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Abstract. - A non-trivial exponent /3 characterising non-equilibrium coarsening processes is 
calculated in a soluble model. For a spin model, the exponent describes how the fraction po of 
spins which have never flipped (or, equivalently, the fraction of space which has never been 
traversed by a domain wall) depends on the characteristic domain scale L:  p ,  - I/-'. For the 
one-dimensional time-dependent Ginzburg-Landau equation at  zero temperature we show that 
the critical exponent /3 is the zero of a transcendental equation, and find ,8 = 0.824 924 12 ... . 

Coarsening phenomena are rather common in physics. A typical example is the non- 
equilibrium evolution of the ordered domains that form when a system is thermally quenched 
from a homogeneous phase into a two-phase region[l]. Other examples include grain 
growth [2], soap froths [3], and breath figures [4]. 

A common feature of these phenomena is the scale-invariant morphology that develops at 
late times: the structure at different times is statistically similar apart from an overall change 
of scale, i.e. the system is described by a single, time-dependent length scale U t ) .  

To fix our ideas, consider one of the simplest such systems-the d = 1 Ising model, with 
Glauber dynamics, evolved from a random initial condition at  temperature T = 0. The 
behaviour of this system is well understood. The domain walls behave as independent 
random walkers. When two domain walls meet they annihilate. The average domain size ( 1 )  
grows as t '1'. The equal-time [5,6] and two-time [5] spin-spin correlation functions can be 
exactly calculated. 
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Consider, however, the following question. How does the fraction p o  of spins that have 
never flipped depend on time? Surprisingly, this seems to be a non-trivial question. 
Numerical simulations [7] indicate that p ,  - t -0.37 , or, in terms of the mean domain size, 

In  this letter we address this question within the context of a simpler, deterministic 
model, namely the time-dependent Ginzburg-Landau equation in spatial dimension d = 1, 
with no thermal noise (corresponding to T = 0). The late-time dynamics of this model have 
been discussed by Nagai and Kawasaki [8], who showed that the distribution of domain sizes 
approaches a fured-point distribution at  late times. The equation of motion for the 
order-parameter field is 8, $ = 8f $ - dV/d$, where V($) is a symmetric double-well potential 
with minima a t  + = * 1, corresponding to the <<up,, and *<down,> phases of the Ising model. We 
consider an initial condition with a finite density of domain walls separating regions where $ 
is close to one of its equilibrium values. We take the initial distribution of domain wall sizes 
(or *<intervals,>) I to have a finite mean (Z) much greater than the intrinsic width 5 
( = [V”( 1)]-1’2) of the walls. Then the dynamics is very simple. Since the walls interact only 
through the exponential tails of the wall profile function, the closest pair of walls move 
together and annihilate, while the other walls hardly move at  all. Thus the system coarsens 
by successively eliminating the boundaries of the smallest domain. As the wall density 
decreases, the domain size distribution P(Z) approaches the scaling form P(I) = (Z)-’f(Z/(Z)). 
The scaling function f(x) can be exactly calculated [8]. 

Introducing a terminology motivated by the study of breath figures [91, we shall call those 
parts of the line that have been traversed at  least once by a domain wall <<wet,,, and those 
parts not yet traversed “dry,) (i.e. domain walls <<wet. the line as they move). Each time a 
domain is eliminated, therefore, that part of the line which it occupied becomes wet. The 
density of dry region scales as (Z)S-’: this defines the exponent 9. The dry part per  domain  
increases as ( I ) ? .  

This procedure can be readily generalized to the q-state Potts model. The domains form a 
random sequence constructed from the q available states (with no two consecutive states the 
same). Again, the smallest domain is identified. If the domains either side have the same 
state, the domain walls move together and annihilate. If they have different states, the two 
walls merge to form a new wall a t  the midpoint. In both cases, that part of the line previously 
occupied by the smallest domain becomes wet. 

These models are easily simulated, and results for various values of q are presented in 
fig. 1, in the form of a double-logarithmic plot of the dry part per unit length against the 
mean interval length. The asymptotic slope of the data therefore gives ,9 - 1. From the figure 
it is clear that 9 decreases with increasing q, and becomes zero for q = CO. This qualitative 
trend is easily understood. For the Ising case (q  = Z) ,  three intervals combine to form one 
larger interval a t  each step. The dry part of the new interval is the sum of the dry parts of the 
largest two of the intervals from which the new interval was formed. Therefore, the dry part 
per interval increases with time, and p > 0. For q = m , three intervals combine to form two 
new intervals a t  each step. Each of these new intervals has the same dry part as the larger of 
the intervals from which it was formed: there is no tendency of the dry part per interval to 
increase, and p = 0. For general q, behaviour intermediate between these two limits is 
expected, and observed. 

