,, ( m + 1 )) 

= f ( l  + fin( m ) ) (  A +  kn( m )  + fin( m - 1)). (6.8) 

Equation (6.8) can be solved for : 

A fin( m + 1) - C n ( m  - 1) + ( A _  - A + )  k,,( m )  
H " ( m ) =  i r , (m+l )+(A\_+A+)k" (m)+  f i n ( m - 1 ) '  

Then 4' 

(6.10) ( A -  kH( m )  + &( m + 1))( A., kn( m )  + f i n (  m - 1)) 
& ( m +  l)+(AL+A+) k m ( m ) +  c n ( m  -1) 

. & + , ( m )  = 

Equations (6.9), (6.10) and (6.4) determine H, fi and k recursively. 
From these recursions we may approximate ( M i ) :  

(~2.)==1 m 2 k n ( m ) .  
m 

(6.11) 

This approximation is compared in figures 3 and 4 with the results of the Monte Carlo 
simulations discussed in section 3. We see that the agreement is rather good, particularly 
in the unbiased case. Figure 4 suggests (and the theoretical discussion below confirms) 
that the asymptotic value of the exponent U (see (3.5)) in the collective variable 
approximation is given by  (3.7): a for the unbiased case, f for the biased case. The 
fact that the effective exponent for smaller values of n varies from these asymptotic 
values in the direction of the effective exponent (3.6) obtained in simulating the true 
spin exchange model suggests that the asymptotic regime may not have been reached 
in the numerical calculations of section 3. 
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There is an alternate way to view these recurrence relations. We may in fact replace 
(6.6) by the stronger assumption that the distribution of S,,,,, conditioned on all 
information about previous spins, depends only on the collecfiue variable M. : 

(6.12) 

where as usual M ,  =X:=, Si. Once I? is specified, (6.12) is sufficient to determine 
completely a measure on  all spin configurations, which we term the collective variable 
(cv)  measure. Now W,, is the actual probability distribution of M ,  in the c v  measure, 
and 

(S,+I 1 St, . . . , S.) = f k ( M n )  

fi!?(m) = A+(K? M, = m * l)cvbt’n(m * 1) (6.13) 

where ( )cv denotes expectations in the c v  measure. lmposition of the condition (6.5) 
now determines U, and all the recurrence relations above follow. The consequences 
we have derived from the assumption (6.6) may thus be regarded as referring to actual 
expectation values in the c v  measure; in particular, the second moment defined in 
(6.11) is in fact just (M:)cv .  

Condition (6.5) may be regarded as a requirement that the probability distribution 
of the magnetization M ,  in the c v  measure be instantaneously stationary under the 
dynamics of section 2; that is, if we let ()‘ denote the expectation at time f under that 
dynamics, with initial distribution given by then for any function @ 

Expectation values of quantities other than functions of the total magnetization 
may of course also be calculated in the c v  measure, and compared with simulations. 
We consider here the two-point correlation function (Sc$)cv in the unbiased case. The 
asymptotic analysis discussed below shows that &(mj= -m/J& (see (6.22) and 
(6.25)). Then, for j >  i >> I ,  

(6.15) 

If we again assume the scaling form (S,%),,= i - ” * f i ( ( j -  i)/i”2) (compare (5 .2 ) ) ,  then 
(6.15) leads to 

(6.16) 

with solution 

: 
i ( x ) =  --exp(-lxl/&) (6.17) 

2VG 

where we have used the fact that &x) is even. 
In fact, as discussed in section 5 ,  both computation and simulation indicate that 

the correlation function in the true model is Gaussian rather than exponential. 
Moreover, in some related models which can be solved more completely (see appendix 
3) we find that the recursive scheme based only on (6.6) yields correct predictions for 
the distribution of M,, while the approximate measure determined by (6.12) is very 
far from the true measure. This suggests that the restricted assumption (6.6) is more 
nearly correct than (6.12); it may in fact be asymptotically correct. 
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6.1. The asymptotic limit in the unbiased case 

We can extract the asymptotic behaviour of this model by passing to a continuum 
limit. We consider first the unbiased Ease A +  = A- = 1; our basic assumption is that, 
for n large, the functions fi, fi and W are slowly varying functions of n and m and 
are well approximated by smooth functions h ( t , x ) ,  u ( t , x )  and w ( t , x )  under an 
appropriate scaling: 

f i " ( m )  = h(e4n,  Em) f im(m)=u(E4n ,  Em) k , , ( m ) =  w(e4n,  Em). (6.18) 

The relative scaling of the x and f variables here is forced by the requirement that the 
continuum function w satisfies a non-trivial partial differential equation, as derived 
below. 

