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We consider the problem of directed polymers in a random medium of a finite- 
dimensional lattice. In the high-temperature phase of this system it is known 
that the annealed and quenched free energies coincide. Upper bounds on the 
transition temperature to a low-temperature phase had previously been 
obtained by calculating the first two moments (Z)  and (Z 2) of the partition 
function. We improve these bounds by estimating noninteger moments (Z ~) 
for 1<~<2.  
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1. I N T R O D U C T I O N  

F r o m  the study of strongly disordered systems such as spin glasses carried 
out in the last decade (1/ several part icular  features of  the low-temperature 
phase have emerged. At least in the mean-field limit the low temperature 
phase is characterized by a phase space randomly  broken into free energy 
valleys, the weights of which vary from sample to sample and remain 
non-self-averaging even in the limit of  infinitely large systems. (~'2) Attempts 
to generalize these ideas to finite-dimensional systems (3) have proven rather 
difficult and conflicting opinions remain as to whether the mean-field 
results provide the right picture. Even demonst ra t ing that spin glasses do 
have a phase transit ion in finite dimension is not  an easy task. 

Recently it has become apparent  that  the problem of directed 
polymers in a r andom medium (4'5) has many  features in c o m m o n  with that 
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of spin glasses. In particular, the mean-field limit, (6) which is realized by 
considering directed polymers on a tree, has a low-temperature phase with 
analogous properties to that of the spin-glass phase of the Sherrington- 
Kirkpatrick model as described by Parisi's approach. However, while 
yielding this behavior, the directed polymer problem is simple enough to 
allow, in the mean-field limit, for a closed expression of the free energy at 
all temperatures. Together with the close relationship of directed polymers 
to growth models, (7) this provides a motivation to study directed polymers 
in finite dimension. 

A key difference that appears in the finite-dimensional model is that 
two polymers can rejoin once they have parted on a finite-dimensional 
lattice, whereas on a tree they cannot. This feature was systematically 
introduced to obtain a lid expansion in high enough dimension. (8) The 
existence of a phase transition in finite dimension was also proven by a 
very simple argument based on the calculation of the first two moments of 
the partition function Z. This argument allows one to obtain bounds on 
the free energy and transition temperature Tc. (9'1~ When the argument is 
used in the mean-field theory the upper bound on T c is strictly higher than 
the known Tc and so one gets the feeling that the bounds could be 
improved upon. This suspicion has recently been confirmed by an 
approach based on martingales that was developed to estimate the non- 
integer moments ( Z  ~) of Z for 1 < a ~< 2 in the mean-field case (ll) (see also 
refs. 12 and 13 for the application of martingales to tree problems). It was 
shown that the bounds on Tc could be improved to the extent that the 
exact T~ was recovered, thus providing a new route to the exact solution 
of the model. 

The purpose of the present paper is to follow a similar approach based 
on the estimate of noninteger moments, but in the finite-dimensional case, 
to obtain improved bounds on the transition temperature. The paper is 
organized as follows: Section 2 recalls the problem of directed polymers 
and how integer moments may be used to obtain bounds on the transition 
temperature; in Section 3 we show how these ideas may be generalized to 
noninteger moments, for which we obtain inequalities; in Section 4 numeri- 
cal values for the upper bound on the transition temperature are extracted 
from the inequalities derived in Section 3 and possible improvements are 
discussed. 

2. INTEGER M O M E N T S  OF T H E  P A R T I T I O N  F U N C T I O N  FOR 
D I R E C T E D  P O L Y M E R S  

Directed polymers are directed random walks of length L through a 
lattice with fixed origin. Each site r of the lattice has a random variable 8r, 
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known as a site energy, associated with it and we use the convention that 
the energy eo of the origin o is zero. The energy of a walk W is the sum 
of the energies at the sites through which the walk passes: 

e w =  Y~ ~r (1) 
r f f W  

The partition function for polymers of length L may then be defined as 

ZL= ~ e-~E~ (2) 
W 

where fl is the inverse temperature. In this work we consider walks directed 
in the (1, 1,..., 1) direction of a hypercubic lattice, which means that at each 
step of the walk one coordinate increases by one. There are thus d L 
possible walks, where d is the dimension of the lattice. 