For general q, it is not possible to calculate the asymptotic distribution of interval sizes, 
because these sizes become correlated, although approximate calculations neglecting these 
correlations are possible and have been carried out for q = cc (using the <<cut in two. model of 
ref. [4]). For Ising systems (q  = Z) ,  however, initially uncorrelated interval sizes remain 
uncorrelated. If we choose N intervals I I  , . . . , I N ,  the number of inequivalent arrangements 
of these intervals on a circle is ( N  - l)!. The algorithm described above can be used to 

p ,  - (Z)-0.74. 
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Fig. 1. - Log-log plot of the dry part per unit length against the mean interval size, for various values of 
q, the number of Potts states. In each case the initial state consisted of lo5 intervals, with lengths 
uniformly distributed between 0.5 and 1.5. The asymptotic slope of each line gives 1 - p. The estimates 
for p are (top to bottom) 0.82, 0.67, 0.58, 0.44, 0.36, and zero, for q = 2, 3, 4, 7, 10 and CO, 

respectively. 

deterministically coarsen each of these systems to a single interval. Now consider an 
alternative procedure in which the same N intervals are initially placed in a bag. The new 
procedure consists of taking the smallest interval from the bag, combining it with two 
intervals chosen at  random, replacing the new interval in the bag, and then iterating the 
procedure until a single interval remains (if there is an even number of intervals, only two 
intervals are combined at  the final step). The (N  - l)! possible histories generated by this 
alternative procedure are in one-to-one correspondence with the deterministic histories 
produced by the original algorithm applied to the inequivalent arrangements of the intervals 
on a circle. This proves that no correlations develop. As a result, both the limiting 
distribution of interval sizes and the exponent p can be calculated exactly for q = 2 by using 
the bag (which is in fact a mean-field) model. 

The calculation of ,8 in the Ising case proceeds as follows. We start with random intervals 
on the line. Each interval I is characterised by its length Z(Z) and by the length of its dry part 
d(Z). At each time step, the smallest interval Zmin is removed. So three intervals (the smallest 
interval Zmin and its two neighbours ZI and I z )  are replaced by a single interval I .  The total 
length and the dry parts of I are given by 

U )  = &I,) + + U Z ) ,  d(Z) = d ( I , )  + d(Z,). (1) 
The calculation is made tractable by the fact that the lengths of the intervals remain 
uncorrelated: one can choose the intervals ZI and I z  randomly, instead of choosing the 
neighbours of the smallest interval. Note that the number v ( Z )  of dry regions in the interval Z 
satisfies the same recursion equation as &I). 

For simplicity of presentation, we will assume that the lengths of the intervals take only 
integer values and that the minimal length in the system is io (the calculation can also be done 
on the continuum-the final result is the same). We assume that there is a very large number 
N of intervals, that the number of intervals of length i is ni and that the average length of the 



178 EUROPHYSICS LETTERS 

dry part of the intervals of length i is di. By denoting with a prime the values of these 
quantities after all the n, intervals of length io have been eliminated, so that the minimal 
length has become io + 1, the time evolution is given by 

N’ = N - 2ni0, 

This is only valid under the condition that nio<<N, which is indeed valid when io becomes 
large. 

We assume that after many iterations, i.e. when io becomes large, a scaling regime is 
reached, where 

Since io is large, one can treat x = i/io as a continuous variable. Then we can write 

(4)  

where higher-order terms in l/io are negligible in the scaling limit. Inserting these 
expressions in the time evolution equations (2), and using the fact that the functions f and g 
become independent of io for large io, gives 
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Then the solutions of eqs. (7) can be written in the form 

$ ( p )  = tgh [h(p)/21, 

When integrating (7), the particular choices for the constants of integration, implied by the 
forms (9) and (lo), were fixed by the requirement that both q5 and (ci be positive for all p (as is 
clear from their definitions (6)). 

So far, the constants f(1) and p are arbitrary. Both are fured, however, by physical 
considerations. The following expansion will prove useful: 

m 

where y is Euler's constant, given by y = - 

eqs. (8) and (9) gives the small-p expansion 

dt In t exp [ - t] = 0.577215 ... . Using this with 
0 

$ ( P I  = 1 - 2 e ~ p [ 2 f ( 1 ) y I p ~ ~ ( ' ) [ 1  + O(p)I. (12) 
From the definition (6) of $ ( p ) ,  however, we have the expansion $( p )  = 1 - ( x ) p  + . . . , 
provided the frst moment of the distribution f(x) exists. Comparing the two expansions futes 
f(1) = 1/2, and also gives the first moment of the scaling function f as (x) = 2 exp[yl = 
= 3.562 14 . . . , this being the ratio of the mean domain length to the minimum length. This latter 
result is in agreement with ref. [8], as is eq. (9) for the Laplace transform of the distribution 
of interval sizes. (Since the first moment cannot vanish, we have quite generallyf( 1) d 1/2. 
The casesf( 1) < 1/2 would correspond to initial conditions with infinite first moments [4]: we 
will not consider these cases further.) 

