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We introduce extremely simple geometric models of a system of growing and coalescing 
droplets, in order to study its time evolution. For a one-dimensional surface we write down 
equations for the evolution of the distributions of distances between droplets in these models. 
We calculate these distributions in the long time limit, where we find a scaling regime. 

In recent years, considerable studies [1-4] have been performed on the 
dynamics of condensation of water on a non-wetting surface. Experimentally,  
water vapor passed over a cold surface, condenses on the surface in the form of 
droplets. It is observed that each droplet grows with time, due to the continual 
condensation of water, and that when two droplets come in contact, they 
coalesce, because of surface tension, into a single droplet. This is a particular 
case of aggregation where the spatial extent of the clusters (on a 2D surface) is 
governed by their (3D) form. The interesting feature of this form of condensa- 
tion is that after some time from the beginning of an experiment,  the system 
attains a regime of self-similarity in time: the distribution of droplet sizes has a 
scaling form, and the fraction of the surface covered by the droplets (the 
"coverage" )  is constant. 

A plausible model for this system consists in placing D-dimensional droplets 
randomly on a d-dimensional surface (in reality, D = 3, and d = 1 or 2). The 
diameter ,  di(t ), of each droplet is taken to grow in time as a power law 

d , ( t )  = a i ( t )  , ( 1 )  

and w h e n  two drople t s  c o m e  in contac t ,  they are r ep laced  ins tan taneous ly  by 

one  d rop le t  with a d i a m e t e r  g iven by mass conse rva t ion ,  

a,+j + (aid + a?) "° , (2) 

placed at the center of mass of the coalescing droplets. 
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For the sake of simplicity, we considered only the one-dimensional version 
of this model [5, 6], in which case the relevant quantities are droplet diameters, 
d i, distances between the centers of neighboring droplets ("intervals"), hi ,  and 
gaps between droplets, gi. Numerical simulations show that this model reaches 
a self-similar regime. In fig. 1 we plot distributions of sizes of gaps, diameters 
and intervals, scaled by the average droplet diameter at different times in the 
scaling regime, for the model defined above with D = 3. The coverage remains 
at a constant value of 0.8 throughout this regime. 

These results remain unchanged qualitatively for different values of D. An 
interesting case is found by taking the limit D ~  ~ where the distribution of 
diameters becomes a 6-function. 

Next, we consider a simplified model of growth and coalescence where all 
droplets have the same diameter and grow at the same rate. When two droplets 
touch, they are replaced by a single droplet of the same size centered in the 
middle between the coalescing droplets. This model can be interpreted as 
purely geometric if we consider the points which are centers of the droplets. 
We trace only coalescences, and this consists in searching for the two nearest 
points (separated by the shortest interval, which we denote by h0) and 
replacing them by a single point in the middle between them. The droplets 
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Fig. 1. 3D droplet model simulation: distributions of gaps, diameters and intervals, scaled by the 
average diameter. 
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Fig. 2. Geometr ic  model I: scaled distributions of interval lengths (simulation, mean field). 

diameters  are taken to be all equal to h 0. This model exhibits a self-similar 
regime,  and in fig. 2 we plot distributions of interval lengths at different times 
in the scaling regime, scaled by h 0. The corresponding coverage is 0.72. 

We now study the evolution of a sequence of intervals along the line, where 
at each step we take the shortest  interval h0, cut it in two, and add each half to 
one of its neighbors.  As a first step, we take a mean-field approximation where 
we assume that the intervals are uncorrelated.  This can be visualized as having 
a sack with sticks in it, and that at each step one takes the shortest stick, cuts it 
in two and add each of the pieces to two other sticks chosen at random from 
the sack. Defining f ,(h)  ~h as the probabili ty of finding an interval of length 
be tween h and h + ~h at t ime t, we can express ft+~,(h) after a small t ime step 

~t during which all intervals of  length between h 0 and h 0 + ~h 0 have been 
coalesced as 

f , + ~ , ( h ) = f , ( h ) + [ - f t ( h ) + 2 f t ( h -  ½ho) O ( h -  3ho)]f,(ho)~h o . (3) 

This equat ion gives rise in the long time limit, for most initial conditions, to a 
particular distribution of interval lengths, scaling in time as h o, plotted in fig. 2, 
the corresponding coverage being 0.64. 

As h 0 is a natural length scale in this problem,  we introduce a scaled 
distribution F(x, t) defined by 
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f , ( h )  = h o a F ( h / h o ,  t )  , (4) 

which obeys, when taking the limits ~t---> oo and ~h0--->~, a partial differential 
equation 

_ _  a F ( x ,  t )  (a  + t )  a F ( x ,  t )  = F ( x ,  t )  + x - -  
a t  a x  

+ F(1, t) [2F(x - ½, t )  O(x - 3 )  _ F ( x ,  t ) l ,  (5) 

where it is taken that h o ( t  ) =  a + t. We do not have the complete time 
dependent solution of eq. (5), but we can calculate the family of stationary 
solutions of this equation, parametrized by a continuous parameter F(1). We 
can also argue why for most initial conditions, the stationary solution that will 
be chosen (assuming one is reached) is the one corresponding to F(1)= 1, 
which is the solution displayed in fig. 2. As is seen clearly in this figure, this 
solution is not at all satisfactory. The reason for this is that correlations do exist 
between the intervals, due to the particular coalescence mode chosen. We can 
make a better approximation for the description of this model by including 
nearest neighbor correlations, but correlations extend farther than that. 

We introduce a second geometric model, similar to the previous one, except 
for the coalescence mode: when the shortest interval is found, it is added as a 
whole to either of its neighbors at random, with equal probability. The 
distribution of interval lengths found in the scaling regime (here too!) of the 
evolution of this model, is plotted in fig. 3, scaled by h0, with a coverage of 
0.56. 

Using the same notations as for the previous model, we can express the time 
evolution of f~(h) by 

f , + ~ , ( h )  = f t ( h )  + f , ( h  - ho )  O(h - 2ho) f,(ho) ~ho, (6) 

and the partial differential equation obeyed by F ( x ,  t), 

aF(x, t) (a  + t )  a F ( x ,  t )  _ F ( x ,  t )  + x - -  
a t  a x  

+ F(1, t )  F ( x  - 1, t )  O(x - 2). (7) 

It should be noted that for this model there are no correlations between 
neighboring intervals, and the mean field is exact! Again we find that for most 
initial conditions, eq. (6) leads to a scaling solution which corresponds to the 
stationary solution of eq. (7) with F(1) = 1, also plotted in fig. 3, overlapping 
the simulation results. 

Apart from the generic stationary solution with F(1) = 1, F(1) can take any 
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Fig. 3. Geometric model II: scaled distributions of interval lengths (simulation, mean field). 

va lue  b e t w e e n  0 and  1. T h e s e  so lu t ions ,  which decay  as a p o w e r  law for  x >> 1, 

c o r r e s p o n d  to s lowly decay ing  ini t ia l  d i s t r ibu t ions ,  wi th  the  s ame  p o w e r  law 

b e h a v i o r .  This  d i s t inc t ion  is ana logous  to the  d is t inc t ion  m a d e  in the  add i t i on  

of  i n d e p e n d e n t  r a n d o m  va r i ab le s  b e t w e e n  the  G a u s s i a n  law and  L6vy laws [7]. 
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