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Effect of Disorder on Two-Dimensional Wetting 
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For the problem of the 2D wetting transition near a 1D random wall, we show 
by a renormalization calculation that the effect of disorder is marginally 
relevant. It is therefore expected that the nature of the wetting transition and the 
location of the critical point are modified by any amount of disorder. This is 
supported by numerical simulations based on transfer matrix calculations. We 
investigate also the problem of wetting near a random wall on hierarchical 
lattices and find similar results. 
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1. i N T R O D U C T I O N  

An impor tan t  problem in the theory of disordered systems is to unders tand  
the effect of a small concent ra t ion  of impurit ies on the nature  of a phase 
transit ion.  (1"2) For  magnet ic  systems, when the effect of the impurit ies can 

be represented by r a n d o m  exchange interactions,  one knows, from the 
Harris  criterion, (1) that  a weak disorder changes the na ture  of a second- 

order phase t ransi t ion only if the specific heat exponent  e of the pure 

system is positive. For  negative e, disorder is irrelevant, mean ing  that a 

weak enough disorder leaves the critical exponents  characteristic of the 
phase t ransi t ion unchanged.  The case e = 0 is, as usual in the renormaliza-  
t ion group approach,  marginal  and  one needs to know the sign of the 
nonl inear  term in the renormal iza t ion  flow to decide whether disorder is 

marginal ly  relevant or irrelevant. 
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The purpose of the present paper is to discuss this question in one of 
the simplest examples of a phase transition, the problem of wetting ~3 5) 
near a random one-dimensional wall. 

In its simplest version, the problem of wetting is that of an interface 
attracted by a wall. At low enough temperature, the interface is localized 
near the wall and it becomes free at the wetting transition. 

Here we shall consider the following SOS version of the wetting 
problem near a random surface. (6'7) A configuration of the interface is 
represented by a sequence of integer heights h~>~0 which measure the 
distance between the interface and the wall at abscissa i. By definition of 
the model, the heights hi at neighboring sites can differ at most by 1, 

hi+l-hi= - 1 ,  O, or +1 (1.1) 

At each site i, there is a random energy - u i  if the configuration touches 
the wall, i.e., if hi = 0. There is an additional energy J associated to each 
step between consecutive heights. Therefore, the energy E({hi}) of a 
configuration is 

E( { hi} )=  J Z [hi- hi+ ll - E ui6h.o (1.2) 
i i 

If one defines ZL(x, y) as the partition function of an interface pinned at 
height h 0 = x and hL = y, one can write the following recursion: 

Z L + I ( x , y ) = Z L ( x , y ) + t [ Z L ( x , y + I ) + Z r ( x , y - - 1 ) ]  for y~>l 

and 

ZL +1 (x, O) = a L + 1 [ZL(X, O) + tZL(x , 1)] (1.3) 

with 

Zo(x, y) = 3x, y 

where the parameters ai and t are defined by 

a i ~ e u d T  and g = e J/r (1.4) 

(T  is the temperature). 
In what follows, we shall consider t as a fixed parameter (we will 

forget its temperature dependence) and we shall write 

ai= ( a ) ( l  + bi) (1.5) 
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where the bi are random numbers equally distributed with a zero average 

(bi)  =0  (1.6) 

Forgacs e t  al. (6'7~ considered this problem in the weak-disorder limit 
(b e) ~ 1. They found that disorder is marginal at the wetting transition of 
the pure system given by ( a ) =  (1 + 2t)/(l'+ t), because the specific heat 
exponent c~=0. Moreover, they suggested that disorder is marginally 
irrelevant. (6'7) By resumming the leading diagrams of a weak-disorder 
expansion, Forgacs e t  al. (6'7) concluded that for a weak enough disorder, 
the transition temperatures of the quenched and annealed models are equal 
[they occur when ( a ) =  ~ , a ? ,  j -pure= (1 +2t)/(1 + t)]. They also concluded 
that the critical behavior at the transition is not changed by disorder except 
for a subdominant 1/log term in the specific heat. 

In the present paper, we show by a renormalization group calculation 
that disorder is marginally relevant. This is in contrast with another well- 
studied marginal case, (8'9~ the 2D Ising model for which disorder is 
marginally irrelevant, implying that the critical behavior of the pure and 
random cases are identical except for logarithmic corrections. Because 
disorder is relevant, we expect the critical behavior at the transition to be 
modified by any amount of disorder. But because under renormalization 
the system flows toward strong-disorder regions, where perturbative 
approaches are useless, we cannot predict the nature of the phase 
transition. Also, the critical value ( a )  rand~ has no reason to remain 
unchanged by disorder and we expect 

l o g ( ( a )  ~ and~ -- ( a ) P  ure) ___ st(1 + 2t) 

2(1 + t)2(g2 > 
(1.7) 

w h e n  ( b  2 )  ---+ 0. 

This is indeed the general shape of an arbitrary manifold near the pure 
fixed point and there is no reason for the critical manifold to be exactly 
( a ) random = pure c (a )c  . This prediction (1.7) does not contradict the result (6"7) 
that the transition temperatures of the annealed and the quenched models 
coincide to all orders in the weak-disorder expansion. 

The paper is organized as follows: we first show (Section 2) by a 
renormalization group calculation that disorder is marginally relevant at 
the wetting transition in dimension two. 

In Section 3 we present the results of some numerical studies where 
one can see the shift in the transition temperature and that the specific heat 
vanishes continuously at the transition in the presence of disorder (instead 
of a jump in the pure case). 

In Section 4, we formulate the problem of wetting in the presence of 
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disorder on a hierarchical lattice. On such lattices, the approach is simpler 
and numerical studies can be done with better accuracy. In that case, too, 
we find that disorder is marginally relevant and numerical simulations 
indicate a shift in the transition temperature and a specific heat which 
vanishes at the transition. 

2. THE W E T T I N G  P R O B L E M  NEAR A 1D R A N D O M  
S U B S T R A T E  

To discuss the effect of disorder, we follow here an approach which is, 
in spirit, an exact real space renormalization. 

