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Summary. We compare the behavior of the ge- 
netic distance between individuals in evolving pop- 
ulations for three stochastic models. 

In the first model reproduction is asexual and the 
distribution of genetic distances reflects the genea- 
logical tree of the population. This distribution fluc- 
tuates greatly in time, even for very large popula- 
tions. 

In the second model reproduction is sexual with 
random mating allowed between any pair of indi- 
viduals. In this case, the population becomes ho- 
mogeneous and the genetic distance between pairs 
of individuals has small fluctuations which vanish in 
the limit of an infinitely large population. 

In the third model reproduction is still sexual but 
instead of random mating, mating only occurs be- 
tween individuals which are genetically similar to 
each other. In that case, the population splits spon- 
taneously into species which are in reproductive 
isolation from one another and one observes a 
steady state with a continual appearance and ex- 
tinction of species in the population. We discuss 
this model in relation to the biological theory of 
speciation and isolating mechanisms. 

We also point out similarities between these 
three models of evolving populations and the theory 
of disordered systems in physics. 
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Introduction 

When studying living populations it is natural to try 
to classify individuals according to their similari- 
ties. To quantify these similarities it is useful to 
define a genetic distance between individuals which 
depends on the number of genes which they have in 
common. Individuals having common ancestors in 
the recent past will tend to have many genes in 
common: there will be a small genetic distance be- 
tween them. At the level of species it is also possi- 
ble to define measures of distance. These will nor- 
mally depend on the time since two species  
descended from a common ancestral species. This 
can be done by observation of phenotypic charac- 
teristics (Sokal and Sneath 1963), or by direct ob- 
servation of protein and DNA sequences (Goodman 
1981; Felsenstein 1981; Bishop and Friday 1985). 

In this article we discuss several models showing 
the behavior of genetic distances between individ- 
uals and between species. The models are stochas- 
tic and illustrate the importance of random fluctua- 
tions in gene frequencies in finite populations. The 
models are extremely simplified but we hope still 
retain some features relevant to real living popula- 
tions. These models also illustrate the similarity be- 
tween physical and biological systems. 

We begin with the One-Parent Model (OPM), 
representing an asexually reproducing population 
(Derrida and Peliti 1991). In the next section we 
show how the genealogical tree is generated, and in 
the section after that we discuss the consequences 
of the tree structure for the behavior of the genetic 
distances. 



We compare the OPM to the Homogeneous- 
Population Model (HPM), which is a simple model 
for a sexually reproducing population (Serva and 
Peliti 1991). The continual mixing of genes in a ran- 
dom mating population causes the population to be- 
come homogeneous in the sense that the genetic 
distance between any pair of individuals is the 
same. For this model we shall see that genetic dis- 
tances possess neither the tree structure or the large 
fluctuations observed in the OPM. 

We then discuss the Species-Formation Model 
(SFM) (Higgs and Derrida 1991). In this model mat- 
ing is possible only between individuals which are 
genetically similar to each other. We show that this 
model yields species which are in reproductive iso- 
lation from each other and that an evolutionary tree 
is again present if we look at the species level rather 
than the level of individuals. 

Finally we discuss these models in connection 
with biology and theoretical physics, and give some 
possibilities for further research. 

The models are defined in such a way as to be 
tractable to mathematical analysis in many cases 
(see Derrida and Peliti 1991 ; Serva and Peliti 1991). 
However, in this article we shall try to avoid math- 
ematical details and illustrate the results mostly by 
numerical simulations. 

The One-Parent Model  

The OPM is defined as follows (Derrida and Peliti 
1991; Higgs and Derrida 1991). The population con- 
sists of M individuals. Each individual a is repre- 
sented by a sequence of N units: {S~,S~ . . . S~v}. 
Here S~' is the ith unit in sequence a. The sequence 
may represent the amino acids in a protein, or the 
bases of a nucleic acid sequence, or the alleles in a 
genome. We will refer to the units as alleles, and 
assume that each allele has two possible forms, 
so that each S~' can take the value + 1 or - 1. 

A natural measure of genetic distance between 
individuals et and [3 is the Hamming distance: 
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Two identical individuals have d ~ = 0, and hence 
q ~  = 1. If two genome sequences are completely 
independent, there is a probability 1/2 that two alle- 
les S~ and S~ will be the same. Hence d ~ = N/2  
and q ~  = 0. 

We suppose that the size of the population M is 
fixed, and that each individual has an equal chance 
of producing offspring. Each individual a in one 
generation has a parent G(o0 which is an individual 
chosen at random from the members of the previous 
generation. (This gives a Poisson distribution of the 
number of descendants of an individual, with some 
having many offspring and some having none. The 
mean number of offspring is of course 1.) 

Each new individual inherits the genome of its 
parent, but with a small probability of error deter- 
mined by the mutation rate Ix. Thus 

1 
ST = S] (~) with probability ~ (1 + e -2p~) 

1 
ST = - S ~  (~) with probability ~ (1 - e -2p')  

(3) 

For tx ~ 1, these probabilities become 1 - tx, and I*, 
respectively. We assume that these mutations occur 
independently at different points on the sequence. 