The exponent p can be similarly determined. If one defines r (p)  by 

one can rewrite (10) as 

Note that r (p)  can be expanded in powers of p using (13), so eq. (14) is a convenient starting 
point for investigating the small-p behaviour of $(p ) .  A straightforward calculation gives 

where 
m 

B(P) = expry1 jdqq3-2  exp[-ql.  
0 

. [ (1-q-exp[-qI)exp[r(q) l+2(1  - p ) q + ( l  -P>q2exp[-r(q) l l .  (16) 
In the spirit of our earlier determination off(l), we compare the expansion (15) with a 
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m 

direct expansion of eq. (6)) namely + ( p )  = dxg(x)(l - px + O ( p 2 ) ) .  If the function g(x) is to 

have a finite first moment, then we must have B@) = 0 in (16). This gives p = P o  = 
= 0.824 924 12 ... . It is remarkable that the only limitation on the accuracy of p is the numerical 
effort expended in evaluating the integral (16). It is easy to show that all higher terms in the 
expansion (15) involve only integer powers of p.  The exact result for p is in good agreement 
with the estimate p = 0.82 from the simulation (fig. 1). This non-trivial value of a critical 
exponent is reminiscent of what has been seen in various irreversible systems [lo]. 

Note that, since $ 4 ~ )  decreases with p ,  one must have B(p) S 0 in (16). A study of (16) 
shows that this implies P 2 Po. The cases B < 0, however, correspond to a g(x) with a power 
law tail x - ( ' - ~ ) .  It can be shown that when, as here, such a tail is absent from the initial 
condition it cannot be generated. This is why we selected the value p = Po , corresponding to 

A possible extension of the present work is to higher dimensions, where the motion of the 
domain walls is still deterministic, but is curvature driven. This seems to be a non-trivial 
problem deserving further study. Simulation results for the corresponding stochastic Ising 
model (i.e. Glauber dynamics at T = 0) are reported in[7]. In one dimension, the 
deterministic model studied here gives a dry part which scales as (Z)-0.175, whereas the Id 
Ising model with stochastic dynamics gives (Z)-0.74. It would be interesting to see if this 
difference persists in higher dimensions. 

A related area is that of breath figures. Recent work in this field [9] was indeed one of the 
driving forces behind the present paper. In these experiments, droplets grow and coalesce on 
a substrate. The part of the surface which has never been wetted by a droplet (the ,,dry>> 
region) therefore decreases with time. Both in the experiments, and in simulations of simple 
models inspired by them, this decrease was found to be algebraic in time in the scaling 
region [9]. 

1 

B@) = 0. 

* * *  
We thank the Isaac Newton Institute for Mathematical Sciences, where this work was 

carried out, for its hospitality, and D. BEYSENS, J. P. BOUCHAUD, M. MARCOS and I. 
YEKUTIELI for useful discussions. 

R E F E R E N C E S  

[ l ]  See, e.g., GUNTON J. D., SAN MIGUEL M. and SAHNI P. S., in Phase Transitions and Critical 
Phenomena, edited by C .  DOMB and J. L. LEBOWITZ, Vol. 8 (Academic Press, New York, N.Y.) 
1983, p. 267; BRAY A. J., in Phase Transitions in Systems with Competing Energy Scales, edited 
by T. RISTE and D. SHERRINGTON (Kluwer Academic) 1993. 

[2] ANDERSON M. P., SROLOVITZ D. J., GREST G. S. and SAHNI P. S., Acta Metall., 32 (1984) 783. 
[3] FLYVBJERG H. and JEPPESEN C., Phys. Scr., T38 (1991) 49. 
[4] DERRIDA B., G O D R ~ C H E  C. and YEKUTIELI I., Phys. Rev. A, 44 (1991) 6241; Europhys. Lett., 12 

[5] BRAY A. J., J. Phys. A, 23 (1990) L-67. 
[6] AMAR J. G. and FAMILY F., Phys. Rev. A, 41 (1990) 3258. 
[7] DERRIDA B., BRAY A. J. and GODRECHE C., to be published in J. Phys. A. 
[8] NAGAI T. and KAWASAKI K., Physica A, 134 (1986) 483; RUTENBERG A. D. and BRAY A. J., 

[9] MARCOS M., BEYSENS D., BOUCHAUD J. P., G O D R ~ C H E  C. and YEKUTIELI I., in preparation. 

(1990) 385. 

submitted to  Phys. Rev. E. 

[lo] TARJUS G. and VIOT P., Phys. Rev. Lett., 67 (1991) 1875; SHERWOOD J. P., J. Phys. A, 23 (1990) 
2827; LEYVRAZ F. and REDNER S., Phys. Rev. Lett., 66 (1991) 2168; Phys. Rev. A, 46 (1992) 3132; 
CORNELL S., DROZ M. and CHOPARD B., Physica A, 188 (1992) 322. 


