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Abstract We consider a simple d e l  for a chain with random self-interactions. Each monomer 
on the chain carries a charge, which is a random variable, and the configurations of the chain are 
directed walks. We show that 1 zero temperature the end-load distance R and the energy E of 
chains with total charge Q ... N x  scale as R ,.. N"*) and E - Ne@). The exponents thus depend 
on the total charge through the parameter x .  These exponents are measured numerically and 
compared to the predictions of some simple argumeuu. At a finite temperature, R is extensive 
and appears to be independent of x .  

1. Introduction 

Many models have been proposed to understand the problem of folding of heteropolymers 
l i e  proteins or DNA molecules [1,5]. For many of these models, ideas coming from 
the mean-field theory of spin glasses have proved to be very useful. Recently, it was 
shown that even very simplified one-dimensional models of heteropolymers [6,7] could 
reveal interesting properties. Kantor and Kardar [6] considered a simple model where 
the heteropolymer consists of a sequence of N random charges qi = f l ,  the allowed 
configrations of which are the ID random walks {ri}  with ri+l - ri = +1 or -1. The 
energy I? ( { r i ) )  of a configuration {ri]  of the polymer is defined by 

((Ti)) = 4iqjart.rj. (1) 
I < i < j < N  

Despite its simplicity, this model is not easy to attack either by analytical or by numerical 
approaches. At zero temperature, using an exact enumeration procedure to find the ground- 
state configurations, Kantor and Kardar predicted power laws for the end-to-end distance 
R - Nu and the fluctuation of the ground-state energy A b  - Ne (with U N 0.574 and 
8 N 0.58). Because there is so far no alternative to the exact enumeration procedure, it is 
difficult to check the validity of these results for sizes N > 20. 

More recently, an even simpler model was considered in a joint work with Griffiths 
[7]. The model is very similar to the one studied by Kantor and Kardw, the only difference 
being that the configurations {rj]  are directed walks (ri+l - rj = 0 or 1). It is possible to 
obtain much more information when the walk is directed because transfer-mahix techniques 
can be used, allowing for the numerical study of much longer chains (104-l@). 
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When the charges qi are +1 or -1, the results [7] revealed the existence of a weak 
freezing transition temperature below which some degrees of freedom are frozen out. At 
zero temperature, however, the problem looks simple since the ground-state energy of a 
given chain is always related to the absolute value of the total charge of the chain. This 
can be seen by rewriting the energy I? ( ( r i ] )  defined by (1) as 

where 

is the total charge on site r .  For the sake of convenience, we will hereafeter refer to E ( [ r i ] ) ,  
defined by (2).  as the energy of the system. Obviously, when qj ,= +1, the ground-state 
energy is always equal to the absolute value of the total charge I c' qj 1, since one can easily 
build ground-state configurations where each occupied site r has a total charge Q ( r )  which 
is 0 or f l ,  so that E, Q 2 ( r )  = 1 xi q i l .  However, the ground state being usually very 
degenerate, it is not easy to obtain the end-to-end distance R at zero temperature since one 
would need to average over all the ground-state configurations. (OnIy when the total charge 
Q = 0, one can show that R - NIP because the calculation of R can be formulated as the 
number of returns to the origin of a random walker [7].) 

In this paper, we discuss the low-temperature properties of this one-dimensional directed 
model [7] when the charges qi have a continuous distribution that we will take to be a 
Gaussian. For continuous charges qi , even the N dependence of the ground-state energy of 
directed walks is a non-trivial problem. We will see that an important parameter is the way 
the total charge Q of the chain scales with N .  So in what follows, we study chains of N 
random Gaussian charges qi with the constraint that the sum Q is given by 

where x is a fixed parameter when we vary N .  It is easy to generate numerically N Gaussian 
numbers qi satisfying the constraint (4). This can be done by choosing N independent 
Gaussian numbers zi of variance 1 and by generating the N charges qi using the formula 

