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Abstract. Several recent works have shown that the onedimensional fully asymmetric 
exclusion model, which describes a ystem of panicles hopping in a preferred direction 
with hard core interactions, can be solved exactb in the case of open boundaries. Here 
we present a new approach based on representing the weights of each mnfiguration in 
the steady state as a product of noncommuting matrices. Wth this approach the whole 
solution of the problem is reduced to finding two matrices and two vectors which satisQ 
ve’y simple algebraic NI= We obtain several explicit toms for these noncommuting 
matrices which are, in the general case. infinite-dimensional. Our approach allows exam 
expresions to be derived for the current and density profiles. Finally we discuss h’efly 
two possible generalizations of our results: the pmblem of panially asymmetric exclusion 
and the case of a mixture of two kinds of panicles. 

1. Introduction 

Systems of interacting particles with stochastic dynamics have been studied for quite 
some time both in the mathematical and physical literature (Spitzer 1970, Liggett 
1985, Spohn 1991). The main mathematical achievements have been to allow an 
understanding of the asymptotic measures (Liggett 1975, 1977, Andjel er a1 1988), 
the fluctuations of tagged particles (Kipnis 1986, Ferrari 1986) and the microscopic 
structure of shocks (De Masi et a1 1988, Bramson 1988, Ferrari er a1 1991, Ferrari 
1992). From a physical vievoint, driven lattice gases with hard core repulsion 
provide models for the diffusion of particles through narrow pores and for hopping 
conductivity (Richards 1977, Katz er a1 1984), and belong to the general class of 
non-equilibrium models which includes driven diffusive systems (van Beijeiren er al 
1983, Kipnis et a1 1983). They are closely linked to growth processes (Meakin er a1 
1986, Dhar 1987, Krug and Spohn 1591, Kandel and Mukamel 1992) and can also be 
formulated as traffic jam or queuing problems (Kipnis 1986, Jean-Marie and Massey 

The asymmetric exclusion model in one dimension is one of the simplest examples 
of a driven diffusive system (Liggett 1985, Andjel et d 1988, Bramson 1988, De Masi 
et d 19% Ferrari et a1 1991, Ferrari 1592, Owa and Spohn 1992, Janowsky and 

1992). 
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Lebowitz 1992). Here we study the version with open boundary conditions. The 
model comprises particles which jump independently to their right with hard core 
repulsion along a one-dimensional lattice, open boundary conditions meaning that 
particles are injected at one end of the lattice and are removed at the opposite end. 
It has been noticed that the steady state of the system can be obtained exactly as a 
simple recursion relation on the system size (Derrida et a1 1992, Liggett 1975, Jean- 
Marie and Massey 1992). This recursion was used to calculate exactly, in the steady 
state, expressions of the density profile (the one-point correlation function) (Derrida 
er ai 1992) and for higher correlation functions (Derrida and Evans 1993). In these 
works the route from the recursion relation to the exact expression of the above 
quantities was via a rather complicated generating function method. 

In the present paper we describe a different approach which is inspired by 
techniques used in the study of integrable systems (Faddeev 1980, Baxter 1982). 
It consists of representing the weights of the configurations in the steady state 
as a product of non-commuting matrices. The technique has previously been 
applied to the problems of directed lattice animals (Hakim and Nadal 1983) and 
quantum antiferromagnetic spin chains (Kliimper et a1 1991, Fannes et ai 19%). For 
the asymmetric exclusion process the present approach simplifies the derivation of 
previous results (Derrida ef al 1992, Derrida and Evans 1993) and facilitates their 
generalization. 

In section 2 we recall the definition of 
the model we consider and explain how one can represent the weights of the 
configurations in the steady state as products of non-commuting matrices. In section 
3, we prove that this matrix formulation indeed gives the steady state. In section 4, 
we give explicit forms of the matrices and in section 5 we present exact expressions 
of the density profiles for finite systems. In the next four sections we then proceed to 
examine the h i t  of infinite systems. In section 6 we obtain several asymptotic forms 
for matrix elements which are needed in the calculation of the density profiles. The 
current is then computed in section 7, giving rise to a phase diagram which consists of 
three phases: a lowdensity phase, a high-density phase and a maximal current phase. 
In section 8, we compute the density far from the boundaries and in section 9, we 
find the density profiles near the boundaries. In section 10, we show that previously 
known results in a special case perrida et ai 1992, Derrida and Evans 1993) can 
be recovered very easily with the matrix approach. Finally, in section 11 we suggest 
two possible generalizations of the problem which may be tackled by similar matrix 
approaches. 

The paper is organized as follows. 