Before considering the behavior of the sequences 
themselves, and the overlaps between them, we will 
look at the hierarchical "family tree" generated by 
the model. Since each individual has a parent cho- 
sen at random from the previous generation, there 
is a probability 1/M that two individuals will have 
the same parent. Moreover, any two individuals can 
eventually be traced back to a common ancestor. 
The probability that the first common ancestor of 
individuals ot and [3 occurred T ~ generations ago is 
~(lw'~), where 

T-1 1 
~ - -  ~ e  -TIM for large M 

(4) 

N 
1 

d'~ = ~ E ]ST - S~] 
i = 1  

(1) 

This is just the number of alleles which are different 
in the two individuals. Another quantity containing 
the same information as d ~ is the overlap q~ ,  de- 
fined by 

The bar indicates that if(T) is an average probability 
for all realizations of the family tree. If we look at 
the distribution of times / ~  between all pairs of 
individuals at one particular generation (Fig. 1), this 
bears no resemblance to the smooth function P(T). 

Figure 1 was generated as follows. If the matrix 
/~t ~ is known at generation t then we can calculate 
it at the next generation simply by choosing ran- 
domly the M parents G(a) and using the relationship 

N 
1 2d '~ 

qa~ = ~ E STS~i = 1 N 
i = 1  

(2) 
~ t ~ l  ~--- T~t ((x)G([3) "~- 1 (5) 

which relates the elements of the new matrix to the 
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Fig. 1. Distribution of the elements of the matrix T ~a in the 
OPM for a population of M = 1000 individuals. The distribution 
is shown at six times for the same population. There is a period 
of 50 generations between each successive pair of curves; there- 
fore the peaks move a distance 50 to the right each time. Peaks 
fluctuate in size and eventually disappear. 

TaD I \~ Ta~=TO~ 

Fig. 2. Schematic representation of the genealogical tree in the 
OPM showing ultrametfic property of the branching times T ~ ,  
T ~w, T ~ .  Cutting the tree at an arbitrary point in the past divides 
the population into families. 

tion into a number of "families." The distribution 
of the sizes of these families can be calculated 
(Derrida and Peliti 1991) using the analogy with ran- 
dom map models (Derrida and Bessis 1988). 

An important point about the matrix 2r ~ is that it 
is ultrametric; i.e., for any three individuals in the 
population 

/ ~  <~ max(T~,T~) (6) 

elements of the old matrix. At all times the diagonal 
elements T ~ are kept equal to zero. We began with 
the initial conditions 7 ~ = 0 for all a and 13. The 
bottom curve of Fig. 1 shows the distribution P(7 ~ )  
of the elements of ir ~ after a time of order M gen- 
erations (in order to forget the initial conditions). 

Each subsequent curve (moving upward) shows 
the distribution in the same population a short time 
(M/20 generations) afterward. A series of sharp 
peaks is seen, which can be understood in terms of 
the family tree of the individuals. 

Figure 2 shows schematically the tree of descent 
of the current generation. ~U ~ is determined by the 
branch point representing the first common ances- 
tor of o~ and 13. There is one peak in Fig. 1 for each 
branch point of the tree. There are many small 
peaks at short times representing the large numbers 
of small branches at the top of the tree, while there 
are a small number of large peaks at longer times 
representing the small number of branch points at 
the base of the tree. As each new generation is 
added to the tree, the existing branch points move 
further back into the past; hence the peaks move 
steadily to the right in Fig. 1. New small peaks are 
constantly forming at T = 1. Any peak will even- 
tually disappear due to random fluctuations in the 
number of descendants of the different individuals. 
The position of the earliest surviving branch point 
in the tree is typically a few times M generations in 
the past. 

We can imagine cutting the tree at a particular 
point in the past (Fig. 2). This divides the popula- 

This has the consequence that the two largest of 
these three elements are equal. (For example T ~ = 
i #v in Fig. 2.) For more details on ultrametric struc- 
tures see Bishop and Friday (1985) and Rammal et 
al. (1986). The ultrametric structure in this model 
comes as no surprise since it is built into the model. 
However,  we shall see that ultrametricity arises 
spontaneously in the Species-Formation Model to 
be discussed later. 

Overlaps in the One-Parent Model 

We will now look at the evolution in time of the 
overlap matrix q ~  defined in (2). Returning to the 
genome sequences of the individuals, we see that 
given the value of allele S~ (~) of the parent, the 
expectation value of that allele in the offspring is 

E[S']] = e -  2~Si c('~) (7) 

which is calculated from the mutation probabilities 
in equation (3). Similarly, given the overlap be- 
tween the parents G(tx) and G(13) of two individuals, 
the overlap between the offspring is 

q~,a = e-4WqGOX)G(~) (8) 

Strictly speaking, equation (8) applies only to the 
expectation value of q~ ,  but since q ~  is the sum of 
the contribution S~.S~ for many alleles i, and since 
mutations are assumed to occur independently in 
the different alleles, this equation becomes exact in 
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Fig. 3. Overlap distribution in the OPM, shown at four separate 
times separated by 100 generations for M = 2000, and 4 I~M = 
1. Peaks move exponentially toward q = 0. 