Q I N  1 
N N .  Jz;; 

q ' -  +- - -  zj where p ( z j )  = - exp (-zj"/2) . (5) I - zi 
, = I  

Once the (4;) of a given chain are chosen, one can use transfer matrices [7] to calculate 
the partition function Z N .  This partition function Z N  (which is, as usual, the sum of the 
Boltzmann weights of all the directed walks) of a chain of N charges satisfies the recursion 

where T is temperature and Zo = 1. This recursion expresses the fact that any configuration 
( r i ]  of a chain of N charges can be thought of as a site occupied by the the last N - i 
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charges of the chain and a chain consisting of the first i charges of the chain. Clearly, 
the calculation (6) of the partition function ZN of a chain of N charges only requires the 
storage of the N - 1 numbers Zi for 1 4 i < N - 1,  thus rather long chains can be studied. 
The calculation of the average size RN (more precisely R N  is the thermal average number 
of sites occupied by the chain) can also be done recursively 

with Ro = 0. 
At zero temperature, (6) induces a very simple recursion for the ground-state energy 

EN : 

with EO = 0. Note that in coneast to the caSe of q; = f 1, the ground state is non-degenerate 
for continuous variables qi. 

It is clear from recursions (6H8) that the time required to calculate the properties of a 
chain of length N increases at most as N2. 

Figure 1 shows the structure of the ground state for a random chain of N = 2o00 
monomers with various choices of x (see (4)). For each x ,  the plot shows the total charge 
Qi up to the ith charge 

Qi = Cqj 
j = l  

versus i and the vertical bars are the break points in the ground-state configuration (i.e. 
all the monomers between two successive vertical bars are on the same site). Clearly the 
number of vertical bars is R. 

We see in figure 1 that as x decreases, R decreases (since the number of bars decreases) 
and the fluctuations of the distances 1 between successive bars become more and more 
important. 

2. The sealing of the groundatate energy E and of the number of occupied sites R 

When one averages the ground-state energy E or the number of occupied sites R (at T = 0) 
over many samples (here. So00 samples), one finds evidence that both E and R show power- 
law behaviour as N with exponents S(x) and v (x ) ,  which depend on x (see figure 2). 

Because one can write the energy as 

R R 

E = E [ Q ( r ) ] *  and Q = N’ = Q(r)  (10) 
,=I ,=I 

one always has 

E > Q 2 / R  ( 1  1) 
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Figure 1. The cumulated charge Qi defined by (9) versus i for chains of length N = loo0 and 
total charge Q = N x  for various chokes of x.  The venical bars mark lhe break points in the 
ground-state configuration. 

which implies that 

8 ( x )  2.x - u(x). (12) 

In figure Xc) ,  the ratios E R / Q z  versus N is shown for various values of x .  In all cases, 
the ratio seems to reach a l i t  as N increases, indicating that (12) is an equality rather 
than an inequality. The equality would mean that the total charge Q is evenly distributed 
among the R sites since a charge Q / R  on each site would give an energy E = R(Q/R)'. 

As always, it is difficult to extract very reliable exponents from log-log plots. To 
estimate 8 ( x )  and U@), we generated 2000 chains of sizes 50, 500 and 5000 and estimated 
these exponents by comparing (0 = log ( E s ~ / E s o )  / log 10) the sizes SO and 500 (white 
circles) and the sizes 500 and So00 (black circles). Both for 0(x )  and u(x) .  the results 
(figure 3) show little difference between the two sets of data, giving confidence that N > 50 
is close to the asymptotic regime. 

The problem, of course, is to understand the x dependence of these exponents. We have 
not been able to find an exact expression for 0 ( x )  and u(x) for all x .  Instead, we can give 
an argument which leads to 
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Fiw 2. Log-log plot of the energy (figure 2(u)) and 
R(figure 2(b)) averaged over 5000 samples versus N for 
various choices of x. Figule 2(c) shows the ratio E R / Q 2  
which seem to have a limit as N increases. indicating that 
(12) is an equality. 
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Figure 3. Estimates of the exponents B(x) (figure 3(a)) and u(x) (figure 3(b)) obtained by 
comparing the results for N = 50 and 500 (white circles) and N = 500 and 5WO (black 
circles). The statistics were on Zoo0 chains. 
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v (x)  = - + 2r for x close to 1 
3 

for x close to - +. 1 + 2 X  v ( x )  = - 
4 

These predictions together with the corresponding predictions for e ( x )  using the equality 
in (12) are the straight lines shown in figure 3. They seem to be in good agreement with 
all data except for the neighborhood of x = 112 where there seems to be a crossover from 
one regime to the other. 