2. Definition of the model and steady state 

Let us first define the dynamics of the one-dimensional asymmetric exclusion model 
with open boundary conditions that we consider here (Derrida ef a1 1992). Each site 
i (1 < i < N) of a onedimensional lattice of N sites is either occupied by a particle 
(T~ = 1) or empty (7; = 0). During every infinitesimal time interval d t ,  each particle 
in the system has a probability d1 of jumping to the next site on its right (for all 
particles on sites 1 < i < N - 1) if this neighbouring site is empty. Furthermore, a 
particle is added at site i = 1 with probability a d t  if site 1 is empty and a particle is 
removed from site N with probability pd1 if this site is occupied. Thus if the system 
is in configuration IT,, T ~ ,  . . . , T ~ }  at time 1, its configuration becomes at time t f d t  
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for i = 1 

r,(t +df )  = 1 with probability PI = T I  +Ia ( l - s i ) - r i ( l -72 ) ]d i  
(1) = o  with probability 1 - PI 

for 2 < i < N - 1 

ri(t + df)  = 1 with probability pi = ~j + [ ~ i - 1 (  1 - ~ i )  - ~ i (  1 - ~ j + i  )] d l  

= O  with probability 1 - Pi 

(2) 

for i = N 

TN(f + d t )  = 1 with probability P N = ~ N + [ ~ N ~ ~ ( ~ - ~ N ’ N ) - P ~ N I ~ ~  
= O  with probability I -PN 

(3) 

In the long time limit, the system reaches a steady state where all the probabilities 
PN(rl,r2,. . . , rN)  of finding the system in configurations ( ~ ~ . r ~ , .  . . , rN}  are 
stationary, Le. satisfy 

(4) 
d 

PN( TI,T,, . . . , TN) = 0. 

Our approach allows one to obtain exact expressions for all the PN( r2, . . . rN).  As 
already mentioned in previous works (Derrida et al 1992, Derrida and Evans 1993), it 
is more convenient to consider unnormalized weigha f N ( r l ,  r2, .  . . rN)  which are 
equal to the PN( rl, T,, . . . , rN)  up to a multiplicative constant (independent of the 
configuration): 

PN(Tlr 72?. . . ? 7 N )  = . f ~ V ( ~ l ,  7 2 , .  . . 1 r~\~)/zN (5) 

Z N =  ..‘ .f,v(.r,T23...,7”). (6) 

with 

7,=U,I rN=U,1 

By analogy with other exactly soluble models (Hakim and Nadal 1983, Kliimper 
et a1 1991, Fannes et af 1992) we shall show in the next section that the 
f N (  r,, r,, . . . , T ~ )  in the steady state can be obtained from the following expression: 

where D and E are square matrices and IV) and (Wl are vectors satisfying 

D E = D + E  (8) 
/ 



14% B Deriida et al 

Notation (7) simply means that the weight f N ( ~ l r  T ~ ,  . . . , T ~ )  is given by a product 
of N matrices D or E with matrix D at position i if site i is occupied ( T ~  = 1) and 
matrix E if site i is empty ( T ~  = 0). We stress here that equations (7)-(10) are the 
essence of our approach; all results of sections 5-10 are direct consequences thereof. 

Before proving that the conditions @)-(lo) indeed give the steady state and 
before presenting explicit forms for the matrices and vectors involved, let us discuss 
the advantages of the approach. If one defines the matrix C by 

C = D + E  (11) 
it is clear that ( T ~ ) ~  defined by 

-1  

(Tj)N= ... T i f N ( T l , . . . , T N ) [  ... fN(TI,...,TN)] (12) 
rt=1,0 "I,O r,=1,0 r ' v = l , O  

can be calculated through the following formula 

Similarly, higher correlation functions will have simple expressions in terms of these 
matrices. For example, when i < j ,  ( T ~ T ~ ) ~ ,  

Tberefore, if we have convenient forms for the matrices D, E and the vectors 
(Wl, IV) so that matrix elements of any power of C have simple expressions, then 
formulae for the density profile ( T ~ ) ~  and for higher correlations (T ; .  . . T ~ ) ~  Will 

Remark. In the steady state, one can derive a hierarchy of relations benveen the 
mrrelation functions from the conditions 

follow easily. 

(15) 
d 
z(Ti, Ti2 ' ' T i k )  = 0. 

For example, writing that 

(16) 
d 
Z ( T i ) N  = 

for 1 < i < N implies 
a(WIECN-'IV) = ... = (WICi-'DECN-'-'IV) = ... = /3(WICN-'DIV). 

(17) 
These relations (17) can be understood very easily in terms of the conservation of 
the current of particles. Each equality expresses the fact that the current between 
site i and site i + 1 is independent of i for 0 ,< i ,< N .  Clearly, all these relations 
are satisfied immediately when D, E,IV)  and (\VI obey (8)-(11). 

Remark. We showed in a preliminary version of this work (Derrida d al 1993) 
that when the f N (  T ~ ,  . . . , T ~ )  are given by the expressions (7)-(10), they satisfy the 
recursions which were derived in Derrida et ai (1992 equation (8)) and also used in 
Derrida and Evans (1993). Similar recursions were proved some time ago by Liggett 
(1975). 
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3. Proof of stationarity 

In this section we shall prove that (7), with D, E,(WI and IV) chosen to satisfy 
the algebra (8)-(lo), does indeed give the weights of the configurations in the steady 
state. me proof we present here is an alternative to using the recursion relation on 
the system size for the steady state, on which a previous approach to the problem 
was built (Demda et a1 1992). Our method of proof is closely related to an argument 
of Sutherland (1970). 

