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Abstracr For the Glauber dynamics of the one-dimensional q-stale Polls model at zero 
temperature, the fraction of spins which have never Ripped up to time I decrwes as I -a(q)  
where the exponent 8(q) varies continuously withy. The calculalion of lhe q dependence of 
this exponent can be reduced to the srudy of a simple remiondiffusion model. Using finite-size 
scaling. this allows one 10 obtain accurate estimates of B(q)  for all values of q .  One can also 
show lhal for q = I + f .  the expansion of B(q) is given by B(y) = (2/n)a -+ O(E*). 

1. Introduction 

The zero-temperature dynamics of one-dimensional classical spin models such as the king 
or q-state Potts model are known as well understood problems [l-51. If a random initial 
spin configuration is quenched at zero temperature, one observes a coarsening phenomenon, 
with a characteristic domain size growing with t'/*. It was shown 161, however, that, even 
for such simple systems, some dynamical properties are more difficult to understand. For 
example, the fraction r ( q ,  t )  of spin which has never flipped [6] up to time t decays with 
a power law 

r ( q ,  t )  t-"") (1) 
where the exponent 6(q)  varies with q. Monte Carlo simulations [a] give 6(2) N 0.376, 
6(3) N 0.53 6(5) N 0.70, @lo) N 0.82 and so far, q = 00 is the only case [6] for which 
the exponent is known exactly (6(00) = 1). 

In the present work, the problem of calculating the fraction r (q ,  t )  of spins which have 
never flipped for all values of q is reduced to a single (and simple) reaction-diffusion 
problem: particles diffuse and aggregate (A + A + A) on a one-dimensional chain with a 
source of particles at the origin. If the reaction-diffusion problem starts at t = 0 with no 
particle in the system (except at the origin) and if one calls P(m, t ) ,  the probability that at 
time r there are exactly m particles in the system (including the one at the origin which is 
always present), we shall see that r ( q .  t )  is given by 

m 

r ( q . t ) = C P ( m , t ) q ' - " .  (2) 
m=I 

This relationship with the reaction-diffusion problem will allow us: 

values of q;  
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(i) to obtain the estimates in table 1 for the exponent B(q) for integer and non-integer 
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Table 1. Nume"cal values of B(q) oblained in section 4 using finite-size scaling. 

4 0.5 1.01 I .5 2 3 5 10 iao 03 

e(q) -0.513 0.0063203 0.2350 0,3750 0.5379 0.6928 0.8310 0.9815 1.0000 
Error 0.001 0.0000002 0,0001 0.0001 O.WO2 0.0003 0.0005 O.0OlO 0.0005 
Monte Carlo 0.376 0.53 0.70 0.82 I .o 
Exact I 

(ii) to find the first term of the expansion of B(q) in powers of q - 1 
2 

W q )  = ;(q - 1) + O ( ( q  - I)*) .  

(iii) to obtain bounds on the exponent B(q) :  for q1 < q2 

which combined with (3) gives, for q > 1, 

(3) 

The paper is organized as follows. In section 2, the problem of finding the fraction 
r ( q ,  t )  of spins which have never Ripped is reduced to a simple reaction-difiusion model 
and (2) is derived. In section 3, the steady-state properties of the reaction-diffusion model 
for finite system sizes are presented. In section 4, these results are analysed, assuming finite- 
sue scaling to obtain accurate predictions (of table 1) for the exponent B(q) for arbitrary 
values of q .  Analytic expressions for some of the properties of the reaction-jiffusion model 
can be obtained for arbitrary system sizes and this will be the way, in section 5, of deriving 
the first term in the expansion of B(q) .  Finally the bounds (4). (5) are obtained using (2) 
and Jensen's inequality. 

2. Relation to a reaction4iffusion model 

One can implement the Glauber dynamics of a one-dimensional q-state Potts model at zero 
temperature as follows: during any infinitesimal time interval dr, each spin Si@) has a 
probability d t /2  of becoming equal to its left neighbour, df/2 of becoming equal to its right 
neighbour, and a probability 1 - dt of keeping its own value. The only difference between 
the different values of q is in the random initial condition: at r = 0, each spin Sj(0) is 
assigned a random integer between I and q. 

There is a very direct way [2,4,5,8-11] of relating this coarsening phenomenon to 
reaction-diffusion models [12-22]: one considers that the domain walls perform random 
walks and when two of these random walkers meet, they either annihilate (A+A -+ 0) with 
probability I/(q - I )  or they aggregate (A+A i A) with probability (q -2)/(q - 1). These 
rates are easy to understand by considering what happens when two domain walls meet, i.e. 
when a domain disappears: either, the two neighbours of the domain which disappears are 
in the same state and the two domain walls annihilate: or they are in different states and the 
two domain walls merge into a single domain wall. This reaction-diffusion model with the 
fact that in the initial condition, each bond is occupied by a domain wall with probability 
(q - l ) / q  is completely equivalent to the initial spin problem. Then the density r ( q ,  t )  of 
spins which have never flipped up to time r is just the fraction of sites which have never 



Dynamics of fhe ID Potts model 1483 

been jumped over by a domain wall [6,8,9]. This domain wall description is a useful one, 
but the model changes when q varies and difficulties arise if one tries to consider non-integer 
values of q (for example for q close to 1, one has to work with negative probabilities). 