Let us first recall how from the knowledge of the first two moments 
( Z >  and ( Z  2 > one can obtain the expression of the quenched free energy 
at high enough temperature. Consider the ratio R2 defined by 

2 

R2(fl)= lim (ZL(fl)> 
~_~ <z~(fl)>~ (3) 

If R2 is finite, then it can be shown by a simple application of Chebyshev's 
inequality that 

lim IOgZL lim l~  
L~o~ L --L~oo L (4) 

holds with probability greater than 1/R2. To calculate R2, we need to 
know the average of the partition function, which is simply the number of 
walks multiplied by the average weight of a walk: 

(ZL>=dL(e ~>L (5) 

The angular brackets denote an average over the distribution of site 
energies e. The quantity (Z~> may be calculated by noting that Z~ is the 
partition function of a system whose configurations are pairs of walks. The 
average weight of a pair of walks depends on how many times the walks 
meet. One then finds (1~ 

L (<e V 
R 2 = ~ o  Pm \(e_e~>2j (6) 

where Pm is the probability that two walks meet m times. 
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The probability of (4) may be increased by considering polymers with 
the energy of the first few steps removed. This process does not affect the 
extensive part of the free energy, because the first few steps give a non- 
extensive contribution; however, it does increase the lower bound on the 
probability that (4) is true. In this way one can remove enough steps when 
R2 is finite to show that (4) holds with a probability tending to one. I~~ 
Thus, when R2 is finite, the free energy per monomer is given by the 
annealed free energy limL~ oo Iog(ZL)/L with probability one. 

In high enough dimension (d>  3) Pm decays exponentially with m for 
L--+ oo, 

Pro=(1 - A ) A "  (7) 

The constant A, which is lattice dependent, is the probability that two 
directed walks starting from the origin subsequently meet at least once, and 
can be computed explicitly. (m) By inserting (7) into (6), one sees that the 
condition for R2 to be finite is that T >  T2, where T2 is the solution of 

( e - 2 m )  A = 1 with f i=  IT2] -1  (8) 
( e - ~ )  2 

So for T >  T2, the quenched free energy is equal to the annealed free 
energy, whereas for T <  T2 the above argument does not tell us whether the 
annealed free energy is still equal to the quenched free energy or not. On 
the other hand, a necessary condition on the annealed free energy for it to 
be equal to the quenched free energy is that it does not give a negative 
entropy. The condition may be written as 

0 
Off (ZL(fl) > '/~ < 0 (9) 

The temperature at which (9) is violated then gives a lower bound To 
below which the annealed and quenched free energies must be different. (m) 
So a phase transition has to occur at a temperature T c which lies between 
To and /'2: 

To~ Yc<~ T2 (10) 

In this work we will consider a Gaussian distribution of site energies 
with unit variance. This results in 

( exp( - fl~) ) = exp(fl2/2) ( 11 ) 

For a tree of branching number d, A in (7) is the probability that two 
walks follow the same branch at the first step, so that A = 1/d. The upper 
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and lower bounds given by (8) and (9) for a tree and Gaussian energies are 
then 

1 1 
To = (2 log d) 1/2 ~< Tc <. (log d)  m - T2 (12) 

We know from other approaches (6'11'12) that the lower bound To is in 
fact the correct transition temperature Tc. Evidently there is room for 
improvement in the upper bound. 

3. N O N I N T E G E R  M O M E N T S  

Our discussion of the noninteger moments of the partition function 
will center on the ratio 

R~= lira (Z~(f l ) )  where 1<c~<2 (13) 
~ <z~(f l )>  ~ 

The trouble with dealing with noninteger moments is that closed expres- 
sions similar to (6) can no longer be obtained. Instead, we shall obtain 
bounds on the ratio R~. Our main tools will be two well-known 
inequalities(14): the convexity inequality (due to Jensen), which states that 
for x~>0 

( x ~ ) ~ ( x )  ~ for 7~<1 
(14) 

( x ~ ) > ~ ( x )  "~ for 7~>1 

and a standard inequality which states that for any set of x i ~> 0 

Xi ~ 2 ( xi)7 for ~ ~ 1 
i 

xi ~ ~ (xi) ~ for 7~<1 
i 

An immediate consequence for R~ of convexity (14) is that 

(15) 

R ~ > I  if ~ > 1  (16) 

By an analogous argument to that outlined in the previous section for R2, 
it can be shown that if R~ is finite, then the annealed is equal to the 
quenched free energy. For 2 >~ ~ > 1, the temperature T~ above which this 
occurs is less than or equal to 7"2 as can be seen by noting that 

R~, <" ~  lim (Z~(fl))2/~ 
~ ( z d f l ) )  ~ ~<R~ (17) 

822/69/1-2-28 
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where convexity (14) has been invoked in the final inequality. T~ can then 
give an improved upper bound on the transition temperature T c, 

Tc<<.T~<<.T 2 for 1 <c~<2 (18) 