Let us begin by writing down matrices that represent the transition rates into 
configurations (off-diagonal elements) and out of configurations (diagonal elements). 
We first construct a matrix h ,  that represents transition rates due to particles 
entering at the left-hand boundary site. The rate at which particles attempt to enter, 
a, gives both (h,),.o (the transition rate into ( l , ~ , , .  . . ,T,,,) from configuration 
(0, r,, . . . , r,,,) ) and -(h1)"$ (the transition rate out of (0, T,, . . . , r,,,) ). Since 
a particle cannot leave the system at the Ieft boundary, (h1)&, (the transition rate 
into (0, T~,.. . , rN)  from ( l , ~ , ,  . . . , rN)  ) and -(h1),.. (the transition rate out of 
(1, r2, . . . , T,,,) ) are both zero. We may thus write a matrix h, for the transition 
rates between the two configurations (0, T,, . . . , T,,,), (1, T,, . . . , T,,,) due to particles 
entering as 

where the basis is {(O,T,, . . . , T , , , ) ; ( ~ , T ~ ,  . . . , T,,,)} or in an obvious shorthand 
{O;l]. In a similar fashion we may write a matrix h N  representing the transition 
rat- due to particles leaving from the right-hand boundary site 

O P  
h N =  ( 0  - P )  

where the basis is 191). The transition that occurs due to a particle hopping 
between a pair of non-boundary sites i, i -I- 1 is from ( r,  1 . . ri-, I ,  0, r;+, . . T,,,) 
to (I,. . . ri-,0, 1, T ~ + ~ .  . . T,,,). A 4 x 4 matrix that represents the transition rates 
into configurations due to such hops is 

0 0  0 0 
0 0  1 0  

h =  (; ; ;l ;) 
where the basis is (0,O; 0,l; 1,O; 1 , l ) .  Thus, the only non-zero elements of 
transition rate matrices are 

The fact that the elements of the each column of all the matrices (18)-(20) add up 
to zero reflects the consetvation of probability. We now write the evolution equation 
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for PN in the following way: 

If such coefficients xU,xl exist then the PN given hy the equalities (23)-(25) arc 
automatically a steady state ( dPN/dt  = 0), since on substituting (Z3)-(25) into (22), 
the coefficients of xT, cancel and the sums add up to zero. Thus, the problem is 
reduced to finding matrices D,E and vectors IV),(Wl which satisfy the equalities 
(23)-(25) when we replace P,,, (or f N )  by their expressions (7). In this way we 
obtain the following conditions on D and E: 

a(M’(E = x l(wl = -ruO(WJ 

D E  = -z”D + z ~ E  

P D l V )  = ~ 1 l V )  = - ~ u l V )  

(26) 

(27) 

(28) 

which are the same as (8)-(10) when 

xu = -XI = 1. (29) 

The choice (29) is, in fact, not restrictive since (26), (27) imply that x1 = -xu and 
that the value of x1 can be changed arbitrarily by multiplying D and E by a constant. 
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4. Size and forms of the matrices 

Tbe question remains as to whether one can construct matrices D and E and vectors 
IV) and (Wl which satisfy @)-(lo). First of all one must know what sue the 
matrices ought to be. We are going to show that they are either onedimensional 
(when a + p = 1) or infinitedimensional (when a + p $ 1). Let us distinguish two 
cases depending on whether D and E commute or not. 

(i) If D and E commute, then @-(LO) imply that 

Therefore if ( W l V )  $0, one must have a + p = 1. So in that case, D and E can 
be chosen to be one-dimensional with D = I/p and E = 1/a. This is a known case 
(Derrida et ul 1992) where correlations are absent. 

(ii) If D and E do not commute, one can show that the matrices D and E must 
be infinite as follows. Suppose that D and E were finite-dimensional. Then, since 
no non-zero vector I v )  exists such that Elv) = 1.) (otherwise Diu) = DElv)  = 
(D + E)lv)  = DIU) + 1.) which implies that Iv) = 0), E - 1 would be invertible . 
In that case one muld calculate D from relation (8) to find D = E( E - 1)-' which 
would mmmute with E, in contradiction with the hypothesis. So when a + f3 # 1, 
the only possibility left is to choose infinitedimensional matrices. 

There are several possible choices for the matrices D, E. One can use 
IV), EIV),  E21V). . . as a basis for the infinite dimensional vector space, then D 
and E read 

L 

For this choice of matrices, it is easy to check that 

satisfy @)-(lo) and ensure that (W,lV,) = 1. 
There are several other possible choices of matrices D, E and vectors (Wl,  IV) 

that satisfy (9)-(10). We can use this freedom to make the calculation of matrix 
elements more straightfomrd. For example, one can take 

1 0 0 0 " '  I 0 1 1 0  I 1 1 0 0  
1 1 0 0 '.. 