because we have considered the long genome limit 
N ~ ~. For  short sequence lengths, the peaks 
would be broadened to a width of order 1/X/-N. If  we 
wished to simulate the model for finite sequence 
length N we could not work directly with the over- 
lap matrix as we do here, but we would have to 
store all the sequences and calculate explicitly all 
the mutations in each sequence. There would then 
be no strict link between q ~  and ~'~ (equation 9), 
and the matrix q~a would no longer be ultrametric. 
At any one time t, the population has an average 
overlap____((q) t which fluctuates in time about a mean 
value (q). Here ( ) means an average over all indi- 
viduals in one generation and the bar means a time 
average over many generations. From equation (8) 
we see that the time averaged mean overlap satis- 
fies the equation 

(11) 

the limit N ~ ~ (the infinite genome limit). Thus we 
can deal directly with the matrix of overlaps q ~  for 
the purpose of computer  simulations (Higgs and 
Derrida 1991) and we do not need to store all the 
sequences. 

We start with all individuals identical ( q ~  = 1 
for all a and 13). We then choose the parents G(a) 
randomly for each individual a in the new genera- 
tion and create the new overlap matrix according to 
equation (8) for the nondiagonal elements c~ # [3. 
The diagonal elements q ~  remain equal to 1 al- 
ways. (The initial conditions are of course unimpor- 
tant after a time of order M generations). This pro- 
cedure is identical to the procedure for the time 
matrix T ~ .  In fact there is a direct relationship be- 
tween the two quantities: 

qua = exp(_4ixT~)  (9) 

This is because there is a probability of 1/M that two 
individuals have a common ancestor, and hence the 
overlap of the parents in (8) is equal to 1. If  Ix ~ 1 
then the mean overlap has a solution which we 
call qo 

1 
(q) = q0 - 1 + 4 txM (12) 

The mean value arises because of a balance be- 
tween the mutations (tending to decrease q) and the 
common parentage factor (tending to increase q). 

Population biologists often consider the inbreed- 
ing coefficient f ,  which is the probability that two 
randomly chosen homologous genes will be identi- 
cal (Crow and Kimura 1970). The mean value J" is 
calculated in a very similar way to equation (11). In 
fact 

The distribution of the elements of the q ~  matrix is 
shown in Fig. 3. Again there are many sharp peaks, 
and they drift exponentially toward q = 0, as the 
corresponding 7 ~ increases. 

Thus P(q'~) contains a series of sharp peaks if 
measured at one moment in time, but when aver- 
aged over a long period in time the result is a 
smooth function P(q). 

P(q) = hq x-1 h - 1 (10) 
4 IXM 

This can be obtained simply by making the change 
of variables (9) in equation (4). 

Note that the peaks in figure 3 are sharp simply 

(q--) = 2 f  - 1 (13) 

In a diploid population, the inbreeding coefficient 
is equivalent to the average homozygosi ty .  The 
variance of f has been calculated by Stewart (1976) 
and Li and Nei (1975), and is shown to be large. The 
variance of (q), namely, (~q)2 = ~ _ ( ( ~ ) ) 2 ,  is also 
large (Derrida and Peliti 1991). The two variances 
are related only indirectly, since q is an average 
property of all the loci on the sequence, whe rea s f i s  
defined for one single locus. 

Both (q) and ~q depend on the product IXM, and 
are of the same order of magnitude. If  we imagine 
taking the limit of large population size M ~ ~ in 
such a way that the product IXM remains fixed, then 
gq will have a finite nonzero limit. Thus fluctuations 
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about q0 remain important even for large popula- 
tions. For this reason we say that (q) is non-self- 
averaging, in contrast to what we will see in the 
HPM model. 

The OPM which we have studied provides a way 
of visualizing the effects of random changes in ge- 
nome frequencies in a finite population ("genetic 
drift"). Although some of the average quantities re- 
lated to this model have long been known (Wright 
1931; Crow and Kimura 1970), it is interesting to 
notice that properties of the population (such as 
P(q)) at a given instant in time may be very different 
from their average values, even for very large pop- 
ulations and very long genomes. 

The Homogeneous-Population Model 

The HPM is a simple model for a sexually repro- 
ducing population (Serva and Peliti 1991). As be- 
fore, each individual is represented by a sequence 
of N alleles, each of which has two possible forms. 

In this model, it is assumed that random pairing 
of individuals occurs, so each individual has two 
p a r e n t s  Gl(Ot ) and G2(o 0 randomly chosen from the 
previous generation. Each allele is inherited at ran- 
dom from one or other of the parents, (thus ignoring 
linkage between neighboring alleles). The allele is 
either a faithful copy from the parent or a mutation 
with the same probabilities as in equation (3). 

As before, we know exactly the way the overlap 
matrix evolves in the limit N --~ oo. 

qCtl3 --  
e-41z 

4 (qGl(eOGfff3) + qGt(oOGz(f3) + qG2(~)Gl(f3) 

+ q~(~)c~(l~)) (14) 

This is because each pair of alleles S'~S~ contribut- 
ing to q~13 comes with equal probability from one of 
the four possible combinations of the parents of et 
and 13. 