We now rewrite the recurrence equations in terms of these continuum variables. 
Considering first the evolution equation (6.10) for U, we write 

f i , , + , ( m ) =  u ( t , x ) + & 4 J , u ( t , x )  

where f = ~~n and x = Em, and expand in powers of E.  Up to second order, (6.10) 
becomes 

4 2(u+w) > .  
U = - ( U +  1 w ) + E ' ( + -  

2 

To lowest order in E ,  U = w, and, to second order, 

Using (6.21) and a similar analysis, (6.9) becomes, to third order, 

w h = E L + E 3  J w [JY - - - a ,  ((JX;l2)] - . 
W 

(6.20) 

(6.21) 

(6.22) 

Finally, to fourth order, (6.4) becomes 

When (6.22) is substituted into this equation, all terms of order z 2  cancel (this is the 
basic mechanism leading to the n 1 l 2  growth in ( M i ) c v ) ,  and the fourth-order terms yield 

(6.24) 

This is the fundamental evolution equation of the continuum theory in the unbiased 
case. 

3 
8 

a,w = --a:[wa:(iog w ) ] .  

Equation (6.24) has among its solutions the Gaussian scaling solution 

wa(t, x) = ( 2 7 r ~ ( t ) ) - ' / ~  exp(-x2/2y(t)) r ( t )  = J3r/2 (6.25) 

which appears to be the physically relevant solution, since the initial value w,(O, x)  = 
S ( x )  corresponds to ko( m )  = Sm0. (For further discussion of solutions of this equation, 
see [20].) The continuum theory thus predicts that asymptotically 

(M:)="-  m. (6.26) 
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In table 1 we include these continuum values for comparison with values of ( M &  
computed directly from the recursion. The agreement is excellent, and in fact the table 
suggests that 

( M 2 , ) c v = & T - p  (6.27) 

with p = 1.8. 

6.2. The asymptotic limit in the biased case 

We now turn to the asymptotic limit of the recursion scheme in the biased case. Here 
the mean magnetization (Mn)cv=&,, mL@*(m) will increase linearly with n: (M&- 
pn, where p is the asymptotic single-spin magnetization (2.8); (MZ,)cv-(M,)& will 
again increase sublinearly. The correct scaling is again determined by the requirement 
of a non-trivial continuum partial differential equation, and continuum variables may 
be introduced through 

(m) = p+ h ( ~ ’ n ,  E (  m - f i n ) )  

& ( V I ) =  u(E3n, E ( m  - p n ) )  (6.28) 

L@-(m)= w(e3n, e ( m - p n ) ) .  

A n  analysis of the recurrence re!atlons in of these variah!es may be carried 
through along the lines above. (6.21) becomes 

(6.29) 

We now need the analogue of (6.22) only to second order: 

wh = ~ E C J , W - E ~ ~ C  (6.30) 
W 

where C = m / ( & + K ) 2 .  Finally, we find from (6.4) that w satisfies the third- 
order evolution equation 

This is the fundamental continuum equation in the biased case. 
Equation (6.31) may be linearized by the substitution w ( r ,  x) = u(f,  x ) ~ ,  to obtain 

~ J , U  = 4pca:v. (6.32) 

Since (6.32) is linear we may certainly solve it, for example by the Fourier transform, 
and thus find w at  any time. Alternatively, we may note that (6.31) remains unchanged 
if x is scaled by a factor y, f is scaled by y 3  and w is scaled by an arbitrary function 
of y, and thus look for a scaling solution w(f, x)  = t-”3G(tC”3xj; here the factor f-l” 

is chosen to keep the integral w(f, x) d x  normalized. G must satisfy 

(6.33) 

This equation may be integrated once (with integration constant set to zero), and then 
the substitution G (  y )  = g ( y ) ‘  yields the linear equation 

Pg’YY) = - Y g ( Y )  (6.34) 
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with p = 16pC. The solutions of (6.34) are multiples of Airy functions Ai(-p-’l3y), 
which (we take p> 0 from here on, for definiteness) vanish exponentially for y +  -m 
and oscillate for y > 0. Comparison of this continuum solution with explicit calculations 
from the recurrence relations shows that the physically relevant solution of (6.34) is 

(6.35) 

where yo=-p ’~ ’z , ,  with zo<O the largest zero of the Airy function, and c is a 
normalization constant. In fact, it appears that, on the scale determined by (6.28), 
h(x)+m as x + t ” ’ y 0 ,  and hence asymptotically k, , (m)=O for m > p n + n ‘ / ’ y o .  The 
solution of the recurrence relations approaches the asymptotic regime very slowly, so 
that even for the largest systems we have studied the continuum theory does not 
accurately predict (M,JCv and (LVJ:)~~; however, if the distribution k , ( m )  is normal- 
ized in variance and mean, it agrees very well with g(n-’/’m)4, similarly normalized. 