\ i  \ i  ... / 
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where K. = d(a + p - l ) / a p  to ensure that (W,lV,) = 1. In contrast to pl), 
(32) this choice makes the particle-hole symmetry of the problem apparent since the 
matrices D,, E, have very similar forms and the boundary conditions a and p only 
appear in the vectors (W.1 and 15). For choice (33) of D,, E, the elements of C,” 
(where C, = D, t E, and N denotes the Nth power of matrix C,) are given by 

Expression (35) can be obtained by noting that (C,”),, is proportional to the 
probability that a random walker, who starts at site 2m of a semi-infinite chain with 
absorbing boundary at the origin, is at site 2n after 2N steps of a random walk. 
A disadvantage of this choice (33), (34) is that, due to the form of (W,l and IV,), 
one has to sum geometric series to obtain the correlation functions and these series 
diverge in some range of a, p (in fact a + p < 1). However, at least for finite 
N, all expressions are rational functions of a, p so that one can obtain results for 
a + p < 1 by analytic continuation from those for a + p > 1. 

A thud possible choice of D, E, (Wl ,  IV), that avoids these divergences, is 

where 

The fact 

(W,I = (1,0,0,. . .) 

flz = a + P - l .  
4 

it a* may be negative 

(37) 

of no importance, cause in the calculation of 
matrix elements we require later a only enters through a’. One should note that for 
a = p = 1, we have a = I and (36), (37) coincides with our previous bidiagonal 
choice (33), (34). Also, one can see that for a + p = 1 we have U = 0 so that the 
1 , l  elements of the matrices D,, E3 decouple from the other elements. This choice 
of matrices then becomes, for the purposes of our calculations, onedimensional as is 
sufficient for this special case of a and p. 
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5. Exact results for finite systems 

In the previous section we presented some possible forms for the matrices and vectors 
D ,  E, (Wl,  IV). However it is possible to obtain expressions for the densities and 
higher correlation functions directly from (8)-(11) without needing particular forms 
for the matrices. As we saw in (13) and (14) the calculation of any quantity of interest 
requires first expressions of (WICNIV) (where C = D + E) for arbitrary N and 
for general values of CY and p. There are several ways of calculating these matrix 
elements. One could (as shown in appendix B) diagonalize the matrix C given by 
(31) or (33) or (36) and decompose the vectors (Wl, IV) onto the eigenbasis of C. 
Alternatively one could use generating function methods. Here we give an expression 
for (W(CNIV),  valid for N 3 1, that can be obtained (see appendix A, section Al, 
equation (A12)) directly from the commutation rules (@-(lo): 

(39) 
p ( 2 N  - 1 - p)! (l/P)P+' - ( l /CY)P+I  

N 

( W I C N I V )  = N ! ( N  - p ) !  (I/@) - (l/CY) 
p=l  

where, as is our convention, the normalization is fixed to be (WlL' )  = 1. It is easy 
to check the fist few cases: 

(WICNIV) = CY-'+ p-' for N = 1 

- - a-'+ cr-lp-' + p-' + 
= a-3 + Q-Zp-l + ,-lp-Z + p-3 

p-' for N = 2 

+  CY-' t  CY-'^-' t p-' t a-1+ 0-l) for N = 3 (40) 

against direct calculation from (8)-(10) or (36)-(38). 
lb calculate the density profile and higher correlation functions it is convenient 

to use the following relation which is also a direct consequence of (8) and (11) (see 
appendix A, section A2). 

n-1 n+1 

p = 2  p=O 
(41) 

(P - 1)(2n - PI! D p .  
n!(n + 1 - p ) !  

cn-p  + 2p! 
= p!(p + l)!  

This relation is valid for all n 2 1. It can easily be checked for R = 1,2,3 

DC = C +  Dz DC2 = C2 + C +  D2 + D3 

DC3 = C3+ C2 + 2C+ 2D2+ 2D3 + D' (42) 

by just applying the algebraic rules (11) and (8). By using the expression (13) for 
( T ; ) ~  and the fact that DplV) = p-pIV), one obtains for i < N - 1 

R - 1  2p!  (rvlcN-'-PlV) + (W(c ' - ' (V )  n+l  ( p -  1)(2n - p ) ! p - p  
( 7 ) N  = c p!(p + l)! (WICNIV) (WICNIV) 2 n ! ( n + l - p ) !  

p=O 
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with n = N - i. The case i = N has to be treated separately to give 

Thus (43), together with (39), yields exact expressions for the density profiles for 
arbitrary N and gcneral cy and P. 

Relation (41) can also be used to express the two-point functions (riitj)N for 
1 < i < j < N - 1 in terms of one-point functions: 

where n = N - j, and could similarly be used to obtain any higher order correlation 
functions. 