In order to estimate R~, we write Z2c as the sum of the partition 
functions Yz({r}m) for pairs of paths that meet at the sites {r}m= 
{ro, rl,..., rm}. The sum is over m, the number of times the two paths meet 
subsequent to their initial intersection ro = o, and over all possible choices 
of the m meeting sites {r }m : 

[ZL]~=  [(ZL)2]~/2= ~ YL({r}m)j ~/2 (19) 1 
0 {r}m 

We now make use of inequality (15) for ~/2~< 1 to separate the 
contributions from different sets of intersections 

L 

[ZL]~ ~ ~ [YL( { r }m) ]  ~/2 (20) 
m = 0  {r}m 

The partition function YL({rm}) is the product of statistically independent 
partition functions X(rj 1, rj) with a factor ~'L(rm). Here X(rj_ 1, rj) is the 
partition function for pairs of walks that start at r j_ 1 and end at their first 
subsequent intersection rj, whereas X-L(rm) is the partition function for 
pairs of walks that start at rm and do not meet. The length of these walks 
is L -  r,~, where r m is the number of steps from the origin to r m. Thus, (20) 
becomes 

L 

[ZL]~< ~ ~ [_gL(rm)] ~/2 f i  [X(r j_ l , r j ) ]  ~/2 (21) 
m - - 0  {r}m j - - 1  

To perform the averaging, we use the convexity inequality (14). For 
~'-L(rm) we have 

<.~L(r,.) ~/2 > ~< < ~'L(r,.) >~/2 
= [d 2(L- ~}Po(L - rm)<e-e~ >2(L rm)]~/2 

[ P o ( L -  r~) ]~/2 
= (ZL>~ [ d ( e  ~')]~'m (22) 

where Po(s) is the probability that two walks do not meet after s steps [-the 
number of pairs of walks of length L - r , ,  that do not meet is of course 
Po(L- -  rm)d 2~L "~)]. For s ~ m,  Po(s) has a nonzero limit Po in dimension 
d >  3. The translational invariance of the lattice means that <X(rj 1, rj)> 
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depends on r j - r j  1. We use this when averaging (21), in the limit of 
L ~  oo, to interchange the sum over {r}m and product. Then (13), (21), 
and (22) give 

{ IX(o, m 

##'1 ~ 0 

(23) 

It finally remains to estimate { [X(o, r)1~/2). Now, X(o, r) is the parti- 
tion function of pairs of walks which start at o and meet for the first time 
at r. There are d2rQl(r ) such pairs of walks, where Q,(r) is the probability 
that two directed walks starting from o meet for the first time at site r. The 
energies of the two walks within a pair are uncorrelated except for the 
contribution of site r, which is the same for both walks in all pairs. We can 
factorize this contribution and then use convexity to give 

/Ix(o, \ 

~<[Ql(r)] =/2d~r(e ~P~)(e-e~) ~(r '~ (24) 

After inserting (24) into (23), we have 

R, <<- P~/2 ~ { ( e - ~ )  }m 
m=O ( e - - n ' ) ~ r  [Ql(r)]=/2 (25) 

If the rhs of (25) is finite, R~ is certainly finite; thus, an upper bound T~ 
on T~ is given when 

e :~/~e ) ~/2 _ 

{ e _ n ~ ) ~  [Ql(r ) ]  - 1 with fl--= rTU] -1 (26) 

A special case of (25) and (26) is e = 2 .  In this case the inequalities 
(14) and (15) used to derive (25) are equalities and (8) is recovered. The 
sum in (26) is then the probability of two walks meeting for the first time 
anywhere. This is equal to the probability that two walks meet at least 
once, denoted by A in (7). 

To check that (25) recovers the result of ref. 11, we again consider 
polymers on a tree of branching ratio d. In this case paths can only meet 
for the first time at the first step and (25) is easy to calculate: 

[Ql( r ) ]  ~/2 = d (1 -~) (27) 
r 
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For Gaussian energies, (26) then gives 

( ~ ~1/2 
T~ = \ ~ j  (28) 

which, as ~ ~ 1, recovers the known transition temperature Tc = To. 

One should note that we consider here the limit a ~ 1 rather than the 
usual limit ~ ~ 0 of the replica approach. For  ~ < 1, the inequality (16) is 
reversed so that R ~ <  1. It can be shown that when R~ is nonzero, the 
annealed free energy is equal to the quenched free energy. However, upper 
bounds on R~ are not of much use in determining when this occurs. 