2.1. Recursion Relations 

Our starting point is a recursion relation for the partition function 
ZL(x, y) of an interface of length L, the end points of which are pinned at 
heights x at abscissa 0 and y at abscissa L (i.e., ho=x and hL=y). This 
partition function ZL satisfies the following recursion relation (Fig. 1): 

ZzL(X,y)= ~ Z(1)txL t , z) Z(2)lzL ~,y)  (2.1) 
z ) O  

where Z(1)(x z) represents the sum over all interfaces of length L starting L \ 

at height x at abscissa 0 and ending at height z at abscissa L, and Z~)(z, y) 
represents all the interfaces starting at height z at abscissa L and ending at 
height y at abscissa 2L. The origin of the recursion (2.1) is just the fact that 
each interface of length 2L can be decomposed into two pieces of length L. 
Because the wall is inhomogeneous, Z~ ) and Z~ 2) are not identical. Each 
of them is random since it depends on the random wall potential, but they 
are independent because Z~ ) depends only on the potential between 1 and 
L, and Z~  ) on the potential between L + 1 and 2L [here disorder on the 
substrate is chosen to be uncorrelated and by convention in ZL(x, y) we 
count all the weights due to the contacts from abscissa 1 to L ] . .  

x--l_ 
1 

z Y 

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
0 L 2L 

Fig. 1. A configuration of the interface in the SOS model. The hatched surface represents the 
attractive wall. 
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To study the system near the wetting transition, it is convenient to 
make the following change of variables: 

where 

YL(u, v) = (2 + 2t) -Lx~oo ZL(X, y) (2.2) 

4t 
u = x / ~ o ;  v = y / ~ o ;  L ~  1 + 2 t  L (2.3) 

For large L, u and v become continuous variables and the recursion (2.1) 
becomes 

Y2r = dw Y(1)~u w) Y(2)tw v) (2.4) 
L ~. ~ L ~, ' 

The partition function ZL(x, y) of the random system is given to first order 
in disorder by 

L 

z p u r e ( x  /~ 7 P u r e { v  7 P ~  u r e  i N  ZL(x, y)  = L , ,  y)  + Y~ 0) y) (2.5) U k ~  k ~ ,  ~ L _ k ' ~ V ~  

k = l  

where 7 pure denotes the partition function in the pure ease, i.e., when all ~ L  

the b i = O. 
At the wetting transition of the pure system [ ( a ) =  (1 +2t)/(1 + t)], 

one can show that (Appendix A) for x ~ 1 

ZP~e(x, y) ~- (1 + 2t)/" \~) -~-- j  exp - 4tL 

+ e x p ( - ( x + y ) 2 ( l + 2 t ) ) ] 4 t L  (2.6a) 

whereas for x = 0 

( 1 + 2 t ' ]  '/2 l + t  ( y 2 ( l + 2 t ) ~  
ZP~(O'Y)~-(I+2t)L\-~-L] 1 + 2 - - -~  2exp 4tL ) (2.6b) 

The expression for x = 0  is slightly different because in ZL(x,y) we 
count all the weights due to the contacts with the wall from abscissa 1 to 
abscissa L. I-Notice also that due to this convention, ZL(x,O)= 
Zc(O, x)(1 + 2t)/(1 + t) for x/> 1, whereas ZL(X, y) = ZL(y, X) otherwise.] 

Equations (2.6) imply through (2.2) and (2.3) that 

YL(U, V)= ypurq'u 12)+gz(u, v) (2.7) L ~, ' 
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where 

and 

1 e_(U+V)2 ] g p u r e / "  U )  = [e (~_v)2 + 
- - L  I ~  

(2.8) 

,=1 [(k/L)(1-k/L)] m ~/Lo bk 1 

( ) x exp k 1 ---k/L (2.9) 

If one replaces -LY(I~ and y~2~ by their expressions in the recursion (2.4), one 
finds that ypuretu V) is a fixed point of this recursion (the critical fixed L ', 

point) and that the perturbation gL(U, V) satisfies 

g2L --/~, -- ~ dw + e -(u+w)2] g#)(w, v) 

+ - - ~ f : d w [ e  -(w ~?+e (w+~)2]g~l)(u,w) 

+ xf2 f~ dw g~)(u, w) g~2)(w, v) (2.10) 

This expression is a direct consequence of (2.1) and (2.4) and therefore is 
exact in the scaling limit [L large, ( a )  = (1 + 2t)/(1 + t)]. The question of 
whether disorder is relevant or not is simply to know if gL grows under the 
renormalization (2.10). It is easier to investigate this question by using the 
Fourier transform of gL(u, v), 

-- oo N L ~ ,  
GL(KI,K2)=(2rc)2 J ~ dudve -*K~u-~K~- tu v) (2.11) 

[Since gL(U, V) is only defined for positive u and v, we can extend the 
definition to all u and v by choosing gL(u, v)=gL(lUl, IVl ).] For the GL, the 
recursion (2.10) becomes 

1 G2L(K1, K2)= 7[exp (-- -~-) G(L2) (K1, ~ /  

+exp ( -  ~--~ 22) G(L 1~ \w/~ ~22)] 

x/2 ~ ' q  - - q ' 7  (2.12) 
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2.2. The Uniform Substrate 

Let us first consider the pure case, i.e., when v L~(I) and G~ 2~ are equal. 
Then if one linearizes the renormalization transformation (2.12), one gets 

G2L(K1,K2)= exp - ~ - ) + e x p ~ - - - ~ - ) J G L \ , / -  ~ (2.13) 

Since in the pure case, all the bk are equal (bk = b), one gets from (2.9) and 
(2.11) 

GL(K, K2) = 2bx/-L 1 + t e x p ( - K ] / 4 ) -  e x p ( -  K2/4) 
' ~ It(1 +2t ) ]  1/2 K~-K~ (2.t4) 