In this section we have presented our main results and have shown that the 
matrix method easily yields exact expressions of all correlation functions for arbitrary 
N, cy, P. The following sections 6-9 are concerned with finding various limits of these 
results a?, N -, 03 which will, among other things, allow the phase diagram to be 
derived. 

4 The asymptotic forms of (WJCNIV) 

For large N, it is useful to have at our disposal the asymptotic forms of (WICNIV). 
These can be obtained by calculating the sum R,(x) defined by 

relevant because (39) can be written as 

For large n, the asymptotic form of Rn(l/P) can be obtained by looking at the 
values of p which dominate the sum (p of order 1 for p > 1, p of order n1f2 for 
p = $ and p" (1 - 2p)/(l-j3)n for p < i). 

for p > t (48) 4% - (p - l ) (2n-p) !  1 1 n t l  
_ Y  
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These expressions allow one to determine the following asymptotic forms of 
(WICNIV) for large N .  Note that since (47) is symmetric in a and 0, the cases 
where p < a can be obtained from those where a < p by interchanging a and p. 

(a) For 4 < a  < p 

@) For a = f < p 

@') For a = p =  2 I 

(W(CNIV) = 4N. 

(c) For a < and a < p 

(d) For a = p < ?. 2 
(1 - 2a)2  N 
(1 -a)* a N ( 1 -  a)" (WICNIV) N 

(The case (b') a = p = 
C = ( l / a )  + (I/p) is a number.) 

is in fact trivial, as mentioned above, since a + p = 1 and 

7. The current and the phase diagram 

Recall that in section 2 we saw that, in the steady state, the current through the bond 
i is simply J = ( ~ ~ ( 1 -  T~+~)), because during a time interval dt, the probability that 
a panicle jumps from i to i + 1 is ~ ' ( 1  - Tj+,)dt. Therefore, J is given by 

where we have used the fact (11) that DE = C. We note that this expression is 
independent of i, as expected in the steady state. 

From the asymptotic forms of (WICNIV), obtained in section 6, it is easy to see 
that in the limit N -+ 00 
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(i) for a 2 4 and p 2 

J = '  a (58) 

(ii) for a < and p > 01 

J = a ( l - a )  (59) 

(iii) for p < 1 and a > 0 

J = p(1-  p). (60) 

Thus, the phase diagram consists of three phases (see figure 1): CY > 4, p > i; a < 4, 
p > a; p < i, a > p. The Same phase diagram was obtained by Andjel ef a1 (1988) 
who considered an infinite system and then studied the long time evolution starting 
with the initial conditions of density a on the negative axis and density 1 - 0 on the 
positive axis. It also turns out that the phase diagram is correctly given by mean-field 
approximations (Krug 1991, Derrida ef a1 1992). Equation (58) corresponds to the 
maximal-current phase whereas (59), (60) correspond, respectively, to the low- and 
highdensity phases as will become obvious in the next section. 

Flgun 1. Phase diagram of the model. The region 01 > and p > $ is the maximal 
current phase, whereas a < 5 and p > 01 is lhe low.densily phase and p < $ and 

> p is the highdensity phase. me line e = p < $ is a first-order transition line. 

8. The density ( T ; ) ~  far fmm the boundaries 

From relation (43) and from the asymptotic forms (51)-(56) of (WICNIV), it is 
possible to obtain the asymptotic form of ( T ~ ) ~  in the limit N -+ CO , with i = NI 
and 0 < I < 1 (i.e. for N large and i in the bulk far from both boundaries). 
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In all cases (51)-(56), we have seen that (WICNIV) has the following asymptotic 
behaviour for large N: 

( W J C ~ J V )  = A N " X ~  (61) 

where A, z and X depend on a and p as in (51)-(56). This implies that for N large 
and i far from the boundaries 

(62) 
zz n+' ( p -  1)(2n - p ) !  1 1 I%-1 - 2p!  

= p=Q p ! ( p +  l)! X P + l  + Xn+'c p = 2  n!(n + 1 - p p  i7;; 

where n = N - i. For large n and X >, 4 which is always the case), the first term 
in (62) converges to (1  - +- 1 - 4/X )/2 and using the asymptotic forms (@)-(SO) of 
the last sum in (62) one obtains that 

(i) for a > f and p >, f ,  the &st term in (62) dominates and 

( r N z ) N  5 (63) 

(ii) for a < f and a < p ,  the first term in (62) dominates and 

( ~ N J N  e (64) 

(E) for < $ and p < a, both terms in (62) contribute and 

( T N J N  N 1 - P (65) 

(iv) for a = p < 4 , both terms in (62) contribute and 

( T N J N  u a + z(1- 20). (66) 

So everywhere in the phase diagram, the profile ( T ~ ) ~  is constant for i far from the 
boundaries except along the first-order transition line a = p < where the profile 
is linear (66). In the maximal current phase (63) the density is 4. The region Q < 
and a < p corresponds to the lowdensity phase whereas the region p < 5 and 
p < a corresponds to the highdensity phase. There is a jump in the density when 
one crosses the lirst-order transition line a = p < i. 