Let us first present the argument which gives v(x) = (1 +2x)/3. To obtain the ground- 
state energy, the best is to divide the total charge Q = NX as much as possible. If the chain 
occupies R sites, the best would be to have on each site a charge Q / R  and the resulting 
energy would be 

E = Q z / R .  (14) 

This expression tells us that to decrease E ,  R has to be as large as possible (and one would 
conclude that R = N in the best choice). However, this is not possible because if R - N ,  
there would be of the order of one monomer per site and hence a charge of the order of 
one per site, which is not consistent with Q / R  - NX-”@) as required to satisfy (14). It is 
therefore necessary to find the maximal value of R consistent with a charge of the order of 
Q / R  on each site. 

Here, it is useful to mention a simple fact on the sum S, of e continuous random 
variables: 

st =E.. 
i=l 

If one asks what the minimum value Sh. of I& I is for 1 < k < e, one finds that 

This is because the average number of points Sk in an interval of size AS around the origin 
varies like e A S / a .  When AS N S-, this number is of order 1. 

So if the chain is divided into R occupied sites and if one assumes that the nwnber e 
of monomers does notfluctuate too muchfrom site to site, then e is given by e - N I R ,  and 
the charge on each occupied site is of the order of e-’/’ - (N/R)- ’ l2 .  Then the energy E 
can be obtained using (14) and the fact that 

Q / R  - (N/R)-’” (17) 

i.e. 

(18) 

These predictions shown on figures 3 are in good agreement with the numerical simulations 
for x close to 1, but below x = 1/2 the agreement is clearly not satisfactory. 

An important assumption used to arrive at (18) was that the number e of monomers 
on each occupied site does not fluctuate too much. This seems not to be true according 
to figure 1 (at least for the smaller values of x ) .  Therefore, one needs to know if large 

R Y N(’+2”)/3 and E N N(4x-’) /3 .  
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fluctuations of e are sufficient to invalidate the relation l = N / R .  If one considers the total 
charge Q i  up to site i (9), Q; performs a random walk and when 1Qi+e - Qjl is small 
enough, a break point (a vertical bar in figure 1) becomes possible. So the problem of 
the distance e between successive vertical bars is similar to that of the first return close to 
the origin of a random walk. One knows from the theory of random walks I8,9] that the 
probability of returning close to the origin for the first time &er e steps behaves like e-3/2 
for large e .  Therefore, if there are R occupied sites and if a typical number of monomers 
is & on each site, one expects the site with the largest number of monomers to have the 
number of monomers e,, given by 

This implies that most monomers are located on a very small number of sites, since 
e,, >> eoR. Therefore, one arrives at 

N - emax - R2eo (20) 

which together with the relation we had before that Q / R  - and (14) leads to 

R N N('+k) /4  and E N N(k-l)/4. (21) 

These predictions are in good agreement with the simulations at least for x 6 0 (see figure 3). 
It is of course clear that u(-l/2) = 0 since if Q = N-'I2, there is at most of order one 
other point with Qi as small as N-'I2. 

Of course, one can wonder why (18) is more likely to be valid for x close to 1 and 
(21) for x close to -1/2. There is no very strong argument for that except for one more 
comparison with the statistics of the returns of a random walker close to the origin. 

The main difference between the discussion which leads to (21) and the case x > 1/2 
is that for a random walker, a strong enough bias (when x > l/2) makes the probability of 
first return close to the origin after l steps decay much faster than e-3/2 for large e .  So the 
fluctuations of the number e of monomers from site to site are expected to be much less 
important for x > l/2, and, considering that the e are all roughly the same. it is not too 
bad an approximation. 

Even if the numerical results of figures 3 are well fitted for x > 1/2 and x < 0 by 
expressions (18) and (21), the intermediate range does not seem to agree with either of 
these formulae and it is not clear to us whether another expression for the exponents should 
hold in this intermediate regime or whether (18) and (21) could be valid for f < x < 1 and 
-f < x < 4. respectively, the discrepancy in figure 3 being due to a slow convergence 
problem. 

3. Conclusion 

We saw that for the problem of directed random heteropolymers with a continuous 
distribution of charges, the energy E and the end-to-end distance R at T = 0 seem to 
scale like power laws E - Ne(x) and R - with exponents 8(x )  and u ( x )  which vary 
with the total charge Q = N' of the chain. We have obtained approximate expressions 
of these exponents (18) and (21) which agree rather well with the results of simulations at 
least in some ranges of value of x .  According to figure 3, the exponent U equals u(1/2) 
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Figure 4. R averaged over 1OW samples for sizes N = 128, 256. 512 and 1024 and with 
x = 0.25 and x = -0.25. As N increases, the range of temperahlres where finite-size effects 
are visible decreases. 

