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The random energy model is one of the simplest disordered models containing some of the phys- 
ics of spin glasses. The zeroes of the partition function in the complex temperature plane are deter- 
mined for this model. They either he on simple lines or are dense in some regions of the complex 
plane. 

Locating the zeroes of partition functions in the complex plane of the physical vari- 

ables (magnetic field, temperature) has been a subject of constant interest in the the- 

ory of phase transitions for the last decades [ l-9 1. Phase transitions are expected to 

show up as accumulation points on the real axis of these complex zeroes. In the case 

of ferromagnetic interactions, the Lee and Yang theorem [ 1,2] guarantees that the 

zeroes in the complex plane of the magnetic field are all located along the imaginary 

axis. By contrast, in the complex plane of temperature, the patterns of zeroes can have 

more complicated structures [ 31: isolated points, lines, areas and even fractals [ lo]. 

Several attempts of understanding disordered systems by looking at the distribu- 

tion of zeroes in the complex plane have been tried [ 11,12 1. Except for establishing 

the existence of Griffrths [ 131 singularities in diluted ferromagnets, where the proof 

is based on an estimation of the density of zeroes in the complex plane of the magnetic 

field, little progress has been made so far in disordered systems by looking at the 

complex zeroes of the partition function. Analyzing the patterns of zeroes calculated 

numerically is usually very hard because of the system sizes (the number of zeroes is 

very small) and of the sample to sample fluctuations, which are usually very large for 

small systems. 

Recently, the zeroes of the partition function [ 141 of the random energy [ 15 ] model 

(which is one of the simplest models containing some of the physics of spin glasses) 

have been studied numerically, and they were found to have rather simple structures: 

lines and areas. The goal of the present paper is to describe these zeroes by an analyt- 

ical approach. The main part of the argument is a direct generalization of an idea 

presented recently in the case of directed paths [ 16 1. The main result is shown in 

fig. 1. 

The random energy model (REM) was introduced as a very simplified spin glass 
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model [ 15,17 ] which consists of 2”’ energy levels randomly distributed according to 

a Gaussian distribution P(E), 

P(E)= kNexp(- g). (1) 

The main reason the REM is soluble is that the energies of the 2N configurations 

are independent. So a given sample is characterized by 2” numbers E, randomly cho- 

sen according to ( 1) and the partition function corresponding to this sample is, as 

usual in statistical mechanics, 

2 N 

& 
Z= Cexp -r. 

a=, ( > 
(2) 

The goal, now, is to locate the zeroes of Z in the complex plane of the temperature T. 

To do so, it is useful to obtain first the typical behaviour of the modulus 1 %I of Z for 

any complex temperature T. This can be done by using the same approach as in ref. 

[lb]. 
If we define. V(E) as the number of configurations in the range of energy E, E+ AE, 

i.e. 

.+‘(E)= C.~a, (3) 
u 

wherey,=l ifEgE,<E+aEandyO=Ootherwise (AEisasmallintervalAE-N--‘ 

with for example X= Cc ( 1 ) ), then the partition function Z is given by 

Z= x +‘(E) exp 
E 

The number 1 V(E) is sample dependent, and from ( 1) and (3 ) one knows its average: 

(, t”(E)) =2N kNexp(-$)AE. 

Because the 2 N energies E, are statistically independent, the variables y, in ( 3) are 

also independent. This allows one to calculate the fluctuations of I 1 (E): 

(~+‘“2(E))-(.V’(E))2= C (.~u>-(y,>~ 
u 

=2N{P(E) AE- [P(E) At?]‘}- (. t’(E)) . (6) 

By looking at ( 5 ) and (6 ), one can show that there are two different ranges of energies 

E. Defining E, by 

c&i&?, (7) 

one sees that if ) E I /NC E,, then (r V(E) ) x- 1 and the fluctuations of. 1 ‘(E) are small 
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compared to its average. In that range one expects the typical number &(E) to be 

of the form 

J&(E) = (J+(E) > +rl(E) (J+(E) )“2 f (8) 

where q(E) is a random number of order 1 (when N is large) which fluctuates in sign 

and in amplitude from one energy interval E, E+ AE to the next. 