The result that for a = p < f the profile is linear is due to the fact (Andjel er nl 
1988) that along this first-order line, there is a superposition of states where a shock 
between a left-hand region of density a and a right-hand region of density 1 - is 
present at an arbitrary position. 

9. me profile ( T ; ) ~  near the boundaries 

Another case one can consider is the profile near a boundaly when N becomes large. 
F i t  we note that there is an obvious particle-hole symmetry in the problem: since 
particles are injected at the left end with probability a and are removed at the right 
end with probability p, it is equivalent to saying that holes are injected at the right 
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end with probability ,L3 and they are removed at the left end with probability a. 
Because of this particle-hole symmetry, one always has 

(T i )N(U,P)  = 1 - ( T " + I - i ) N ( P I U )  (67) 

which can be Seen by using, for example, the representation (33, 34) and the fact that 
D and E are the transpositions of each other. So one can do all the calculations 
for the right boundary, then by using this symmetry deduce what happens at the left 
boundary. Starting from (43), and choosing n = N - i iinite as N goes to infinity, 
one finds for n 2 1 

where from (51)-(56) 

X = 4  for a > and /3 > i 
X = [ ~ ( l -  U)]-* and Q < f l  for a 6 

X = [p(1 -p ) ] - I  for 4 and cu 2 p (69) 

The special case n = 0 is easy to treat directly from (13) 

Then using the symmey property (67) and the fact that X is a symmetric function 
of a and p, one finds for the left boundary in the limit of N - CO for n 2 2 

and for n = 1 

1 
UX 

= 1 - -. 
'Ib obtain the large n behaviour of these expressions (keeping n < N), one needs in 
addition to the asymptotic forms (48)-(50) of R , ( x )  defined by (46). the asymptotic 
forms of the sum Sn(x) defined by 

For large n, one can show that 
for x < f 

= (74) 
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Let us now describe the profile at the right boundary when N - -  03. Using (46) and 
(73), one can rewrite (68) as 

and from the knowledge (70) of A, and of the asymptotic forms (@)-(SO), (74), (75) 
of R ,  and S,,, one obtains for the sites close to the right boundary as follows. 

In the maximal-current phase, Le. for a > f and p > 4, 
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Similar expressions could easily be obtained for the left boundary, using the symmetry 
(67). We see that in one phase (77) we have power-law decays of the profiles near 
the boundary, whereas in the other two phases (78) and (79) the profile decays 
exponentially at one boundary and is constant near the other. Thus, in the latter two 
phases one of the boundary conditions dominates and the profile depends on this 
boundary condition at the opposite end of the system, even when the system is of 
infinite length. Finally, it is worth noting that for 01 + p = 1 one recovers the fact 
that (T~),,, = a, independent of i. 

10. T h e r a s e a = P = I  

In this section we show that the matrix approach allows us to recover very easily some 
lmown results for the case a = p = 1 (Derrida el af 1992). In particular we shall 
derive a relation between correlation functions of different order that was conjectured 
in Derrida and Evans (1993). 

The simplest way of obtaining ( W ] C N ] V )  is to use matrices and vectors (33), 
(34). From (35) we have 

where A ( p )  is defined by 

Now using (33) for the matrices D and E and 

it is easy to verify that 

D E  - E D  = D C  - C D  = IV)(Wl. 

Therefore from (13), one can see that 

and using the fact that 

one finds 
N--i 

(83) 

(84) 
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This is one of the expressions of the one-point correlation function derived in Derrida 
et a1 (1992). 

Similarly if one considers a higher-order correlation function, one can show that 

(rklTkz “ “ k , - ~ ~ k . ) N  - (TktTkz . “ r k ’ k , - ~ T k n + l ) N  

which leads to 

This relation was established for pair correlations and conjectured for higher-order 
correlations in Derrida and Evans (1993) (although the notation there was slightly 
different). 

11. Generalizations and conclusion 

In this paper we have shown that the steady state of the asymmetric exclusion model 
can be described in a very simple way in terms of the non-commuting matrices D 
and E which satisfy (7)-(10). Using this technique, the calculation of the current, 
the densities, the profiles and the correlation functions is much easier than with 
the previously used approaches to the same problem. It is known that in the case 
of periodic boundaries (Dhar 1987, Gwa and S p h n  1992) or of parallel updating 
(Schiitz 1992), the asymmetric exclusion model can he solved by means of the Bethe 
ansatz. Of course, it would be very instructive to better understand the link between 
the traditional Bethe ansatz approach and the matrix formulation we have used here. 

Our matrix approach has allowed us to calculate new quantities and to rederive 
known results for the fully asymmetric model with open boundaries. What makes 
it, in our opinion, of further interest is that it can be extended to more general 
situations: the problem of partially asymmetric exclusion, and the case of a mixture 
of two kinds of particles. Let us conclude by discussing briefly how the essentials of 
our approach may be applied to these two of the possible generalizations. 