7. Continuum field theory 

The large-scale properties of interfaces can often be captured through a time-dependent 
continuum field theory of the Ginzburg-Landau type [14]. When applicable, these 
theories provide both simple physical insights and powerful computational tools for 
leading asymptotic behaviour. For growth processes and interfaces driven by chemical 
potential differences this approach was implemented by Kardar, Parisi and Zhang 
(KPZ) [15] (see also the review [161). In this section we develop the method for the 
Toom interface as it will turn out to be a novel and somewhat unusual example from 
the general point of view. We also compare the predictions of the continuum theory 
with the more microscopic approach developed before. 

Our starting point is the velocity of an infinite, macroscopically flat interface between 
the + and -phase. As an example, we plot in figure 8 the normal velocity u(0)  at zero 
noise and at two levels of unbiased noise, p = q = 0.04 and p = q = 0.065; our convention 
is that the normal vector to the interface is oriented from the + to the - phase and 
that 0 is the angle between this normal and due north (the positive j-axis). At zero 
noise the interface velocity is obtained by explicit computation from the Toom 
dynamics. At finite noise no computation seems feasible; finite noise velocities in figure 
8 have been obtained from simulations (For O <  0 <  7112 an approximate interface 
velocity at low noise was computed in section 2, cf (2.7); it should be noted that this 
low-noise approximation is not uniform in 0 and is optimal for 0 = 71/4.) 

Of course, symmetries of the Toom model are reflected in symmetry properties of 
the velocity function u(0).  The model has an alternate formulation on a spacetime 
lattice whose constant-time cross-sections are triangular lattices [8]; in this formulation, 
it is clear that the model has the symmetry group D, of an equilateral triangle. In our 
NEC formulation this symmetry group is generated by two transformations of the square 
lattice: the reflection across the diagonal, (i, j )  + (j, i), and the time-dependent linear 
transformation (i, j ) +  ( j ,  - ( i + j +  t ) ) ,  which corresponds in the alternate formulation 
to a 27113 rotation of the triangular lattice. That is, if g,,( I )  satisfies the Toom dynamics 
(l.l), then so do  u,,(t) and ~,,-(~+,+,~(f), as may be checked by explicit calculation. 
Because the symmetry group involves time-dependent transformations, it relates inter- 
faces which move at different velocities. The ‘rotation’ symmetry given above, for 
example, carries an interface with 0 = 71/4 to one with 0 =e,, where 8, E [11/2, 7r] 
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Figure 8. Angular dependence of normal interface velocity in unbiased case. 

satisfies tan 8, =- f .  If the noise is unbiased, then u(?i/4)=0, and from the full 
symmetry group D, we find that u(5a/4)  = O  and 

U(#,)= t 1 ( 3 ~ / 2 - # , )  = - u ( ~ , + ~ ) = - U ( 5 ~ / 2 - # ~ ) =  I/&. (7.1) 
We will study both the time development of an infinite, initially flat interface, for 

which the initial interface position defines a reference line, and the anchored interface, 
for which we choose the average interface position as reference line. In each case we 
introduce a coordinate x along this line, oriented so that travelling in the direction of 
increasing x puts the + phase to the right; note that by our conventions the anchored 
interface corresponds to angle # E  [TI, 3rr/2], and the reference line is oriented away 
from the origin. Figure 1 suggests that overhangs may be ignored; the interface height 
at time 1, when averaged over a few lattice spacings, is then a single-valued function 
x +  h,(x). It is reasonable to assume that, viewed on a large scale, every surface element 
mnves with the normal velocity of an infinite interface having the same slope. If G(h') 
denotes the interface velocity normal to the reference line and written as a function 
of the slope Jh/Jx-  h', the interface then is governed by the equation 

J,h,(x) = <(Jxhr(x)). (7.2) 
To include fluctuation effects the KPZ approach is to add noise and dissipation to 

(7.2) and to replace u^(h') by a polynomial of degree determined by the relevant order. 
This yields 

J,h, = uo+ u , J , h , + f ~ ~ ( J , h , ) ~ + ~ u ~ ( J ~ h ) ~ +  DJ:h,+&[,;. 