4. N U M E R I C A L  R E S U L T S  

To obtain a value for T~ (1 < ~ ~< 2) on the finite-dimensional lattice 
we first require that for some values of e < 2 

[-Ql(r)] ~/2 < 1 (29) 
r 

so that (26) has a solution. This is true for d >  3, since above d =  3, the 
probability for two walks to meet is strictly less than one. In addition, to 
gain an improvement  over T2 we require 

~T~c~ , =2 > 0 (B0) 

The explicit calculation of the sum of probabilities to noninteger powers 
involved in (25) is difficult and we resoted to their numerical evaluation. 

We calculated all the Ql(r)  up to eight steps on the lattice by direct 
enumeration in arbitrary dimension. We also considered the bond version 
of the problem for which the energies are associated with the bonds of the 
lattice rather than the sites. In this case we calculated the Ql(r)  up to nine 
steps. In both cases the sum of probabilities converges rather well. One 
expects this because for d >  3 the probability of two directed walks ever 
meeting has a nonzero limit less than one as L ~ oo. This implies that 
walks are most likely to meet for the first time after a small number of 
steps. 

After each step we use the calculated probabilities to approximate the 
lhs of (26). With this curtailed sum we estimated the value of ~ that 
through (26) gave the minimum value of T~. The results are shown in 
Fig. 1, where we plot the minimum over c~ of T~' against dimension as the 
number of steps used to calculate Ql(r)  increases. At least for large d, the 
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figure indicates first that the numerical estimation of the minimum T~ does 
converge and second that the curve to which the results converge gives an 
improvement over T2. The lowest curve on the figure is for Ql(r)  
calculated up to one step, which recovers the tree [see comment before 
(27)] and forms a lower bound on To. 
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Fig. 1. The full curves  plot  the upper  b o u n d  on T c as es t imated  numer ica l ly  from (26) for 

a G a u s s i a n  d i s t r ibu t ion  of energies:  (a) site energies;  (b) bond  energies. The number  of steps 
up  to which Ql ( r )  is ca lcu la ted  is m a r k e d  for each curve. The  broken  curves are es t imates  of 

T~ ob ta ined  th rough  (26) wi th  Q l ( r )  ca lcu la ted  up to e ight  s teps for the bond  p rob lem and  
nine steps for the site problem.  
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In order to estimate the minimum dimension at which (26) gives an 
improvement over T2, we evaluated the dimension below which (30) no 
longer holds as the number of steps used to calculate Q~(r) increases. 
The results are plotted in Fig. 2. The dimensions one could obtain by 
extrapolating to an infinite number of steps appear different for the bond 
and site problems, so they probably reflect more the approximations 
involved in (25) than the dimension at which it is impossible to improve 
T2. 

Although we have only considered a Gaussian distribution of energies 
so far, (25) and (26) are quite general and one could repeat our numerical 
calculation for other distributions. 

We believe that (25) is probably not the optimal bound on To. One 
way (25) could be improved would be to return to (23) and make more 
careful estimates on the quantities ( [X(o ,  r ) ]  ~/2). For example, up to r = 2 
for the site problem and r = 3 for the bond problem ( IX(o,  r)] ~/2) can be 
calculated exactly. This is because in these cases there is at most one pair 
of paths that meet for the first time at r. For  larger values of r it may be 
that the use of inequality (15) or a combination of (15) and convexity (14) 
would give a better estimate of ( IX(o ,  r)] ~/2) than the method involving 
convexity alone that we outlined in Section 3. However, to achieve a 
significant improvement over (25), one would have to deal with each 
( [ - X ( o ,  11")3 ~/2)  individually and such a procedure would rapidly become 
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Fig. 2. The minimum dimension at which an improvement over T 2 is given for Gaussian 
energies by (26) against the number  of steps up to which Ql(r)  is calculated to estimate (26). 
Broken curve, site energies; full curve, bond energies. 

very intricate. 
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The po in t  we wish to convey in this pape r  is that  for d i rec ted  po lymers  

in a f in i te -d imensional  r a n d o m  med ium one can improve  bounds  on the 
t rans i t ion  t empera tu re  by  a relat ively s imple method.  This me thod  involves 
es t imat ing  nonin teger  momen t s  of the pa r t i t ion  funct ion by the use of well- 
k n o w n  inequali t ies.  F i rs t  one has to separa te  the pa r t i t ion  funct ion into 
cor re la ted  cont r ibut ions ,  then average these con t r ibu t ions  as best one can. 
The basic a p p r o a c h  appears  ra ther  general  and  may  well be appl icab le  to 
o ther  s t rongly  d i sordered  systems. 
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