Figure 4 shows a simulation of the HPM of the 
same-size population and the same mutation rate as 
in Fig. 3. As before, only the overlap matrix was 
stored, not the genome sequences. The off-diagonal 
elements were updated according to equation (14) 
and the diagonal elements q ~  remain equal to 1 
always. We see that there is a single peak in P(q) 
which remains stationary with time. From equation 
(14) the time-averaged mean overlap satisfies for 
large M 

+(1-4)4 
(15) 

P (q) I 
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time 
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time 
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Fig. 4. Overlap distribution in the HPM for M = 2000, and 
4 p,M = 1. A large peak is seen at q0 = 1/2 which does not move 
with time. 

since for M >> 1 there is a probability 4/M that two 
individuals have a parent in common. (The proba- 
bility that both parents are common is O(1/M 2) and 
has been neglected.) The solution of equation (15) 
for ~ < 1 is the same mean value q0 as in the OPM 
(equation 12). 

The variance (~q)2 of (q) has also been calculated 
by Serva and Peliti (1991). They found that 8q van- 
ishes in the limit M ~ ~, even if we impose the 
condition that IxM is constant as we did in the OPM 
above. Thus (q) is self averaging in the HPM. 

Examination of the data used to plot Fig. 4 re- 
veals that there is not just one peak in P(q), but 
there are several subsidiary peaks at slightly higher 
q values. These peaks are very small (O(1/M)) and 
are barely visible in Fig. 4. They represent the over- 
laps between individuals which have an ancestor in 
common in a recent generation. For example, if 
there was one grandparent in common, this would 
give an overlap q = 1(15qo + 1), hence the small 
peak at q - 0.53. These subsidiary peaks are neg- 
ligible for large populations. 

We have called the population "homogeneous" 
because there is no family structure visible in P(q). 
The genomes of the individuals may be thought of 
as a cloud of points in genome space with no orga- 
nization into clusters as in the OPM. The fact that 
P(q) does not change in time does not mean that the 
population is not evolving. In fact the cloud of 
points representing the population drifts randomly 
through genome space. 

The overlap q0 between any two individuals may 
be considerably less than 1 (depending on I~M). 
Thus there is typically a large difference between 
any two individuals in the population. 
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The HPM lacks the species observed in real pop- 
ulations of sexually reproducing organisms. At the 
beginning of his book on species and evolution 
Mayr (1970, chapter 2) imagines a world without 
species, in which all individuals are members of a 
single random-mating population. Each mating pair 
would be widely different from each other, and 
from their descendants. This is precisely what hap- 
pens in the HPM. We will now consider a model in 
which species do form. 

The  S p e c i e s - F o r m a t i o n  M o d e l  

The biological definition of a species is based on 
reproductive isolation (Mayr 1970). A species is a 
group of sexually reproducing organisms such that 
reproduction is possible between members of that 
group, but not between different groups. The SFM 
discussed is a model in which, due to the stochastic 
dynamics, species appear and disappear which are 
in reproductive isolation from one another. 

The SFM is defined in the same way as the HPM 
earlier, except that rather than random pairing of 
individuals, pairing occurs preferentially between 
individuals which are genetically similar. We sup- 
pose that the first parent G~(a) of individual a is 
chosen at random from the previous generation, but 
the second parent Gz(ot) is chosen only from those 
individuals having an overlap qG,(~)G2(~) with the 
first parent greater than a cutoff value qmin- Here, 
qmin is a parameter of the model which represents 
the presence of an isolating mechanism preventing 
reproduction between individuals which are too ge- 
netically different. Many types of isolating mecha- 
nisms are possible in biological systems (Mayr 
1970; Maynard Smith 1989; Grant 1991). We discuss 
these mechanisms further in a later section. 

Having chosen the parents of each new individ- 
ual to satisfy the requirement that their overlap be 
greater than qmin, we may then create the overlap 
matrix for the new generation according to equation 
(14). We know that in the absence of a cutoff there 
is a natural mean value of the overlap qo in the 
HPM. Therefore if qmin < q0 the cutoff makes no 
difference. On the contrary, for qmin > q0, the sys- 
tem is greatly perturbed by the cutoff since it can 
never reach its natural equilibrium state. 

Figure 5 shows a simulation with qmin --= 0.65 and 
tx and M chosen so that q0 = 1/2 as before. Once 
again several peaks are present which seem to move 
with time. P(q) is non-self-averaging as in the OPM. 
If the cutoff is increased to qmin =-" 0.9 (Fig. 6), then 
a larger number of peaks are present. 

One can interpret these figures as follows. Figure 
5 represents a situation where the population has 
split into two species. Peaks A and B represent the 
overlaps between members of the same species, 
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Fig. 5. Overlap distr ibution in the SFM with M = 2000, qo = 
1/2, and qmin = 0.65. This  represents  a si tuation where  two spe- 
cies are present .  (See text.) 
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Fig. 6. Overlap distribution in the SFM, as in Fig. 5 except  that  
qmin = 0.9. Many  species  have  formed and continual  subdivis ion 
and extinction of  species  occurs .  

and peak C represents the overlap between the two 
species. Since the species have overlap less than 
qmin, no interbreeding is possible between them. 
Thus peak C moves exponentially with time toward 
q = 0 as the two species diverge. Each of the spe- 
cies behaves like a small independent version of the 
HPM. If species A has population m a then it has a 
natural overlap qo(mA) = 1/(1 + 4ixma). (see equa- 
tion 12). As long as ma is not too large qo(ma) will 
be greater than qmin; and so breeding between mem- 
bers of the same species is not affected by the cutoff. 