(C,(X)&.(X')) = S( f - r')s(x - x'). 

(7.3) 

(7.4) 

Here I ,  is normalized Gaussian white noise, 

Simple power counting shows that higher-order nonlinearities are irrelevant on a large 
scale, The cubic nonlinearity scales as the noise and the dissipation and is thus marginal. 
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It is tempting to choose U,, j = 0,. . . , 3 ,  as the Taylor coefficients of l i (h’ )  at h ‘ =  0, 
but in fact the Laplacian and noise terms in (7.3) will modify the interface velocity 
and thus renormalize these hare values. This will give rise to effective parameters in 
(7.3) which we can identify only through comparing its large-scale properties with 
those of the Toom dynamics. 

Equations (7.3) and (7.4) must be supplemented by initial and boundary conditions. 
To study the time development of the initially flat interface we take h,(x) = 0 on the 
entire line or on an interval with periodic boundary conditions. In the anchored case, 
the interface must pass through the origin; hence x 3 0 and 

h,(O)=O. (7.5) 

For the moment we discuss the non-stationary problem; we will return to the anchored 
interface shortly. 

If v 2 #  0 in (7.3), then the quadratic term ( h ’ ) 2  dominates; (7.3) is then equivalent 
to the noise-driven Burgers equation studied in [17]. In particular, the average width 
of the interface grows as 

(7.6) ( h, ( x)~)’ /*  = ( v2x2 I )  ‘I3 

for large 1. Here 

U 
X = z  (7.7) 

is thestrengthofthestationarycovariancefor h’,(h’(x)h’(y)) =~6(~-y ) .Thepre fac to r  
in (7.6) is not known with accuracy (it is given by an integral over the scaling function; 
see [16], section 6.1). The growth has been confirmed for a large variety of systems 
[16] and there is little doubt that it is the correct asymptotics. 

Now, a least if we identify v2 with its bare value G”(O), figure 8 suggests that for 
almost all inclinations we have u2 # 0 and hence a 1’’’ widening of the interface. The 
prominent exception is of course the interface along the diagonal (for symmetric noise 
p = 9 ) ;  there we must have uo = v2 = 0 because of the + - symmetry, and figure 8 and 
the low-noise approximation ( 2 . 7 )  suggest that v 1  and u3 do not vanish. A complete 
discussion of the interface at this inclination would include the effect of the h‘3 
nonlinearity. We have not camed out such an analysis, and the nature of the effect is 
not clear: a mode coupling theory in the spirit of [ 181 indicates logarithmic corrections 
to the linear theory, but it is of course possible that the cubic term is marginally 
relevant, i.e. that the fixed point at zero coupling is unstable under this perturbation. 
In any case, for comparison with our previous approximations it is already instructive 
to investigate the linear theory in which u3 = 0. Then (7.3) becomes 

a , h , =  -va,h,+Da:h,+.6~, (7.8) 

where we have written v = -U, for notational convenience. For initial condition h d x )  = 
0 the interface broadens as 

= ~ ” ~ ( 2 D t / . r r ) ” ~ .  (7.9) 

We now turn to the anchored interface, and argue that the time-dependent broaden- 
ing according to (7.6) and (7.9) reappears as static broadening in the anchored case. 
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We first note that stationarity requires the interface velocity to vanish; with our 
convention on the reference line this implies that U,, = 0. In particular, in the unbiased 
case p = q the average interface has to be along the diagonal: 0 = 5 ~ 1 4 .  Secondly, we 
have U = -U, > 0; cf figure 8. This means that excitations travel outwards, of course 
satisfying the boundary condition h,(O) = 0. Thus the stationary problem is comparable 
to the non-stationary one provided that we identify space and time through x = uf. On 
the basis of this analogy we arrive at the following predictions for the interface 
fluctuations. 