N 0.6 for unconstrained chains (i.e. when Q is not fixed). It is worth noting that this is 
rather close to the prediction of Kantor and Kardar for the undirected case. 

One can wonder how the x dependences of the zero temperame properties can manifest 
themselves at non-zero temperature. Figure 4 shows the temperature dependence of R for 
various sizes N and various x .  The results indicate that the finite-size effects and the x 
dependence seem to occur in a range of temperature which shrinks as N + CO. 

We thus thii that a picture consistent with the results shown in figure 4 is that when 
N + CO at a fixed temperature, the number of occupied sites R is extensive, 

R - + r ( T )  
N 

and r (T)  is independent of x .  The temperature range in which the x dependence is noticeable 
varies probably as a power law N-'(') with an exponent A(x) ,  which should vary with x ;  
hence one would expect for T - N-'(') the dependence 

R - N"")h (TN'"), 4 . (23) 

We did not find a good way of extracting the exponent A ( x )  from our data of figure 4 and so 
we do not present here any prediction for A(x). However, if the picture of the two regimes 
(22) and (23) is right, then for R / N  to be independent of x for large TNA(*),  one would 
need that (1 - u ( x ) ) / A ( x )  be independent of x .  

A similar low-temperature range where the exponents are x-dependent and which shrinks 
as N increases seems to be present in several other models; we hope to discuss this in more 
detail in the future. 

If this picture is right, it would be the existence of these low-temperature regimes 
which are responsible for the non-trivial exponents O ( x )  and u(x) .  In these low-temperature 
regimes, the sample-to-sample fluctuations would become important. It is worth noting that 
in these low-temperature regimes, the exponents u(x) are due to non-extensive changes of 
energy. This is rather reminiscent of the fact that for homopolymers with excluded volume, 
the Flory approximation predicts an exponent U by calculating contributions to the free 
energy which are non-extensive. 



Directed walks with random selfintercctions 5493 

Acknowledgments 

We thank J des Cloizeaux and E R Speer for interesting discussions, 

Nofe added. 'Ibis article was originally written for the Proceedings of a wnference at les Houches in March 1992 
entitled Surface Disordering, Growrh, Roughening &Phose Transifions Since these proceedings have never been 
published, and since the results in this h c l e  have not been published e!sewhere. we have decided to re-submit 
il now. We feel the anicle is still relevant in view of the great deal of interest in models of randomly charged 
polymer sequenties the arose over the past two years [1&151. 

References 

[I] Obukhov S P 1986 J. Phys. A: Math. Gen. 19 3655 
[Z] Bryngelson J D and Wolynes P G 1987 Pmc. Nod Acd.  Sci. 84, 1990 Biopolymers 30 177 
[3] Garel T and Orland H 1988 Eumphys. Letf. 6 307, 597 
[4] Shakhnovich E I and Gutin A M 1989 Eumphys. Len. 8 327; 1989 1. Phys. A: Moth Gen. 22 1647 
[5] Higgs F G and Joanoy 1 F 1991 1 Chem. Phys. 94 1543 
[6] Kanlor Y and Kardar M 1991 Eumphys. Len, 14 421 
171 Demda B, Griffiths R B and Higgs F C 1992 Eumphys. Left. 18 361 
[SI Montmll E W and West B J 1979 Fluctutionr P h e n ~ m ~  ed Monholl-Lebowitz (Amsterdam: North 

191 Haus J W and Kehr K W 1987 Phys. Rep. 150 265 
[lo] Foster D P, C. Van der Zande and Yeomans I 1992 J, S t a  Phyr 69 857 
[Ill vlclor J M and lmbai 1 B 1993 Europhys. Len, 24 189 
[12] Witlmer J, Johner A and Joanny J F 1993 Europhys. Len. 24 263 
[131 Gutin A M and Shakhnovich E I 1993 J. Chem. Phys. 98 8174 
1141 Kantor Y, Kardar M and Li H 1994 Phys. Rev. E 49 1383 
[15] Joanny J F 1994 Eumphys. Leff. (lo be published) 

Holland) 