This turns out to be a solution of the recursion (2.13). We see that the 
coefficient of GL(K1, 1s given in (2.14) is a relevant scaling field with 
dimension 1/2 since as L increases by a factor 2, GL increases by a factor 
, /2 .  Thus a system of size 2L at a distance AT from the wetting transition 
behaves like a system of size L at a distance ~ AT from To. One can 
notice from (2.13) that there are other solutions of (2.13): 

GL(K1, K2) = L (1 -n)/2 exp ( -K~ /4 )  - e x p ( - K 2 / 4 )  P,(K,, K2) (2.15) 

where P~(K~, K2)  is an arbitrary homogeneous polynomial of degree n. 
Only n = 0  corresponds to a relevant scaling field. Since the Fourier 
transform of a perturbation g(u, v) localized around the origin u = 0, v = 0 
can be decomposed on the basis of the functions (2.15), we see that the 
component on the function (2.14) will be the only one to increase with L, 
meaning that (2.14) is the only relevant scaling field. 

2.3. The Random Substrate  

Let us now consider a perturbation gL(u, v) as given by (2.9) where 
the bk are random and independent, with ( b k ) = 0 .  

Clearly, one has 

(gL(u, v)> = 0 

and to leading order in the disorder, (2.9) implies 

(gL(u, v)gL(u', v ' ) )  = 

(2.16) 

@2 5 (1 + t) 2 

~c 2 t(1 +2 t )  

(~ dx exp[ - (u 2 + u'Z)/x - (v 2 + v'2)/( 1 - x) ]  
• 4 

Jo x(1 -x )  
(2.17) 
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Here again it is more convenient to deal with the Fourier transforms. From 
(2.17), one gets 

(GL(K~, K2) GL(K3,/s 

(b  2) (1 + 0 2 exp - (K~  + K~)/4 - exp - ( K  2 + K24)/4 
- ( 2 . 1 8 )  

~4 t ( l + 2  0 K ~ + K 4 - K ~ - K  2 

Knowing that (GL(K1, K2) GL(K3, K4)) is given by (2.18) for a very weak 
disorder, the question is to know if these correlations will increase when 
one increases L. From the recursion relation (2.12), it follows that 

( G2L(K~, 1s G2L(K3, K4)) 

/a  (K1 , K2 ~ (K3,14))1( K2~-K2 K2 K2) =\ L\~ ~jGL\~ ~ ~ exp ~ +exp-@- 

x ( G r ( - q l , ~ ) G l ~ ( - q 2 , ~ 2 2 )  ) (2.19, 

As in the pure case, one can look first at the linear part of (2.19) and one 
finds solutions of the form 

( G L(K1, K2) G L(K3, K4)) 

-- L -./2 exp - (K~ + K~)/4 - exp - (K~ + K~)/4 P.(KI, K2, K3, Ka) 
K2 z + K4 2 - K 2 -- K~ 

(2.20) 

where P,(K1, K2, K3, K4) is a homogeneous polynomial of degree n. 
There is a single marginal solution corresponding to n = 0 and all the 

solutions for n ~> 1 are irrelevant. 
Because near Ki = K 2 = K  3 = K 4 = 0  , the functions (2.20) are all the 

homogeneous polynomials of degree n, one can consider that arbitrary 
functions (GL(K1, K2)GL(K3, K4))  can be decomposed on the basis of 
the functions (2.20). The components on the irrelevant n/> 1 directions can 
be forgotten, and one only needs to care about the component A L on the 
marginal direction. So if the component of (GL(K~, K2) GL(K3, K4)) on 
the marginal direction is 

exp -- (K 2 + K2)/4 - exp -- (K22 + K24)/4 
AL K ~ + K  2 -  K~2 _ K32 (2.21) 
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one finds, using (2.19), that A2c is given by 

A2 L AL ~2 ( (  i _ e x p [ _ ( q 2 1 + q ~ ) / 4 ] } 2  
4 -- 4 + - 2 A Z J J  dqldq2 (q~+q~)2 (2.22) 

The simplest way of deriving (2.22) is to put K 1 =/s = K3 = K4 = 0 in 
(2.19) since in that limit the only eigenfunction (2.20) which does not 
vanish is the marginal eigenfunction. 

The integral in (2.22) can be calculated and one ends up with 

A2L = A L + A21r 3 log 2 (2.23) 

The first thing to notice is that the coefficient of the quadratic term is 
positive, implying that disorder is marginally relevant. Equation (2.23) can 
be put in a differential form as 

dA L = rc3 A ~ 
dL -L- + higher order terms (2.24) 

which can be integrated as 

1 1 
AL t- ALo = ~3(l~ L - log Lo) (2.25) 

Assume that one starts with a very small.disorder 

(b 2) ( l + t )  2 
AL0-- ~4 ( l + 2 t ) t  (2.26) 

Then (2.25) tells us that the size L at which AL will become of order 1 is 

rc t(1 + 2 t )  
log L - (b2)  (1 + 0 2 (2.27) 

As seen in Section 2.2, going from the scale Lo to the scale L, the distance 
Aa = ( a )  - ( a c )  pure to the transition of the pure system has been multi- 
plied by (L/Lo) m. Therefore one expects 

l og ( ( a )  random pure 72 t(1 +2t )  (2.28) 
- ( a ) c  ) - ~ - 2 @ 2 )  ( 1 + 0  2 

Also from (2.25), we see that the change of scale renormalizes the width of 
the distribution 

AL0 (2.29) 
AL -- 1 -- rc3Aco log(L/Lo) 
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Replacing AL0 by its expression (2.26) and ~ by (Aa) -1, one gets from 
(2.29) a renormalized width (b  2 ) R 

(b2)R -- (b2)  (2.30) 
1 + 1-2(b2)(1 + t)2/Trt(l -q-2t)] l o g ( ( a )  - ( a ) c  pure) 

In the conclusion, we shall see that this is consistent with the calculation 
of Forgacs et al., 17) although our interpretation is different. 