In the unbiased case, 

( h ( ~ ) ' ) ' / ~  = ,y'/'(Z/ T ) ' / ' ( ( " ) " ~  (7.10) 

for large x; here we have introduced the length 

D c=- .  (7.11) 
U 

The exponent in (7.10) is close to the exponent u=O.265 observed in simulations of 
the spin dynamics, and is the same as that obtained from the collective variable 
approximation (see (6.26)), but the identification of the parameters in (7.10) with those 
of the Toom model, carried out below, shows that the prefactor is different. (7.10) 
agrees, even up to prefactor, with the result derived in appendix 1 from stationarity 
conditions plus some additional assumptions; we will see shortly that this agreement 
is not so surprising. If the cubic nonlinearity modifies the large time behaviour in (7.9), 
this will be reflected in a corresponding modification of (7.10). 

In the biased case (7.6) translates to 

(7.i2) 

where we do not know the prefactor with accuracy. Thus, for the biased dynamics we 
obtain the xIf3 growth. Very remarkably, this scaling is reproduced by the collective 

. variable approximation, which seems quite different from the KPZ approach. 
The nonlinearities in (7.3) make it difficult to go beyond a heuristic relation between 

time-dependent broadening and anchored interface fluctuations. However, for the 
linear theory, which applies only to the unbiased interface, we can check the picture 
in more detail and also compute stationary correlations. The problem is to determine 
the stationary measure of (7.8), with x 2 0, U > 0, and with boundary condition h,(O) = 0. 
By linearity the stationary measure is Gaussian with mean zero. To compute the 
covariance, let us  define 

e-"x'D) (7.13) 

to be the transition probability from x to x'  in time f for the diffusion process generated 
by u J , + D d :  with zero boundary condition at x=O, that is, p, is the transition 
probability for a diffusing particle with constant drift U to the right and with absorbing 
boundary condition at zero. The stationary height-height correlation is then given by 

( n ( x , - ) ~ ,  ,. , \211,7 -= ( z 1 2 x ~ x / u ) ! / 3  

p,(x, x r )  = ( 4 ? r ~ t ) - ' i i ( e ~ ' " : - " - y ~ i ~ i 4 ~ 1  - e - i x ' + x - u e i 2 / m t  

( h ( x ) h ( x + y ) )  = jomdt jo'-dx'p.(x', x)p,b' ,  X + Y )  
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where 

R,(x‘, x )  = dt  e-”‘p,(x‘, x )  (7.15) Iom 
is the resolvent. Explicitly, 

for Os x’< x 
1 f o r 0 s x s  x’ 

(u2+4zu)-1/2 e--+ye-*’- 
(7.16) 

with a, = (u/ZD)(l  f (1 + ~ Z D / U ~ ) ” ~ ) ,  Re(z) > 0. Astraightforward computation yields 

(h(x)h(x+y))  

Rz(x, x’) = [ ( u2 + 4ru)- 112 

=&I 71 dA(A(l-e‘l-”lX/c) 2A e ( l - U ) Y / 2 C  cos(yA/@)+ (1  + 16A2)-”2 

x 2  c o s h ( ~ / 2 5 ) l r [ ( 2 x + ~ ) / 5 1  - r (y /OJ) )  (7.17) 

with 

r( y) = e-ay/2 {[(l + a  -n2)/a’(l+a)] cos(yA/a) -(2A/a3) sin(yA/a)} 

and 

(7.18) 

a ={[1+(1+16A2)”2]/2}1/2. (7.19) 

For large x the integral is dominated by the first term at small A. This yields 

( h ( x ) 2 ) = x e  dA(1/2A2)[1 -exp(-2A2)] 

(7.20) 

Note that this result agrees with (7.10), giving support to the heuristic method used 
there. For the height difference correlation one obtains 

71 I 
= ,yJTs;;T;;. 

( [ ~ ( X ) - ~ ( X + Y ) I ~ ) = X J ~ ; S ~ ( Y / J ~ ; S )  (7.21) 

for x large and y of the order of A, where the scaling function g is given by 

g(w)=- dA A-’(l-cos wA)[l-exp(-2A2)]. (7.22) 

It is of interest to compute also the slope-slope correlations. We differentiate (7.17) 

71 ‘ I  
and take the scaling limit. Then 

(h’(x)h’(x+y)) = x [ @ ( ~ Y )  - (871g~)-”~  exp(-y2/85x)1 (7.23) 

for x large and y of the order of A. In fact, (7.23) is just the second derivative of the 
scaling function in (7.21). 