However, ma fluctuates fairly rapidly from gen- 
eration to generation. Only the total population M 
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of the whole system is fixed, not the population of 
each species. The movement of the mean overlap 
toward its natural value is rather slow since it is 
governed by the mutation rate. In other words, al- 
though the internal overlap is always tending to- 
ward qo(ma), it never has chance to get there since 
qo(ma) is itself changing due to fluctuations in m A. 
The result is that peaks A and B move rather ran- 
domly in the range qmin < q < 1 and there is no 
direct relationship between the weight of the peak 
(proportional to the square of the population size) 
and its q value. This is similar to the behavior of the 
homozygosity (or inbreeding coefficient) in a finite 
population (Kimura 1983; Maynard Smith 1989). In 
principle there should be a larger homozygosity in 
small populations than in large ones. However, it is 
difficult to observe this relationship since the pop- 
ulation of a species is seldom sufficiently constant 
for these quantities to reach their equilibrium value. 
The homozygosity is particularly influenced by bot- 
tlenecks in the population size in the past. 

The two-species situation in Fig. 5 is not stable in 
the long term. Eventually one or the other will die 
out due to fluctuations in the population sizes. Also, 
if by chance one species has a large population, its 
natural overlap will be less than qmin. It will there- 
fore tend to split into new species with smaller pop- 
ulations. Thus we have a continual appearance and 
disappearance of species. 

We wish to note one important detail about the 
way the parents are chosen. The first parent Gl(o0 is 
chosen at random. To select the second parent 
GE(a), we continue to choose individuals at random 
until one is found having overlap greater than qmin 
with Gt(a). (If there is no such individual then Gl(c0 
is discarded. However,  in practice this occurs very 
rarely.) The other possibility would have been to 
choose two individuals Gl(a) and G2(a) at random 
and either accept or reject them both according to 
whether their overlap is greater than qmin" Suppose 
there a r e  ma(t) individuals in species A at time t. 
With the first method the expectation value in the 
next generation is E[ma( t  + 1)] = ran(t). With the 
second method it is E [ m a ( t  + 1)] = M m~(t)/  
(Ekm~(t)), and thus small species would disappear 
very quickly. So only the first method correctly rep- 
resents a neutral theory. 

Overlaps Between Species 

The sharp peaks which we see in Fig. 5 and 6 appear 
to indicate that we have well-defined species which 
are in reproductive isolation from one another. We 
will now show that by analyzing the matrix q ~  at 
any given time it is possible to assign each individ- 
ual unambiguously to a species. 

g ', 

500 

- 0 ~  
0.0 0.2 0./. 0.6 0.8 1.0 

QAB 

Fig. 7. The behavior of the elements of the species overlap 
matrix QAB as functions of  time, for M = 1000, qo = 1/2, and qmin 
= 0.7. Lines to the right of  q = 0.7 represent  internal overlaps 
of  species. Lines to the left of  q = 0.7 represent  overlaps be- 
tween species. Several speciation and extinction events  are vis- 
ible. 

By definition we take the individual et = 1 to be 
a member of species A. We then assign to species A 
any individual having an overlap greater than qmin 
with individual 1. Next we look for further individ- 
uals having an overlap greater than qmin with any 
individual in species A, and also assign them to spe- 
cies A. The process is repeated until there is no 
further individual which has an overlap greater than 
qmin with any of the members of A. Species A is 
then in reproductive isolation from all other individ- 
uals. We then look for the first individual in the list 
which is not a member of A, and this serves as a 
starting point for defining species B. The process is 
continued until every individual is assigned to a spe- 
cies. 

Suppose we find that there are K species and 
they have populations m A, m 8 . . . mK. It is possible 
to define a K by K matrix QAB which measures the 
similarity between species, rather than the M by M 
matrix q~13 which applies to single individuals. The 
elements of QAB are defined according to 

QAB-- 1-- -~ ~ ~ q ~  
m A m B  

a~A [3~B 

1 
QAA = m___~a X X q~6 

et~A [3~A 

(16) 

where " a  E A" signifies that we take the sum over 
all individuals e~ belonging to species A. 

Figure 7 shows the evolution in time of this spe- 
cies overlap matrix QAB. We have simply plotted a 
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Fig. 8. E lements .o f  the  matr ix  Q ' ~  are 
shown  at two t imes for the  same  example  
as in Fig. 7. The  matr ix  is ul t rametr ic  to 
a good approximat ion and allows the ge- 
nealogical tree of  the  species  to be con- 
structed.  The  approximate  t ime of  each 
speciat ion event  can be calculated f rom 
the overlap value and these  t imes  are 
consis tent  with what  we see in Fig. 7. 
The  run  was  begun  wi th  two spec ies  
present ;  therefore the t ime of  the earliest  
split is apparent ly negative.  

dot for each element of this matrix at each genera- 
tion. The cutoff was qmin = 0.7 in this example, and 
we began with two species with populations M/2 
having internal overlaps 0.8 and 0.9, and an inter- 
species overlap of 0.4. Three speciation events are 
visible during the period of simulation. As expected 
this happens whenever one of the diagonal elements 
of Q comes close to qmin = 0.7. For instance at time 
= 480 we see the sudden disappearance of one line 
and the appearance of three new ones representing 
the internal overlap of two "daughter" species and 
the overlap between them. Several extinctions are 
also visible (e.g., T -~ 950). If the population of a 
species goes to zero it must have passed through a 
period of small numbers, and hence the internal 
overlap will tend to be close to 1. An extinction is 
seen as the simultaneous disappearance of one of 
the lines representing an internal overlap, and one 
or more lines for the interspecies overlap. 