3. N U M E R I C A L  RESULTS FOR T W O - D I M E N S I O N A L  W E T T I N G  

In their study of the wetting problem defined by Eqs. (1.1)-(1.3), 
Forgacs et al. (7) computed the free energy by the transfer-matrix method to 
test numerically the validity of their results. They found no indication of a 
shift of the critical temperature nor of a modified critical behavior, in the 
range of temperatures they could explore. They also noted that large 
systems (length L =  106-107, width up to 500) were necessary to reduce 
statistical uncertainties to an acceptable level. 

We tried to improve this approach by computing also the first two 
derivatives of the free energy, as in ref. 10: one iterates not only relation 
(1.3), but also its first and second derivatives. This allows one to study 
directly the specific heat, even very close to the critical point. We 
considered specifically the average number of contacts per unit length, 

1 dlog ZL 
n s =  lira (3.1) 

L ~  L d l o g ( a )  

and its derivative, the "contact specific heat" Cs: 

~ s  

Cs = - -  (3.2) 
d l o g ( a )  

The number of contacts has the same critical behavior as the energy and 
it can be obtained directly by differentiating the recursion relations (1.3) 
with respect to ( a ) .  

We implemented that approach for a system with rather strong dis- 
order [see (1.5)] (hi= _+0.8 with probability 1/2, and t =0.25), on strips of 
length L = 107, discarding the 2 x 104 initial iterations. In these calcula- 
tions, we also considered an interface between two walls at a distance 2N, 
with the same realization of disorder on the two walls (for symmetry 
reasons this can be done using tridiagonal transfer matrices of size N). The 
sizes studied ranged from N = 25 to N = 800. The results in the region very 
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10 

Cs 

8 

0 , ~ r J I 

1.20 1.25 

,,l 
<(3> 

( a )  

1.0 

Cs 

0.8 

0.6 

0.4 

0.2 

0.0 

~ ' I . . . .  I ' f l  

1.20 1.25 
<CI> 

(b )  

Fig. 2. (a) Contact specific heat C s versus coupling parameter ( a ) ,  for pure 2D wetting and 
system half-widths N=25 ,  50, 100, 200, and 400. The wetting transition at ( a ) =  1.20 is 
indicated by the arrow. (b) Contact specific heat in the presence of disorder (contrast b = 0.8), 
for strips of length L = 1 0  7 and strip half-widths N =  25, 50, 100, 200, 400, and 800. Note the 
change of vertical scale from part (a). The transition of the pure system is indicated by the 
black arrow and a rough estimate of the transition in the random system by the white arrow. 
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close to ( a ) c  pur~= 1.20 are displayed in Fig. 2a for the pure system and 
Fig. 2b for the disordered one, to allow a comparison. 

In the pure case, the free energy can be obtained from Eq. (A.10) of 
Appendix A. At the transition point the specific heat C s has a jump from 
a finite value Cs(~)  to zero, with 

2 (1 + t) 2 
Cs(~)  - (3.3) 

t l + 2 t  

A more detailed calculation of finite-size effects, which we shall not describe 
here, shows that for large N all curves Cs(N) versus ( a )  cross at the 
transition point at a value Cs(~)/3,  in agreement with the results of 
Fig. 2a. 

In presence of disorder (Fig. 2b), the specific heat decreases rapidly to 
zero with increasing size, when ( a )  = ( a ) ~  ure (-- ( a )  a . . . .  led). There is no 
sign of a jump. Instead the size dependence of Cs(N) strongly suggests that 
a continuous transition occurs at ( a )  ~- 1.22, with an exponent e <0.  Our 
data are too noisy to allow a reliable prediction for c~, or a study of its 
dependence on randomness. 

Note that for the disorder chosen in (1.5) and (1.6), one can easily 
prove that ( a ) r a n d ~  ( a )  . . . . .  led This is because ( log Z ) ~ < l o g ( Z ) .  

c c ' 

Since ( a )  rand~ is defined by the fact that for ( a ) > ( a )  rand~ 
( log Z ) / L  > log(1 + 2t), it is clear that if the quenched model is in its low- 
temperature phase, the same holds for the annealed model. 

4. WETT ING ON THE H IERARCHICAL LATTICES 

It is well known that models of statistical mechanics are much easier 
to solve on hierarchical lattices. (m The problem then usually reduces to the 
study of a map in the space of parameters and the critical behavior can be 
computed by linearizing this map around the critical fixed point. For  
models with disorder, one has to iterate a whole probability distribu- 
tion (12-15) and so far there is no analytical approach to calculate the critical 
behavior (except some perturbative approaches in specific cases(14'15)). 

Here we shall consider the effect of disorder on the wetting transition 
for a family of hierarchical lattices. The specific heat exponent e of the pure 
system depends on the branching parameter B of the lattice, and for the 
particular value of B where e vanishes we shall show that disorder is 
marginally relevant, as in the 2D problem studied above. We shall argue 
similarly that the critical temperature should be shifted by an exponentially 
small amount  in the disorder amplitude, and shall present a numerical 
study of the nature of the transition. 
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4.1. Uni form Substrate 

The hierarchical lattices we consider are generated by an iterative rule 
described in Fig. 3: Each bond is replaced by B branches consisting of two 
bonds, and the construction is repeated. To obtain a model of wetting or, 
equivalently in the present case, of polymer adsorption, the outer bonds are 
singled out as wall or "substrate" bonds. An interface (or polymer) 
extending between the two extremities of the lattice gains an energy - u 0  
every time it lies on the substrate. 

The partition function Ye of an interface in the bulk on a kth-genera- 
tion lattice is given by the recurrence equation 

Ye+l :By2 (4.1) 

(Ye is just the number of walks, since the energy is zero in the bulk). In 
the presence of a wall, the branch along the wall differs from the ( B -  1) 
bulk branches and the partition function Zk satisfies 

ze+, + (B- 1) (4.2) 

The ratio R e = Ze/Ye is thus given by a one-variable recurrence 

Re + i - (4.3) 
B 

For  an initial value Ro=exp(uo/T)<B-1, Rk iterates toward 1, 
meaning that on large scales the interface has no tendency to lie close to 
the wall, it is delocalized, and the system is in its high-temperature phase. 
For  R o > b -  1, Re iterates to 0% indicating that the interface is localized 
close to the wall. The wetting transition occurs at the critical value 
R o = B- -  1, which is a repulsive fixed point of (4.3). 