The slope-slope correlation (7.23) agrees with the spin-spin correlation found in 
section 5 (see ( 5 . 8 ) ) .  Actually this is not so surprising, once we consider the stationarity 
condition in differential form. It reads 

( -uJ,+ DJ:- uJ, + DJ:)(h‘(x)h‘(y)) = uJ,J,S(x - y). (7.24) 
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To compare this equation with (5.1) we note that the latter resembles (7.24) in the 
limit in which (SiSj) is a slowly varying function of i and j .  Expanding to second order 
in  (5.1) yields the homogeneous form of (7.24), with e =  D / u  =$. Furthermore, ,y = 1 
since the steady state on the ring is uncorrelated. With these identifications, (7.23) 
coincides with (SA), and (7.10) with (A1.9) and (Al.10). 

In summary, the continuum theory of the Toom interface teaches us two novel 
aspects: (i) the steady-state fluctuations of an interface anchored at the origin and the 
non-stationary broadening of an initially flat interface are governed by the same scaling 
exponent provided that fluctuations travel outward ( U  I> 0); (ii) for unbiased noise, the 
symmetry of the Toom dynamics implies that the interface along the diagonal is 
described by a continuum theory with a h” nonlinearity only. 

We ask finally whether the properties found here for the Toom interfaces are special 
to the NEC majority rule or are of a more generic nature. We have in mind here ZD 
spin-flip dynamics with no conservation law and with a local updating rule, as in the 
Toom model. Furthermore, the model should be ferromagnetic in spirit and should 
be at a low noise level (or low temperature), which roughly means that with high 
probability a spin follows its neighbours. An example is the stochastic king model at 
phase coexistence, i.e. with zero external magnetic field. 

It is clear from the analysis given above that, as far as the continuum theory is 
concerned, the only relevant property is the form of the macroscopic inclination- 
dependent interface velocity. If its second derivative does not vanish, then the standard 
KPZ scaling theory applies (dynamic exponent z =$, static exponent 5 = f in the two 
dimensions). If for a particular orientation of the interface the second derivative 
vanishes but the third does not, then the model is in the universality class of the 
diagonal interface in the Toom model with symmetric noise. If both the second and 
third derivatives vanish, then the universality class is that of an equilibrium interface 
(dynamic exponent r = 2 ) .  The sign (or vanishing) of the first derivative will affect 
stationary fluctuations in an anchored interface, as in the Toom case. Thus, we expect 
that for a probabilistic cellular automaton with (i) two stable phases and (ii) non- 
vanishing interface velocity, the large-scale fluctuations of an interface will be identical 
to those obtained here for the Toom model. 

8. Conclusion 

In this paper we have discussed two general approaches to the behaviour of the 
anchored interface in the ZD Toom model. The first is a reformulation of the problem, 
in the limit of very low noise, as the dynamics of a I D  spin model; the width of the 
interface in the ZD Toom model is proportional to the magnetization of the I D  spin 
model. We have studied the I D  model through the stationarity relations valid in the 
steady state, and through the collective variable approximation. 

An analytic expression for the scaling form of the pair correlation was derived 
from the stationarity relations, supplemented with the assumptions that such a scaling 
form exists and that in the asymptotic regime the four-point functions are much smaller 
than pair correlations. The resulting expression (5.8) is in good agreement with the 
numerical data; since we could not find a clean way of justifying the assumptions 
needed to derive it, however, we cannot be confident of its validity. Moreover, we are 
not yet able to calculate other quantities in the asymptotic regime, primarily because 
such calculations require additional assumptions, which we could not formulate in a 
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way consistent with the stationarity conditions that we know. The problem of the 
asymptotic behaviour of the I D  spin model is thus still open. 

The collective variable approximation to the I D  model yields the prediction that 
the width of the interface is of order L"4 in the unbiased case and L1/' in the biased 
case. Our numerical results are not inconsistent with these predictions. In the unbiased 
case, in fact, the agreement is at the moment tantalizingly good, even to the prefactor, 
but we cannot be sure that our simulations have reached their asymptotic regime. The 
simulations in the biased case appear to be sufficiently far from asymptopia that even 
tentative conclusions are not possible. 

Our second approach to the interface problem is to relate it to the well-studied 
theory of time dependence of fluctuations in growing interfaces. The key idea is that 
the translational velocity of excitations along the interface converts a f"  growth of 
fluctuations in time to a xe growth of fluctuations along the interface. (With an 
appropriate choice of boundary conditions this phenomenon can be also observed in 
other interface problems; see [21] for a discussion of the case of Eden growth.) It is 
striking that (up to the question of proper treatment of a marginal nonlinearity) this 
theory predicts the same exponents of a and f as does the collective variable approxima- 
tion to the I D  theory. 