In fact the matrix QA8 is analogous to the simi- 
larity matrix between species which are obtained 
from comparison of real protein or nucleic acid se- 
quences. In Fig. 8 we show the QA8 matrix at times 
700 and 1300 in the example of Fig. 7. From this 
data we can estimate the time T An since divergence 
of species A and B usin~ the approximate relation- 
ship QA8 = qmine-4~xT~°. The evolutionary trees 
constructed from these data can be compared with 
Fig. 7, which shows what actually happened in the 
simulation. The ultrametric inequality for overlaps 
implies that for any three elements QaB, QSC, and 
QAC, the two smallest must be equal (whereas the 
two largest times are equal). The example at time 
700 is clearly an ultrametric matrix (down to four 
decimal places) and shows the presence of specia- 
tions occurring at times -~ 480 and = 650. The time- 
1300 example is more ambiguous because of the 
more complicated speciation event at time = 1000. 

Here three new species have formed within a very 
short time, and the elements of Q show small devi- 
ations from ultrametricity, which we believe are 
due to the finite size of the population. 

Such ambiguities are common in real data, and 
there is a large literature on methods of assigning 
the most likely tree to a given data set: Goodman 
(1981), Felsenstein (1981), Bishop and Friday 
(1985), and Blaisdell (1989). The problem is further 
complicated by insertions and deletions, so it is nec- 
essary to compare sequences which are of different 
lengths. Our model is much simpler in that it in- 
cludes only point mutations. Sankoff and Kruskal 
(1983) discuss problems of sequence comparison in 
biology, physics, and computer science. 

The method of assigning individuals to species 
adopted above ensures that no individual in one 
species has an overlap greater than qmin with any 
individual in a different species. However, it does 
not ensure that every pair of individuals assigned to 
the same species has an overlap greater than qmin. 
We will now define a quantity cr A which measures 
the "spread" of species A in genome space. 

1 
O"A = m--~A Z Z 0(qmin- qa[3) 

aEA 13~A 

(17) 

The step function 0(qmi  n --  q~)  is 1 if q ~  is less 
than qmin and 0 otherwise. Thus the spread o" A is 
simply the fraction of the elements q ~  between 
members of species A which are less than qmin" 

In Fig. 9 we show the behavior of cr A with time 
together with the fraction +A = maiM of individuals 
belonging to species A and the internal overlap QAA 
of species A. We see that o A is identically zero for 
large periods of time and rises to high values over 
short periods corresponding to speciation events. 
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Fig. 9. The internal overlap QAB of  species A is shown as a 
function of  time for the SFM with M = 1000, qo = 1/2, and qrnin 
= 0.9. When QAA drifts slightly below 0.9 speciation begins to 
occur.  The " s p r e a d "  o- A defined in equation 17 is zero for long 
periods but becomes  large at the moment  of  speciation. The 
f r a c t i o n  ~b A of  individuals in species A is also correlated with QAA 
and trA. Speciation tends to occur when ~b A is large, and a sudden 
drop in ~b A occurs when the species divides. 

The fraction d~ A follows a random walk. When ~A 
becomes large the species begins to occupy a wide 
region of genome space and the spread cr A becomes 
large. Division of A into separate species then oc- 
curs. This is seen as a sharp drop in 4) a during the 
periods in which o- A is large. (To produce this pic- 
ture we need to make sure that species A is always 
the same species at each generation. We do this by 
taking GI(1) = 1 each time.) 

Thus for most of the time q ~  > qmin for all pairs 
of individuals within a species (since o- a = 0). Only 
at rare moments does o- A become nonzero. This 
causes speciation to occur, and (r a falls rapidly to 
zero again after the division. For this reason our 
method of assigning individuals to species appears 
rather reasonable. 

Relationship of the Models to Biological Theory 

The models above have been defined in a rather 
abstract way, and we wish to discuss some of the 

limitations and justifications of our models in terms 
of the biological theory of evolution and speciation. 

First, we have at all points assumed that all in- 
dividuals are equal irrespective of their genomes. 
We have done this because it is the simplest as- 
sumption. There is, however, good evidence that 
such a "neutral theory" is a good approximation at 
least for some cases of molecular evolution (Kimura 
1983). Also, models similar to the OPM have been 
studied on various types of fitness landscape (Am- 
itrano et al. 1989; Peliti 1990). 