Fig. 3. 

I 
k = 0  1 2 

Recursive construction of a hierarchical lattice with B branches. The hatched surface 
represents the attractive wall. 
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The excess free energy due to the wall 

log Rk 
Fs= - T  ~lim 2-----7-- (4.4) 

vanishes when Ro < B -  1. For Ro > B -  1, F s has a power law singularity 
of the form 

Fs~  J R 0 -  ( B -  1 ) ]  2 - ~  (4.5) 

The critical exponent a is obtained as usual by linearizing the recurrence 
relation (4.3). This gives 

Hence 

R k + ~ - - ( B - 1 ) - ~  2 ( ~ ) [ R k - -  (B-- 1)] (4.6) 

log 2 
2 - ~ - (4.7) 

l o g [ 2 ( B -  1)/B] 

We note that ~ vanishes for the particular value of B: 

B = 2 + x / 2  (4.8) 

As we want to compare the hierarchical lattice with the 2D problem of 
Sections 2 and 3, where disorder is marginal, we will mostly consider the 
hierarchical lattice for that value of the branching ratio. 

4.2. Random Substrate 

Let us now consider the case where the energies ( - u i )  on the sub- 
strate bonds are random and uncorrelated. The partition function Z 
depends on the particular realization of the {ui} and the recurrence equa- 
tion involves two distinct values Z ~ and Z ~2) at the kth generation: 

Zk+l -~-~kT(1)7(2)~k + ( B -  I) Yk2 (4.9) 

Equation (4.3) for the ratio R becomes 

R(D/?(2) ( B -  1) k * ' k  -t'- 
Rk+l = B (4.10) 

with initial conditions R~o ~ = exp(ujT). This equation is the direct analogue 
of (2.1) for the 2D problem, but it is simpler, as the basic quantity is a 
number instead of a function. 
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Despite its simplicity, this recursion remains nontrivial because, given 
an initial distribution of the R(0 i), it is hard to tell toward what fixed point 
it will converge. 

If the energies are random and uncorrelated, the average ( R )  satisfies 
the same equation as the pure system (4.3), 

(Rk)2  + B ~ 1 
( R , + I ) -  B (4.11) 

On large scales ( R k ) ~ l  (respectively, or) if ( R o ) < B - 1  (resp., 
> B -  1). If disorder is irrelevant, the wetting transition takes place at the 
critical point given by 

(R(o i) ) = B - 1 = \('a ~ pure-c (4.12) 

This occurs if the distribution P(R) becomes narrower under iteration at 
To. The variance A = (R  2) - ( R )  2 obeys the recurrence 

A~(2(R~) 2 + A~) 
Ak+l-- B 2 (4.13) 

For a weak enough initial disorder, it decreases at ( a ) =  ( a ) ~  ur" if 

2 ( R o ) 2 < B  2, that is, B < 2 + x / 2  (4.14) 

Comparing this condition with Eq. (4.7), we see that disorder is 
irrelevant if c~<0 and relevant if ~ > 0 ,  in agreement with the Harris 
criterion. When B = 2 + ~ ,  the coefficient of A 2 in (4.13) is positive, 
implying that disorder is marginally relevant. 

It is difficult to elucidate the nature of the transition when disorder is 
relevant, as the quantity of physical interest is (log R )  and its behavior 
cannot be obtained from that of ( R )  and (R2). As in the 2D case, predic- 
tions can be made for the shift of the critical temperature. In the marginal 
case, for ( a ) =  ( a )  pure, the variance Ak grows as 

1 
A k + 1 = 3 ~ + ~ 5 3 ~ +  --- (4.15) 

as long as A k ~ > R k - ( B - 1 ) ,  in direct analogy with Eq. (2.23) for the 2D 
problem. For small enough A~ this yields 

1 1 k 
3-~"~A--~o--B-5 (4.16) 

822/66,'5-6-2 
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where A o is the initial variance, up to a maximum scale L* given by 

B 2 log 2 
log L* - - -  (4.17) 

Ao 

Following the same reasoning as for the 2D case, one expects the transition 
to occur when 

l o g [ ( R o ) -  ( B -  1)] _ 
B 2 log 2 

(4.18) 
A0 

with 2 = 2 ( B -  1)/B = xf2. In a model with binary disorder of the form 

R(oi) = ( a ) ( 1  + bi) (4.19) 

with b i=  +b and (hi)= O, the variance is 

A o = ( a ) 2 b  2 (4.20) 

and one expects the transition point to be shifted for small b by 

log 2 
log( (a )~  and~ -- ( a ) P  ure) ~ b2 (4.21) 

When disorder is relevant (B>  2 + xf2), a calculation along similar 
lines predicts a power law dependence of the shift: 

( R o ) - - ( B - - 1 ) ~  A~ (4.22) 

with y = 1/c~, so the shape of the transition line is controlled by the specific 
heat exponent of the pure system. 

4.3. Numerical  Results 

In order to check that the transition point is indeed shifted in presence 
of disorder, as predicted from (4.21), and to obtain some information on 
the nature of the transition, we have performed numerical simulations on 
hierarchical lattices of large sizes. The randomness was of binary type, as 
described in (4.19). 

4.3.1. Periodic Lattices. One approach consists in determining 
the critical value of ( a )  for periodic lattices of period L = 2 ~. For  a given 
sample this amounts to finding the value a* of ( a )  such that Rk=  B--1 .  
A distribution P(a*) is obtained whose width decreases when k increases. 
It follows from (4.10) that a system of period k can be critical only if one 



Effect of Disorder in 2D  W e t t i n g  1205  

subsystem of size 2 k-  ' is below its critical temperature (R~_ 1/> B - 1 ) and 
the other subsystem is above. Hence the average critical coupling a* lies 
within the range of fluctuation of a~_ 1. 