We finally remark that the I D  model, a spin model which evolves according to a 
very simple dynamical rule, is rather similar to a large class of problems which have 
been studied recently under the name of self-organized criticality. It would be interesting. 
to know if there is a closer connection with these problems, and if some of the methods 
used in the present work (in particular our collective variable approach) could he of 
some use to understand these other problems defined only by dynamical rules. 

Appendix 1. Growth of < M ; )  

In this appendix, we shall obtain an expression for (Mi )  by starting from some 
stationarity conditions and making assumptions (A1.3)-(A1.4) and (A1.9) for the 
correlation functions. 

From the stationarity condition (4.7), one can derive the following identity: 

By replacing Kn-, by its expansion (4.4) and neglecting all correlation functions of 
order higher than four we obtain 

(A1.2) 
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Then assuming that for large i, j ,  k, 1, the pair correlation function satisfies the scaling 
form (5.2), 

(A1.3) 

and that the four-point function satisfies 

(A1.4) 

one gets from (A1.2) to leading order 

2(M.-,Sn)+l=n-”’ -6F(O)-2 G(-x,O,O)dx . (A1.5) ( Id’: ) 
Then using the fact that 

( M 2 , ) - ( M 2 , _ , ) = 2 ( M “ ~ , S , ) +  1 (A1.6) 

one gets for the growth of ( M i )  

( M i )  = an112 (A1.7) 

with 

CY =-12F(O)-4 G(-x, 0,O) dx. (A1.8) 

So we see that the calculation of the leading order of ( M i )  requires knowledge of the 
four-point function (or alternatively the correction to the scaling form (5.2)). 

To determine this four-point function, we only know the stationarity relation (4.13); 
the problem is to choose the solution of these equations. If we assume that in the 
asymptotic regime the factorization 

I,- 

(s~s~sks!) = (sts,)(sksl) + (s,sk)(s,sl) + (sts!)($sk) (A1.9) 

is valid, then we can check that this form satisfies (4.13) and obtain for the coefficient 
a of (A1.7) 

a = -12F(O) - 12F(O) (0’ F(-x) dx = $ (A1 .IO) 

where F is given by (5.8). 
This result, based both on the scaling (A1.3) and (A1.4) and the factorization 

(A1.9), seems to give an estimate for the prefactor a of ( M i )  which is too small to 
explain the results of our numerical simulations of section 3. It is therefore very likely 
that one of these two assumptions is not valid. 

Appendix 2. Rigorous control of the zero-noise limit 

In this appendix we remark that the agreement of the I D  spin model and the zero-noise 
limit of the Toom model may be established rigorously; an appropriate rescaling of 
time is necessary. One way to formulate the result is as follows. Fix positive rates A+, 
A- for the I D  spin model, let S(1) denote the configuration of this model at time 1, 
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and let a(f) denote the configuration of a spin system on the third quadrant of the 
integer lattice in which the boundary between + and - spins consists precisely of the 
staircase associated with S ( t ) ,  with no + spins below or - spins above this staircase. 
Now, for positive and small E ,  let u("(t) denote the configuration at (integer) time t 
of the ZD Toom model with noise parameters p = E A + ,  q = CL, and let d ' ) ( t )  be the 
same process with a rescaled, continuous time: 

6'"(f) = r 7 ( e J ( [ t / E l )  (A2.1) 

where [sl is the greatest integer not exceeding s. Then S ( t )  and the processes d E J ( f ) ,  
for all values of E, may be defined on the same probability space fl, in such a way 
that for almost all ( t ,  w )  ER, x Cl and any finite region A, 

lim b'"(t)(o)l,=e(t)(o)I,. (A2.2) 
8+c' 

Appendix 3. Related spin exchange models 

In this appendix we consider a family of I D  spin exchange models which are simple 
modifications of the model introduced in section 2. The new models are in some cases 
more tractable than the original and serve to illuminate the relation between the original 
model and the collective variable approximation of section 6. 