11.1. The partially aymmenic eL.c[llsion process 
The partially asymmetric exclusion process is a generalization of the problem to 
the case where particles have a probability of hopping to the left as well as of 
hopping to the right: during every infinitesimal time interval df, each particle on sites 
2 < i 4 N - 1 in the system has a probability p d t  of jumping to the neighbouring 
site on its right (if this site is empty), and a probability q d t  of of jumping to the 
neighbouring site on its left (a this site is empty). The boundary conditions are 
defined as follows. A particle is added at site i = 1 with probability a d t  if site 1 is 
empy, a particle at site one has a probability y dt of being removed from the system 
and has a probability pd t  of jumping to the right if site two is empty; a particle at 
site N is removed with probability pdt and has a probability q dt of jumping to the 
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left if site N - 1 is empty; particles are added at site N with probability 6 dt if site 
N is empty. 

For this system, the weights in the steady state fnr (r I ,  r,, . . . , T,..,) can also be 
obtained through the expression 

N 

fnr(71,7Z3 . . . ,r,v) = (W n(7i D + ( 1  - 7;) Ell v) (891 
i=l  

where D ,  E, IV) and (Wl now satisfy 

( W l ( a E - y D ) =  (Wl. (92) 

Because of the left-right symmetry of the problem, we need only consider the case 
p q. If we take p = l , q  = 0,y = 0,s = 0 the model reduces m the fully 
asymmetric exclusion process we considered in the previous sections and (90)-(92) 
recover @)-(lo). 

The proof that (89)-(92) yield the steady state of the weights is analogous to the 
proof presented in section 3, the only difference being that the transition matrices 
are modified to 

We note that the elements of each column of these matrices add up to zero and this 
again creates the cancellation of terms required in the proof. 

One can check that one-dimensional matrices suffice when 

( ~ - ~ ) ( a + 6 ) ( P + y ) = ( a + 6 + a + ~ ) ( a ( 3 - ~ 6 )  (94) 

otherwise infinite-dimensional matrices are required. 
For general a , p , y , 6 ,  we did not find convenient closed expressions for matrices 

and vectors D ,  E, (W71, IV) that satisfy (90)-(92). However, we checked that the 
conditions on the stationary weights implied by (90)-(92) hold for system sizes 
N = 1,2,3. 

A situation where we did succeed in finding closed forms for the matrices and 
vectors was y = 6 = 0, i.e. when particles cannot enter at the right-hand boundary 
and cannot leave at the left-hand boundary. In this case one possible choice of 
matrices, convenient for p 2 q,  is 

1 - d  a1 0 0 
0 l - d ( q / p )  a2 0 

1 - d ( q / p ) Z  a3 D = - (  1 0 0 0 
0 1 - d ( q / ~ ) '  P - q  0 
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where 

We note that for p - q the limiting forms of matrices (959, (96) are well defined, 
and for p = 1, q = 0 the matrices and vectors reduce to the third choice (36), (37) 
that we presented for fully asymmetric exclusion. 

11.2. The case of second class particles 

There is a simple extension of the fully asymmetric exclusion model, the problem of a 
mixture of first- and second-class particles, which has been used recently to describe 
shocks (Boldrighini et a1 1989, Ferrari et a1 1991, Ferrari 1992). One version of the 
model consists of considering ICl first-class particles, K2 second-class particles on 
a ring of N sites. Then during each time step dt, each first-class particle has a 
probability d t  of jumping to its right provided that its nearest neighbour on the right 
is empty or occupied by a second-class particle. In the latter case, the second class 
particle jumps simultaneously to the left (in other words, the first- and the second- 
class particle are exchanged). Also, during each time interval dt, each second-class 
particle has a probability d t  of jumping to its right if its right neighbour is empty. So 
the second-class particles look like holes, as seen from first-class particles and they 
look like particles as seen from the holes. 

It turns out that one can use the matrix formulation in this case too. The weight 
of a configuration is then given by 

tr(X,X,...X,) (99) 

where the matrix Xi = D if site i is occupied by a first-class particle, Xi = E if site 
i is empty and Xi = A when site i is occupied by a second-class particle. It can be 
shown (Derrida, Janovsky, Lebowitz and Speer 1993) that a sufficient condition for 
the matrices D ,  E ,  A to give the right steady state is that 

D E = D + E  D A = A  A E  = A .  (100) 

Using this matrix formulation, it is then possible to derive exact expressions for the 
profiles of shocks (Derrida, Janovsky, Lebowitz and Speer 1993). 
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Appendix A. Proofs of formulae (39), (41) 

In this appendix we shall derive some useful formulae (39 ,  (41) which are required in 
the main body of the paper. These formulae are direct consequences of the algebra 
(8) and (11) 

D E = D + E  (All 

and 

C = D + E .  (4 
Before deriving the aforementioned formulae, we state two elementary identities: 

(i) for 0 < p < n + 1 

(A-9 
p(2n + 1 - p)! - (P + 1)(2. - P)! - (P - 1)(2. - P)! 