There have also been alternative approaches for 
studying the evolution of self-replicating macromol- 
ecules in rugged fitness landscapes (Kauffman and 
Levin 1987; Kauffman 1989; Rokhsar et al. 1986; 
Abbott 1988; Schuster and Swetina 1988; Fontana 
et al. 1989; Tarazona 1991). Here we have seen that 
there are many interesting effects observable even 
in a fiat fitness landscape, and it would be interest- 
ing to know if the hierarchical structure of the pop- 
ulation in the OPM and the speciation in the SFM 
will still be present in rugged landscapes. The anal- 
ysis would, of course, be more complicated. 

We have always assumed that parents of individ- 
uals are chosen randomly from the previous gener- 
ation. This puts in the important feature that some 
individuals have no descendants, and others have 
one, or more than one. Using this model some in- 
dividuals may have rather large numbers of off- 
spring. We could avoid this by specifying a maxi- 
mum number of offspring, for any one individual. 
This should not change any of the important fea- 
tures, but it may renormalize the time scales. (See 
Derrida and Peliti 1991 .) The random choice of par- 
ents is convenient because the mathematical prop- 
erties of the tree structure have already been stud- 
ied in connection with random maps (Derrida and 
Bessis 1988; Derrida and Flyvbjerg 1987a). 

Several modifications to the models for sexual 
reproduction can be envisaged which would make 
them more realistic. We could have distinct popu- 
lations of males and females instead of allowing 
pairing between any two individuals. We could also 
include the fact that most sexual organisms are dip- 
loid by having two genome sequences within each 
individual. The important point of the HPM is, how- 
ever, that the population becomes homogeneous. 
This would not be affected by the above modifica- 
tions. More interesting would be to look at the ef- 
fect of linkage between neighboring sites in the ge- 
nome. This would be important if the number of 
chromosomes were very small, but the effect would 
be rather small for a typical species with say 20 
pairs of chromosomes. We have also discussed the 
models in terms of a two-allele system (S~ = - 1). 
Clearly one could generalize to any number of pos- 
sible states for each S~. 



It is interesting to compare the family tree in the 
OPM with the tree of species generated by the 
SFM. In the OPM all individuals can be arranged 
directly on a tree because they have a single parent. 
In a random-mating population no such arrange- 
ment is possible since there are 2 r lines of descent 
leading to each individual stretching back T gener- 
ations, and these lines of descent rapidly merge 
with those of all the other individuals. However, if 
we look at species rather than individuals, the spe- 
cies can be arranged on a tree, since any two cur- 
rent species presumably had an ancestral species in 
common at some point in the past. In the SFM, if 
we look at the level of the individual we have sev- 
eral independent species each behaving like a small 
version of the HPM. If we look at the species level 
then the tree structure becomes visible (by looking 
at the matrix QAS, for example). The term species 
really only has a meaning for sexually reproducing 
populations, since it depends on reproductive iso- 
lation. For asexual organisms the definition of spe- 
cies is largely a convention of the taxonomist. In 
our OPM we saw that by cutting the tree at a given 
point T in the past we create "families" such that 
/ ~  ~< T (and hence q ~  i> e-4~r) for all a and [3 in 
the family. Such families will be formed at whatever 
level of the tree we make the cut, and we could 
choose some arbitrary level to represent the species 
level if we wished. 

We saw in the SFM that the introduction of a 
qmin leads to continuous process of division and ex- 
tinction of species. The cutoff at qmin represents an 
isolating mechanism. There are many observed 
mechanisms which prevent the interbreeding be- 
tween species (Mayr 1970; Grant 1991) for exam- 
ple, anatomical differences, differences in courtship 
display, differences in flowering times in plants, and 
the inviability or infertility of hybrids. It is unlikely 
that these mechanisms are a strictly all-or-nothing 
affair like the sharp cutoff at qmin in our model. One 
could instead consider a smooth function flq) to 
represent the probability that successful mating oc- 
curs between individuals with overlap q. We have 
no idea what this function should be for a real or- 
ganism, however. Any function flq) which is zero 
below a certain value qmin should give the same 
speciation phenomenon as the simple step function 

J ' (q )  = 0 ( q m i  n - -  q )  which we used in the simulations 
above. We also tried a smooth sigmoid functionflq) 
= 1/(1 + ef3(qmin--q)). This is nonzero even for very 
small q. The parameter [3 controls the sharpness of 
the cutoff. An instability in the distribution P(q) was 
observed in this case representing splitting of the 
population into separate groups. Since there is no 
true reproductive isolation in this case the groups 
tend to merge back together again unless rather 
large values of [3 are chosen. 
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Isolating mechanisms may be divided into pre- 
and postmating barriers (Grant 1991). Postmating 
barriers such as the infertility or inviability of hy- 
brids are likely to be rather general phenomena, 
while premating barriers are likely to be very spe- 
cific mechanisms which prevent interbreeding be- 
tween species which are very similar. If hybrid in- 
dividuals are at a selective disadvantage then there 
will be a selection in favor of reproductive isolation 
(or reinforcement) (Mayr 1970; Maynard Smith 
1989; Grant 1991). Individuals which mate prefer- 
entially with the same subspecies are then at an 
advantage. Hence the subspecies tend to diverge 
and become well-defined species. Crosby (1970) 
shows an interesting example of this happening be- 
tween two plant subspecies. It may be possible to 
extend our model to distinguish more carefully be- 
tween pre- and postmating barriers and to illustrate 
the reinforcement effect. 