Let A denote the I D  spin exchange model introduced in section 2; we will consider 
here only the unbiased case A = 1, although the generalization to arbitrary A is straight- 
forward. We define a model by modifying the dynamics of A: in A(k1, only the 
k left-most spins in any block of + or - spins in a configuration may exchange or 
flip; as in At, an exchange is with the first spin to the right having opposite sign and 
a flip occurs in a finite system which no such spin exists. Cieariy, 1 corresponds to 
k = m. The stationarity relation (4.8) becomes (writing ( ) k  for expectations in A'k') 

( K P S " m L I ) ) k  = o  (A3.1) 

where 4 is any function and K y ) =  min{k, K"}.  
We first consider the case k =  1, for which KIk1=  1. Then (A3.1) implies that S. is 

independent of Mn-,; it is an immediate consequence that the distribution of iii, is 
given by 

i.e. that it is the same as if the measure on spin configurations were Bernoulli with 
magnetization zero. Thus 

( M i ) ,  = n. (A3.2) 

On the other hand, the measure on spin configurations in A"' is in fact far from 
Bernoulli. The easiest way to see this is to note that the dynamics of A'", when 
implemented in the ring geometry, will eventually reduce any initial configuration in 
wnicn nor a11 spins nave me s a n ~  ~ g i r  LU a currriguiarrurr w m ~ ~ u ~ ~ g  VI U L L ~ ~  &nu UIU~,LLJ.  

In the semi-infinite geometry new blocks are always produced at the extreme left, since 
the left-most spin can always exchange, but as we move to the right the consolidation 
effect increases the length of blocks. Simulations indicate that at a distance of n links 
from the origin the typical block has size of order 6. 

~ ~ I ~ . ~ . ~  ~ ~ . - I I  ~~I-,...... L I __.. --..c -..--.: ^ ^ ^ ^ ^  ":"&:.."-c- _ I . , . . . .  ^ !-,-,.L- 
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For general k > 1 we can say much less about the model A(*', but it is possible to 
compute ( M i ) 2  exactly. To do  so, we take +(M,,)= M ,  in (A3.1) and write Ky'= 
(3+S.Sn-,) /2 to obtain the recursion relation 3(M"~lS. )2+(M._ ,S ,_ , ) ,+1  =O. The 
recursion is easily solved explicitly; the initial condition (M,S,) ,  = -f is obtained from 
(2.3), which is valid here since A and d2) agree for systems of size L s 2 .  From 

= (Mi-,)2+2(M,-lS,)2+ 1 we then find 

( M Z )  --+-+- -- 
" 2 - 2  * 8 8 Y 3 

' (A3.3) 

It is straightforward to derive a collective variable approximation for the 
model A(*'. We let WLk'(m) denote the probability in A'*' that M. = m, and set 
H!,*'(m)=(S.,,IM. = m ) *  and 

(A3.4) 

where K".*'=min{j, Kt}.  ?e argument of section 6 then leads to the introduction 
of approximating variables U(kJ,*),  t$kl and E?'*' satisfying 

k L y , ( m )  = f ( l + k ' , " ' ( m  - 1))$Lk)(m - 1 ) + $ ( 1  -E?L*'(m + 1 ) )  @ * ' ( m + l )  ( A 3 3  

f i L k . k . + l ( m )  = f i ( k k - I  ( m )  (A3.6) 

and 

u(kA*)(m) =(K','.") 1 M. = m -t W,(m * 1) 

The solution procedure is as before. 
For k = 1 this approach leads to = 0 and to the correct distribution of M. : 

On the other hand, the collective variable measure on spin configurations given by 
(6.12) is just the Bernoulli measure which, as  we have noted, is far from correct. It is 
this circumstance which suggests the possibility that in the true model A the collective 
variable approximation to the fluctuations in M,  may be asymptotically correct, or 
nearly so, even though the collective variable measure clearly has the wrong two-point 
correlation function. 

For all k we may, as in section 6, obtain an asymptotic continuum equation 
describing the distribution W'*'. Here the correct scaling is @ , * ' ( m )  - d k ' ( E 2 n ,  Em), 
with w(* '  satisfying the diffusion equation: J , w ' " ' = ~ ~ ~ ~ , w ' * ' .  For k = 1 and k = 2  this 
leads to the correct asymptotic behaviour of (see (A3.2), (A3.3)). The vanishing 
of the diffusion constant in the limit k + m  is of course a signal that a different scaling 
is appropriate for the model U. 

We finally remark that the models dk' may be viewed as low-noise descriptions 
of the anchored interface in certain cellular automata to which Toom's non-ergodicity 
result applies. For example, for k = 1, we may modify (1.1) as 

11: with probability p 2  (A3.8) 

sign(ur,,+,(f)+ U , + , , , ( t )  + u,,,(O) 
U , + , , , + , ( f )  with probability 2p(l - p )  

with probability 1 - 2 p  

with probability p 2  U,,, ( t  + 1 )  = 

and then let p + 0. 
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