In the other range of energies defined by 1 E I IN> cc, the average number of contig- 

urations (M(E)) is much smaller than 1. Therefore, the probability of finding at 

least one configuration at these energies is exponentially small for large N, implying 

that 

.&(E) =0 . (9) 

From the above argument, we see that the computation of the partition function Z,,, 

at any complex temperature Tin the typical case is reduced in the large N limit to 

calculating 

Z,,,=A+B, (10) 

with 

A= c (.V(E)) exp (11) 
IEI/N<EC 

and 

(12) 

As in ref. [ 161, by estimating A and B for large N, we will see that there exist three 

different phases. 

The sum A can be calculated by a saddle point method. For a complex value of the 

temperature T, the saddle point is located at an energy E/N= - (2T) --I. Therefore 

the only question in estimating the sum A is to know whether or not, when one inte- 

grates over E from -NE, to NC,, the integral contour can be deformed to pass through 

the saddle point ( -2T)-’ and if the endpoints ( + NE,) of the integral are lower than 

this saddle point. It is easy to check that this is only the case when 

-c,+IIm($)>1<Re(&)ie,-/Im(&)i. 

Therefore, when ( 13) is satisfied, the sum A becomes 

A= &J2”exP(-$)exp(-$)dE=Z”erp($). 

(13) 

(14) 

On the contrary, when ( 13) is not satisfied, A is dominated by either the upper or the 

lower limit of the sum ( 11) and the result is 



One should notice that in ( 15 ), one cannot predict the phase of.4 because the energies 

which dominate the sum .-I are the ground state and the lowest excited states. These 

energies have sample to sample fluctuations of order 1 [ I5 1, implying that the phase 

of Z fluctuates. 

The term B given by ( 12 ) can also be calculated for large N. Because r7( E) is a 

random function of E, the integrand is no longer an analytic function of E and thus 

there is no way of calculating the sum ( 12) by deforming a contour in the complex 

plane of E. On the other hand, because the values of q( E) at different energies !: arc 

essentially uncorrelated, the term of largest modulus in the sum ( 12) dominates the 

amplitude of B (the randomness of q( E) prevents this largest term from being com- 

pletely cancelled by the terms coming from the other energies). Therefore 

Gs in the case of the sum .3. there are two possible ranges of temperature 

In the first range of temperature defined by 

the energy E which dominates the sum B is E/N= - Re( I /T). and the sum B is given 

by 

(18) 

whereas when ( 17 ) is not satisfied, the sum ( 12 ) is dominated by the ground state 

energy E/N= k t, and one finds that 

(19) 

Having obtained the large N behaviours ( 14 ), ( I 5 ). ( I8 ) and ( I9 ) of A and B under 

conditions ( I3 ) and ( 17 ). we can use ( 10) to obtain the modulus of Z at any tem- 

perature. One finds three phases I, II and II as shown in fig. la, with 

in phase I 1oglZl 
___ 

N 

in phase I1 WZl 1 
-=eC Re - , 

N I 01 T 
(lob) 
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(4 

TEMPERATURE PLANE 

(b) 

Fig. I. The complex plane of temperature (a) or of fi (b). The zeroes are dense in the region III. The 

boundaries I-II and I-III are also lines of zeroes. The density in the p plane is given in (28). 

2 
2 

in phase III - 1oglZl 
1 

= - log 
N 2 

+ZRel [ 01 
T 

. (2Oc) 

A simpler way of looking at these three phases is to look at the complex plane (of 

p=p, +ip,= 1 /T). In the j3 plane, the three phases are shown in fig. 1 b and the cor- 

responding expressions of log) Z 1 IN are given by 

phase I 
l%lZl 
- =bPc’+a(~:-P:, , N 

phase II logI- 
- =iPcIP, I > 

N 

phase III 
blZl 
- 

N 
=#+tj3:, 

(2la) 

(2lb) 

(2lc) 

where j?, = 2&g2 and the boundaries between these phases in the first quadrant are 

given by 

phase I, phase II: p, + /I2 =pC, tjIC < p, < PC, 

phase II, phase III: j3, = 1 PC, /I2 > f j$, 

phase I, phase III: /3? + /3: = t/If, j?, < $pC. 

The boundaries in the other quadrants follow by symmetry. 