Results for the marginal branching ratio B = 2 + x/2 and a strong con- 
trast (b=0 .8)  are displayed in Fig. 4. For  k~> 18 the critical point of the 

pure pure system, ( a )  c = , , f 2 + l ,  lies more than two standard deviations 
away from the average ak.-* This shows that the critical temperature is 
shifted, albeit by a small amount. Extrapolation of the results yields an 
estimate for the critical coupling, (a)c~-2.437.  Analogous results were 
obtained for b =0.6, but it was not possible by this approach to study 
smaller values of b and check the dependence predicted by (4.21) for 
small b. 

4 .3.2.  Finite Lattices. We also studied the average number of 
contacts per unit length, given here by 

1 d(log R~) 
(4.23) ns-2k d l o g ( a )  

and the contact specific heat 

tins (4.24) CS-dlog<a) 

3.o ' ' ' r . . . .  I 

Qk 

2.8  

2 . 6 - -  T 

llIIi 
2.4  --- . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - -  

2.2 . . . .  I , , , I 
0 10 k 20 

Fig. 4. Critical coupling a* for periodic hierarchical systems of period L = 2 k at the marginal 

branching ratio B = 2 + x/2. The intervals correspond to one standard deviation on both sides 
of the mean value, as obtained from l0 3 samples of length 2 2~ The dashed horizontal line 
indicates the transition of the uniform system. 
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4 _ I i ,  i i i I i i i i I i ~ i t ~ r  
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(b) 

Fig. 5. (a) Contact specific heat for wetting on a uniform substrate for hierarchical lattices 
of size 26-217. The vertical dashed line indicates the transition, ( a ) c =  B - 1  = 1 + x/2. (b) 
Contact specific heat for random substrate for hierarchical lattices of size 26-217. The arrow 
indicates the transition point deduced from the study of periodic systems. The envelope of the 
curves has the same critical behavior as the specific heat of the infinite system (Appendix B). 
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for finite hierarchical lattices of increasing sizes. These quantities can be 
readily obtained by writing the recurrence relation for the total number of 
contacts 

Nk (1) + ~'kA/(2) 
N,+ 1 = 1 + (B-- 1)/(R~I) R(k2) ) (4.25) 

and the relation for dNk/d(a), with initial conditions No")= 1. 
The results obtained in the marginal case (B = 2 + ~/2) are displayed 

in Figs. 5a and 5b for the critical region, ( a )  close to 1 + x/2. For the pure 
system the specific heat appears to have a finite jump at the transition 
point, and the set of curves for different N appear to cross asymptotically 
at the same point. 

In the presence of disorder the behavior is quite different: Cs(k) 
decreases rapidly with system size at the critical point of the pure system, 
and the results are compatible with a singularity characterized by an 
exponent c~< 0 at the critical value ( a ) ~ ,  and~ derived by extrapolation of 
periodic systems. 

A more quantitative analysis can be performed by noticing that the 
envelope C of the set of curves in Fig. 5b has the same qualitative behavior 
as Cs for the infinite system, up to a multiplicative constant: 

C ~ K ( ( a ) -  ( a ) r a n d ~  - 7  (4.26) 

This property is discussed in Appendix B. Using the value of ~a2c . . . . .  dora 
extracted from the study of periodic systems, one may in this way estimate 
the specific heat exponent 7: 

-~ -0 .6  for b=0.8  

5. C O N C L U S I O N  

In this paper we have shown (Section 2) that disorder is marginally 
relevant for the wetting transition in dimension 2. As a consequence, the 
transition temperature should be shifted and the critical behavior should be 
changed due to disorder. This is confirmed by our numerical calculations 
('Section 3) done for a rather strong disorder. As the shift in ( a ) ,  due to 
disorder is expected to be exponentially small, the difference between the 
annealed and the quenched systems becomes quickly invisible when one 
chooses a weaker disorder. The study of the same wetting problem on a 
hierarchical lattice leads to very similar conclusions. 
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Let us now compare our results with those of previous works. For the 
same problem, Forgacs e t a / .  (6'7) were able to resum the most singular 
terms of the weak-disorder expansion. Translating their notations to ours, 
the result of this resummation was that for (b 2) ~ 1 

log ZL = log(1 + 2t) t #2 
L + ~  

2#2(b2) [(1 + t)/(1 + 2t)] 2 

1 - (b2)[2(1 + t)z/rct(1 + 2t)] log(I/#) 
(5.1) 

where # (>0 )  is small and measures the distance to the critical point 
( ac )  pur~ of the pure system, 

l + 2 t  ( l + 2 t )  t 
( a )  = 1 + t + (1 + t) ~ # (5.2) 

Expression (5.1) is expected to be valid for # small but fixed and for 
infinitesimal (b 2 ). 

This expression is consistent with our renormalization calculation of 
Section 2 as we see in the last term of (5.1) the renormalized width (b2)R 
obtained in (2.30). 

Our conclusions differ, however, from those of Forgacs et aL (6"7~ in 
two important aspects. First we find that disorder is marginally relevant 
and this implies that the critical behavior is changed by disorder, whereas 
Forgacs et al. claim that it remains unchanged except for a subdominant 
logarithmic correction. Their conclusion would be reached by taking the 
limit # ~ 0  in formula (5.1) without worrying about the fact that the 
denominator vanishes when # decreases, meaning that the perturbation 
expansion loses its validity. Second, we conclude that for any amount of 
disorder, the quenched and the annealed critical ( a )  are different, in agree- 
ment with our numerical results. 

At the moment, predicting the nature of the transition in the presence 
of disorder, even in the simple case of the hierarchical lattice, remains a 
challenging open question. 