We have left out all effects of geographical iso- 
lation in our model. The speciation in the SFM is 
thus sympatric (occurring between individuals in 
the same location). There is much evidence (Mayr 
1970) that naturally observed species have formed 
by allopatric speciation (i.e., in geographical isola- 
tion). Grant (1991) considers both sympatric and 
allopatric mechanisms to play a role. In any case 
sympatric speciation is at least a theoretical possi- 
bility (Maynard Smith 1966, 1989) and the SFM 
shows one way in which this could happen. It 
should be noted that the SFM has an inherent in- 
stability which leads to the initiation of the specia- 
tion process. We do not presuppose the existence of 
separate subspecies which are already different due 
to a heterogeneous environment (Maynard Smith 
1966) or due to an initial period of geographical iso- 
lation (Crosby 1970). 

Relationship of the Models to Disordered Systems 
in Physics 

As physicists, our interest in these models of evo- 
lution began due to their similarities with spin 
glasses and other disordered systems (Peliti 1990). 
In the theory of disordered systems, it is often the 
case that phase space can be decomposed into sev- 
eral valleys of unequal sizes: in spin glasses, these 
valleys are free energy valleys or metastable states 
(M6zard et al. 1987; Binder and Young 1986); in 
random networks of automata or random map mod- 
els (Derrida and Flyvbjerg 1987a,b; Fontanari 1991) 
they are the basins of attraction; and in protein fold- 
ing models they would be the stable states of a pro- 
tein (Shakhnovich and Gutin 1989). 

The feature common to all these systems is that 
their phase space seems to be broken into different 
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regions of random sizes which fluctuate from sam- 
ple to sample in a similar way to that in which a 
randomly broken object gives rise to pieces of ran- 
dom sizes (Derrida and Flyvbjerg 1987b). If one 
performs the experiment of breaking dishes (an ex- 
periment rather easy to perform in anybody 's  
kitchen), one knows that the size and the number of 
pieces will fluctuate from dish to dish with a few big 
pieces of random size and also many small pieces. 
The model, discussed above (OPM or SFM) with a 
population composed of several families (or spe- 
cies) is another example of a system broken into 
random pieces. 

In certain spin glass models the overlaps between 
valleys have an ultrametric structure, as observed 
for the OPM and SFM. Rammal et al. (1986) discuss 
ultrametric structures as they occur in physics and 
biology. In spin glasses the overlap distribution P(q) 
is known to be non-self-averaging at least at the 
mean field level. This means that it will be different 
if measured in two independent samples of large 
size. We saw that P(q) in the OPM and the SFM 
was non-self-averaging. It is different if we look at 
two independent populations, or if we look at the 
same population at two widely separated moments 
in time. In the HPM, however ,  P(q) is self- 
averaging: it is the same for all populations at all 
times in the limit of large size (M ~ ~). This is what 
usually happens in the thermodynamic limit in 
physics for most quantities studied, and probably 
also to P(q) in spin glasses in low-enough dimen- 
sion. Many people studying evolution on rugged fit- 
ness landscapes have used landscapes inspired by 
spin glass Hamiltonians (Amitrano et al. 1989; 
Kauffman 1989; Peliti 1990). The rugged landscape 
idea thus represents another point of similarity be- 
tween the problems. 

Several other recent articles in physics have a 
strong connection with evolutionary processes. Ep- 
stein and Ruelle (1989) have analyzed the numbers 
of species in the higher taxa of the plant classifica- 
tion system using models derived from branching 
processes in physics. Higgs and Orland (1991) have 
used a Monte Carlo method to simulate equilibrated 
ensembles of polymer configurations. The method 
is equivalent to the evolution of the ensemble in a 
rugged fitness landscape. Zhang et al. (1991) have 
looked at diffusion-reproduction processes in which 
the diffusion of points in real space is analogous to 
the diffusion of genome sequences in genome space 
in the OPM. 

Conclusions 

We have used the idea of overlaps to measure the 
similarity between genome sequences. In the One- 
Parent Model representing asexual reproduction the 

distribution of overlaps shows a series of sharp 
peaks reflecting the branching structure of the ge- 
nealogical tree. The model provides an interesting 
way of seeing the consequences of the neutral the- 
ory of molecular evolution. 

In the simplest model for sexual reproduction 
(HPM), with a random-mating population, the pop- 
ulation becomes homogeneous, and no structure is 
seen in the overlap distribution. 

If, instead of random mating, reproduction only 
occurs between individuals which are genetically 
similar we find that the population splits spontane- 
ously into well-defined species. We can define a 
matrix of overlaps between these species which is 
approximately ultrametric and which has some 
analogy with the data obtained by comparing real 
protein and nucleic acid sequences. Analysis of this 
matrix allows a reconstruction of the history of the 
population. 

The model suggests a method of sympatric spe- 
ciation which may be relevant to real biological 
populations. It would be interesting to develop the 
model further to consider the relative importance of 
geographical and nongeographical effects in speci- 
ation, and to illustrate the selection in favor of re- 
productive isolation which would occur in certain 
cases. 
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