Once the expression of log1 ZJ /N is known, the density of zeroes p(p,, a) in the 

complex plane of p can be easily obtained through the following expression: 

P(P,,Pz)= &g +$9(y). (22) 



This expression can be understood by considering the following example: take a 

polynomial,f‘(p) with Pcomplex zeroes ;I,. . . . . ;‘,,. 

f(P)= fi (P-v,) 
,=I 

(23) 

Clearly one has 

log(I.f(P)I )= i iogIP--Y,I . (24) 
I= I 

and using the fact (which can be checked for example by calculating the Laplacian of 

log(,!?T +pf +q2) and taking then the limit tl+O) that 

($ d22) + dpZ log(P: +Pi)=4x S(P, 1 S(Pz) 

one obtains 

(5 d2?) + @ log( I.f(D)I )=2rt f S(B, -Y,“‘) S(Bz-Y,“‘). 
,=I 

(25) 

(26) 

where 1~: ’ ) and ‘i/11 are the real and imaginary parts ofthe zero y,. So we see that (22) 

gives the right density for the polynomial (23). 

From (21) and (22), we see that there are no zeroes (or at least the density of 

zeroes vanishes) in phases I and II and that the density of zeroes is uniform in phase 

III as shown in fig. 1 b (complex plane of p). 

P(i;l.A)= A. (27) 

This leads to a region III in fig. la (complex plane of temperature) with a non-con- 

stant density of zeroes which can be easily obtained from (27) by using the transfor- 

mation 7‘= 1 /p. 

In addition to the uniform density (27) of zeroes in region III, one can also obtain 

from (2 1 ) and (22) the densities of zeroes along the lines which separate the different 

phases of fig. 1 b. The total density p(p,, pZ) which results from (2 1) and (22) is, in 

the first quadrant, 

+ & (A-P,) SW, +/32-/%) w, -fA, 

The distribution in the other quadrants follows by symmetry. The density seems to be 
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in good agreement with the numerical results of Moukarzel and Parga [ 14 1. It is no- 

teworthy that the boundaries between phases I and II and between phases I and III 

are lines of zeroes whereas the separation between phases II and III is not. One can 

notice that a line of zeroes crosses the real axis at T, with an angle a~ as expected [ 18 ] 

for a system with a discontinuous specific heat [ 15 1. 

One should be able to extend the above calculation to distributions of energies other 

than ( 1) (for example binomial distributions). 

References 

[I]C.N.YangandT.D.Lee,Phys.Rev.87(1952)404. 

[2]T.D.LeeandC.N.Yang,Phys.Rev.87 (1952)410. 

[ 31 M.E. Fisher, in: Lectures in Theoretical Physics, vol. 7 (University ofColorado, Boulder, 1965). 

[ 41 R.A. Abe and S. Katsura, Prog. Theor. Phys. 43 ( 1970) 1402. 

[ 51 D. Ruelle, Commun. Math. Phys. 3 I ( 1973) 265. 

[6] R.B. Pearson, Phys. Rev. B 26 (1982) 6285. 

[ 71 W. van Saarloos and D.A. Kurtze, J. Phys. A 17 ( 1984) 1301. 

[8]D.W.Wood,J.Phys.A18(1985)L481. 

[ 91 J. Stephenson, J. Phys. A 20 ( 1987) 45 13. 

[lo] B. Derrida, L. De S&e and C. Itzykson, J. Stat. Phys. 33 (1983) 559. 

[ 111 R. Rammal, These a 1’Universitt de Grenoble ( 198 1). 

[ 121 Y. Ozeki, H. Nishimori, J. Phys. Sot. Jpn. 57 (1988) 1087. 

[ 131 R.B. GrifIiths, Phys. Rev. Lett. 23 (1969) 17. 

[ 141 C.F. Moukarzel and N. Parga, preprint ( 199 1). 

[ 151 B. Derrida, Phys. Rev. B 24 (1981) 2613. 

[ 161 J. Cook and B. Derrida, J. Stat. Phys. 6 1 ( 1990) 96 1. 

[ I71 E. Gardner and B. Derrida, J. Phys. A 22 (1989) 1975. 

[ IS] C. Itzykson, R.B. Pearson and J.B. Zuber, Nucl. Phys. B 220 ( I983 ) 4 15. 