A P P E N D I X A .  PARTIT ION FUNCTION OF THE PURE SYSTEM 
AT THE WETTING POINT IN D I M E N S I O N  2 

In this appendix, we show that the partition function of the pure 
system is given by formula (2.6) at the wetting transition of the pure 
system, while at infinite temperature (high-temperature fixed point) it is 
given by 
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zHT(x, y)  ~ (1 + 2t) L \ - - ~ - l f  } exp -- 4tL 

(A.1) 

ZL(X, y )  can be interpreted as the partition function of directed ran- 
dom walks of L steps going from point (0, x) to point (L, y). Each step of 
a walk is either horizontal with weight 1 or along one of the diagonals of 
the lattice with weight t. Moreover, the sites visited by the walks are con- 
strained to have positive ordinates and each contact with the wall 
contributes an additional weight a. 

Let us first consider unconstrained walks. Then the partition function 
z R W ( x  L t , Y) of the walks going from (0, x) to (L, y) in L steps is simply the 
coefficient of u y ~ in the polynomial I1 + t ( u +  l /u)] L. This can be written 

L ~ , 2n iuv  x+l l + t  U+ (A.2) 

where the integral is taken around the unit circle in the complex u plane. 
At infinite temperature, a is equal to one. Therefore one can take the 
constraint into account by the method of images 

zH-r~X zRW~x  zRW~x  2) (A.3) L ~ , Y ) =  L ~ , Y ) - -  L , , - - Y - -  

z R W t x  L t , Y) for large L and x or y of order x /L  can be estimated by 
using the integral representation (A.2) and the saddle point method. One 
obtains 

(1 + 2t'] 1/2 [ ( x -  y)2(1 + 2t) ] (A.4) 
z R W ( x ,  y )  ~-- (1 + 2t) L \ - ~ /  exp -- 4tL 

By substituting (A.4) in formula (A.3), one gets formula (A.1) for the high- 
temperature fixed point. 

Let us now consider the computation of ZL(x ,  y )  at the wetting 
transition. It is convenient to decompose the walks into two classes: (i) 
walks that never touch the wall, and (ii) walks that have at least one point 
of contact with the wall. 

The contribution of the first class is obtained easily by the method of 
images, 

z R W ( x  -- z R W t x  z( i )r  Y)= Y) c , , - Y )  (A.5) L \ ~ L \ ' 

In the asymptotic limit (L>>I and x, y ~ x / L ) ,  Z(i)tXL, , y )  is given by 
zHT(x  formula (A.1) as L t , Y)' 
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Each walk of the second class can be decomposed into three parts: (a) 
a random walk between (0, x) and the first point of contact with the wall; 
(b) a random walk between the last point of contact with the wall and the 
point (L, y); and (c) a middle part of the walk between the first and last 
contacts with the wall with an arbitrary number of contacts in between. 

The contributions coming from the first part and last part of the walks 
are easily evaluated. They are related to random walks that are shorter by 
one step and never touch the wall. They can be computed using the parti- 
tion function Z (i~ introduced above. Therefore Z2i)(x, y) can be written 

zdi)(x, Y)= E t z~?_ l (X  , 1)~L2mT(ii)/0~v' 0)IZ~] 1(1, y) (A.6) 
LI+L2+L3=L 

Notice that in Z (i) the weight coming from the contact with the wall does 
not appear, while in Z~ ~i) we count the weight from abscissa 1 to abscissa 
L. This is why only the leftmost weight in Z2~ ) appears explicitly in formula 

(A.6). The new piece in formula (A.6) is 7(~)m 0), which comes from the 
~ L 2  ~,v~ 

central part of the walk. In order to compute it, we write a recursion 
relation which relates it to walks with one less contact point, 

L 

z2i)(O,O)=aZ2i)l(O,O)+ y' atZZ2i)_2(1,1)Z(~)_L,(O,O ) (a.7) 
L ' = 2  

This can be solved by introducing generating functions 

o)= E  Lz2 (o, o) 
L=o (A.8) 

1 2~(i)(1, 11 = Z I~LZ2)( 1, 1)=2~-~ {1 --p-- [(1 --/~)2--4#2t2]'/2} 
L=0 

Then (A.7) reads 

2r O) - 1 = #a2(~b(O, O) + a#Zt22(~i)(1, 1) 2~(i~)(0, 0) (A.9) 

and 

{ a k ta a 2 }--1 
2~(ii)(0,0)= 1 2 2 F-~[ (1 -#) -4#2 t231 /2  (A.10) 

The behavior of Z~i)(0, 0) is determined by the singularity of 2~~ 0) 
closest to the origin # = 0. For a small, it comes from the square root and 
stands at f t*= (1 + 2t) 1. This corresponds to the high-temperature phase. 
On the contrary, for a sufficiently large, the singularity closest to ft = 0 is 
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a pole coming from the zero of the denominator in (A.10). This describes 
the low-temperature dry phase. The transition point between the two 
behaviors is given by the coincidence of the two singularities, that is, for ac 
such that the denominator vanishes at #=/~*. This gives the wetting 
transition point a~ = (1 + 2t)/(1 + t), which is easily interpreted as the point 
where the loss of entropy due to the presence of the wall is exactly counter- 
balanced by the gain of energy at the contact point. At the wetting 
transition point the behavior of 2~(i~(0, 0) is given by 

I 1 ]1/2 l + t  (a . l l )  
2~(~)(0, 0),-- t(1 +2t )J  (1-#/~*)~/2 

and therefore 

l + t  
Z~Lii)(0, 0) It(1 +2t)  nL] ~/2 (1 +2t)  L (a.12) 

In order to compute z~ii~(x, y) in the limit L ~ 1, x ~ L ~/2, y ~ L ~/2, we also 
need the asymptotic behavior of Z~i~tx 1) and z(i)tl y). From (A.5) and 
(A.4) one obtains 

t Z ~  i(x, 1) = tZ2 ~ ~(1, x) ~ (1 + 2t) L \ - 4 - - ~ ]  ~-~ exp - ~-~ (1 + 20 

(1.13) 