I 

( n + l ) ! ( n + l - p ) !  ( n + l ) ! ( n - p ) !  n ! ( n + l - p ) !  

(where for p = n + 1 we take the convention that (n  - p)! = 00); 

(E) for n 2 0 

Here, and in the following, (Dntl - D ) ( D  - l)-' is a shorthand notation for 
Dn + D"-' + . . + D so that the question of whether ( D  - 1) is invertible or 
not is unimportant The first of these identities (A3) may be checked directly. 
Relation (A4) follows immediately from (Al) and (A2) when n = 0 or 1 since 
DC = D ( D  + E )  = D2 + D + E = D2 + C. It is then straightforward to verify 
(A4) by recursion on n. 

AI. Proof of relation (39) 

'E prove this relation for n 2 1, we shall first prove that 

which we check for n = 1 and then prove by recursion on n. For n = 1 (As) reads 
C = D + E ,  which is known from (A2). If we assume that (A5) is true for n, we 
may calculate C"+' by right multiplication with D + E to find 
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where we have used (A4). We now rewrite (A6), by inserting (M), as 

ntl 

p = 2  

p(2n + 1 - p ) !  
( n t l ) ! ( n - p t l ) !  ( E  + D )  f 

- (Zn)! - 
( n  + l)!n! 

where, in going from (A7) to (AS), we have witten separately the first term of the 
first sum over p in (A7), then relabelled the first sum by p + p - 1 and the second 
sum by p + p-2 to allow the two sums to be combined. From (AS) we easily obtain 

( E +  D )  
Cntl = (2n)! 

(n + l ) ! n !  

This is in agreement with (AS), which is hence proven by recursion. 

using (A5) and the algebra (9, 10) 
?b obtain (39), we calculate the matrix elementr (WlC*lV), for n 2 1 simply by 

The sum over q may be performed as a geometric series and, as the normalization is 
(WlV) = 1, we obtain 

We note again that (A12) has been derived directly from the algebra (8)-(lo), without 
reference to any particular form of matrices. 
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A2. Proof of relation (41) 

By an approach similar to the previous derivation we are going to prove (41) 

For n = 1 (A13) reads DC = Dz + C which agrees with (A4). Assuming that (A13) 
is true for n we check that it remains true for n t 1 by right multiplying with C to 
give 

where we have used the first equality of (A4) to obtain (A14) and we have reordered 
the sums in the second term of (A14) in going to (A15). Now, by summing (A3) it 
is straightforward to obtain the identity 

(AW 
(P - 1)(2n - P ) !  - ( q  - 1)O. + 2 - q ) !  - 

p=q-1 2 n!(n+ 1 - p ) !  ( n +  l ) ! ( n + Z -  q ) ! .  

We use (A16) twice. in (A15) to give 

which is in agreement with (A13). Equation (A13) is hence proven by recursion. 

Appendix B. Computation from a particular matrix representation; the example of 
the normalization (WICNIV) 

In the main part of this paper, expressions for the different steady-state characteristics, 
such as the average site occupation or mean current, have been derived directly from 
the matrix commutation rules (8)-(IO), without using a form of the matrices. An 
alternative way to proceed is to choose a convenient representation of these matrices 
and to use it as fully as possible. We illustrate this second approach here, with the 
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computation of the matrix element (WICNIV) . We choose the representation (33), 
(34) 

with 

a n d a  = ( l - a ) / a ,  b = ( l - p ) / P ,  ~ ' = ( a + p - l ) / a p .  Asimplewaytocompute 
(WICNIV) is to represent IV) as a linear combination of eigenvectors of C in order 
to evaluate easily CNIV). It can be checked that C(e) = 2(1+ cos@)(@) where le) 
is given by 

For b < 1 (i.e. 0 > f ) ,  IV) can be written as a linear combination of these 
eigenvectors. 

with 

This readily follows from the identity, which can be derived by residues or looked up 
in Gradshstein and Ryzhyk (1980, formula (3.613-3)) 

Using the fact that 10) is an eigenvector of C with eigenvalue 2( 1 + cos e), it follows 
from (B4) that CNIV) is 
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In order to complete the calculation it remains to evaluate (Wle). For a < 1 (i.e. 
a > ;,this is 

The last equality is obtained by writing the sinus function as a sum of two exponentials 
and summing the resulting convergent series (using a < 1). Finally, one obtains for 
a > $ , P  > ; 

As stated in the main text, results for other values of cy and p can be obtained 
by analytic continuation of (B10). This is conveniently done by witing (B10) as an 
integral around the unit circle in the complex plane and following the deformation 
of the integration contour as poles move in and out of the unit circle. The integral 
representation (B10) combined with the saddle-point method is then an alternative 
way to derive the large-N asymptotic expressions (51)-(56) of the main text. 
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