The contribution of walks that have at least one contact point with the 
wall can now be obtained by substituting (A.12) and (A.13) in (1.6) and 
by replacing the sum by an integral. One gets 

g(Lii)(x'Y)~'(l +2t)L (1+2t~3/2 \ ~ ]  xy dL' fo -L' dt" 

• exp{ - [(1 + 2t)/4t](x2/L'+ y2/L")} (A.!4) 
(L'L")3/2(L - L' - L") ~/2 

This expression can be simplified by using the result 

f~ f~ -~ exp( -u2 /~-  v2/fl) n da dfl ( - ~ / - ~ : ; - - - ~ - l u v l  e x p [ - ( u  + v) 2] (A.15) 

Finally, one obtains the simple formula 

(1+2, 1,2 [ 
Z2')(x, y) ~ (1 + 2t) L \ - ~ - /  exp 

(1 + 2t) ] 
4tL (x+ y)2 (A.16) 
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The expression of ZL(x, y) at the wetting transition critical fixed point is 
obtained by adding the contributions of z(i)(x y) and Z2i)(x, y). One gets, L \ ' 

in agreement with Eq. (2.6), 

ZL(X, y ) = ( 1  + J ~--4--4--~) exp (x-- y)2 

+exp - - - - ( x + y ) 2  (A.17) 
4tL 

As a final remark, one can note that at the wetting transition, Z2i)(0, 0) 
decreases like L 1/2. Using (A.12), this can be the starting point of a 
conventional renormalization group treatment in the replica formalism to 
show that disorder is marginally relevant and that the two-replica interac- 
tion is the only important one. In this way, one can obtain an alternative 
derivation of formula (2.30) of the main text, from the computation of a 
one-loop, two-vertex graph. 

APPENDIX B. CRITICAL BEHAVIOR OF THE 
ENVELOPE FUNCTION 

We show here that the critical behavior of a quantity C(T) singular at 
T =  Tc can be obtained from the envelope of the curves CN(T ) for finite 
system sizes. 

Suppose that close to T~, C(T) has a singularity of the form 

C(T) ~ I T -  Tel ~ (B.1) 

and that for large system sizes, it satisfies a finite-size scaling relation of the 
form 

CN(T  ) ~ N-W~f[rN 1/~] (B.2) 

where f (z)  is a smooth function for [zl r 1, r = T -  To, and v is the correla- 
tion length exponent. If an envelope C(T) exists for the curves CN(T), it is 
defined by 

C( T) = C ~vo( T) (B.3) 

where No(T) is the size where CNo + I (T)=  CNo(T ). This is the solution of 

8CN 
~?N No = 0 (B.4) 
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H ence  Zo = zN~/~ is the  so lu t i on  (if it exists)  of  

- ~ o f ( z o )  + z o f ' ( z o )  = 0 (B.5) 

The  enve lope  is g iven by  

C( T)  ~- K z  ~ (B.6) 

where  K = z o ~ f ( z o )  is a c o n s t a n t  i n d e p e n d e n t  of size. T h u s  C ( T )  has the 
same  cri t ical  b e h a v i o r  as C(T) .  The  enve lope  m a y  reduce  to a p o i n t  if 

cp = 0, as in  the pu re  2 D  we t t ing  p rob lem.  

A useful  c o n s e q u e n c e  of  (B.6) is tha t  the cr i t ical  po in t  can  be loca ted  
g raph ica l ly  wi th  r e a s o n a b l e  accuracy  if q~ ~< 1, whereas  the usua l  scal ing 

ana lys i s  involves  three  p a r a m e t e r s  (T~, v, a n d  q~) which  have  to be fi t ted 
at the  same  time. 

A C K N O W L E D G M E N T S  

W e  t h a n k  J. P. B o u c h a u d ,  M. G ing ra s ,  J. M. Luck ,  a n d  H. O r l a n d  for 

useful  c o m m e n t s .  

R E F E R E N C E S  

1. A. B. Harris, J. Phys. C 7:1671 (1974). 
2. G. Grinstein, in Fundamental Problems in Statistical Mechanics VI, E. G. D. Cohen, ed. 

(~985), p. 147. 
3. D. B. Abraham, in Phase Transitions and Critical Phenomena, Vol. 10, C. Domb and 

J. L. Lebowitz, eds. (1986), p. 1. 
4. H. W. Diehl, in Phase Transitions and Critical Phenomena, VoL 10, C. Domb and 

J. L. Lebowitz, eds. (1986), p. 75. 
5. M. Schick, in Les Houches, XLVIII Liquids at Interfaces, J. Charvolin, J. F. Joanny, and 

J. Zinn-Justin, eds. (1990), p. 415. 
6. G. Forgacs, J. M. Luck, Th. M. Nieuwenhuizen, and H. Orland, Phys. Rev. Lett. 57:2184 

(1986). 
7. G. Forgacs, J. M. Luck, Th. M. Nieuwenhuizen, and H. Orland, J. Stat. Phys. 51:29 

(1988). 
8. V. S. Dotsenko and V1. S. Dotsenko, Adv. Phys. 32:129 (1983); R. Shankar, Phys. Rev. 

Lett. 58:2466 (1987). 
9. J. S. Wang, W. Selke, V1. S. Dotsenko, and V. B. Andreichenko, Physica A 16:221 (1990). 

10. B. Derrida and O. Golinelli, Phys. Rev. A 41:4160 (1990). 
11. A. N. Berker and S. Ostlund, J. Phys. C 12:4961 (1979). 
12. W. Kinzel and E. Domany, Phys. Rev. B 23:3421 (1981). 
13. D. Andelman and A. N. Berker, Phys. Rev. B 29:2630 (1984). 
14. B. Derrida and E. Gardner, J. Phys. A 17:3223 (1984). 
15. B. Derrida and R. B. Griffiths, Europhys. Lett. 8:111 (1989); J. Cook and B. Derrida, 

J. Stat. Phys. 57:89 (1989). 