In this paper, a different reasoning is used to relate the calculation of the fraction r(q,  t )  
to a reaction-diffusion model. It is useful to think of the dynamics of the spin model in 
terms of random walks. We have seen that the value of Si@) at time t is equal to Si-l(t-df), 
S;(t - dt) or Si+!(? - dt) with probabilities df/2, 1 - dt and dt/2. These spin values, in 
turn, depend on S!-~(C - 2dt), Si-1 (f - 2df). Si(t - 2dt). S i + ~ ( t  - 2df). Si+Z(f - 2dt) and 
so on. Tracing back in time the sequence of spins responsible for the value of S i @ )  defines 
a random walk. Thus the value of spin Si (? )  at time t is equal to the value of another 
spin Sj(0) at time 0 with a probability p ( j  - i. t )  where p ( j  - i, t )  is the probability for a 
random walk to go from i to j during time t ,  given that during each time interval dr, the 
random walk moves to its left with probability dt/2, to its right with probability dt/2 or 
does not move with probability 1 - dt. So to know the value of So(t), one just needs to 
look at the position at time t of a random walk starting at f = 0 at the origin. 

Assume that one wants to know the values of So(t) and So@') with f > t'. Then one 
has to consider the positions at time t of two random walkers, the first one starting at the 
origin at time t = 0 and the second one starting at the origin at time t - f'. Clearly, if the 
two walkers occupy the same site at a given time, they follow, at any later time, the same 
trajectory. So the two walkers are like two diffusing particles which aggregate when they 
meet. 

Let us call p(1; t ,  t') the probability that the two walkers aggregate before time t and 
p(2;  t ,  t') the probability that they do not. Then the probability that So($) = So@') is 
given by p(l ,  f ;  t ') + p(2; t ,  t')/q. This reasoning can easily be extended to obtain the 
probability that So(?) = So(t') = So(?") = . . .. It follows that, to calculate the probability 
r (q ,  f )  that the spin at the origin has never flipped up to time t ,  one needs to consider the 
following reaction-diffusion problem: the system consists of random walkers which diffuse 
and aggregate; moreover the origin is always occupied (i.e. whenever the walker which is 
at the origin jumps to one of its neighbours, a new walker is produced at the origin). If 
initially the system is empty (except for the origin) and if one calls P(m, t )  the probability 
of having m walkers in the system at time t ,  the same argument as above (when comparing 
So@) and So(t')) leads to 

This is the origin of the equation (2) which is the starting point of the present work. 
Reaction-diffusion models with sources have already been studied in the literature [a, 11- 
13,151. A number of results are known, but, to my knowledge, the exact expression for 
P(m, t )  has not yet been given. 

3. Steady-state properties of a finite system 

Let us consider the reaction-diffusion problem on a ring of L sites. One site (which we 
call the origin) is always occupied and all the other sites are either occupied by one particle 
or empty. The particles diffuse and when two particles meet, they aggregate (A+A -+ A). 
The effect of the aggregation is to reduce the number of particles in the system whereas 
the source at the origin increases this number. The result is a steady state with a probablity 
$(m, L) of finding m sites occupied on a ring of L sites. 
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Clearly, a ring of L sites has 2L-' possible configurations (each site is either occupied 
or empty except for the origin which is always occupied). If W(C'.  C) df is the probability 
during time dr to go from a configuration C to a configuration C', the weights p ( C )  in the 
steady state are solutions of 

For L not too large, the matrix IV(C', C) can be constructed explicitly by enumerating all 
possible configurations and all possible moves and it is then easy to find numerically the 
weights p(C)  by solving equations U). For example for L = 4 ,  and if the origin (i.e. the 
source of particles) is at position 4, one finds the following w*eights in the steady state for 
the Z 3  possible configurations 

p(ooO1) = & g(1001) = p(OO11) = 5 
p(1011) = 5 p(1101) = p(O111) = p(11II) = 

p(O101) = & 

and therefore 
@(1,4)=$ @(2,4 )=$  $ ( 3 , 4 ) = %  $ ( 4 , 4 ) = & .  

Table 2 gives all the @ ( m ,  L )  for L < 14. 
One finds that the @(m,  L )  are rational numbers which are listed in table 2 (for each 

w ,  the numeralors of @(m,  L )  are given in table 2 and at the end of each list, the sum of 
all the numerators gives the denominator). 
Remurk I .  So far, there are two properties of the $(m,  L )  which could be obtained 
analytically for all L :  first, the exact expression for @ ( I ,  L )  is 

@U* L )  = - (8) 

second, one can also show that 

sin'ka sin'k'a 
(cos k'a - cos k a ) ( 2  - cos kor - cos k'a) 

l6 
(L 1)2 k event odd 

8 C ( m  - I)$(m, L )  = - (L + I ) *  
sin' kor( 1 + cos k'or) L 

k ,  odd (cos k'or - cos k a ) ( 2  - cos kar - cos k'a) m=l 

(9) 
where the range of the sums over k and k' are 

and 
2 < k < L  I < k ' < L  

77 a=- 
L +  I '  

The derivation of these two expressions is explained in the appendix. 
Remark 2. Except for these two expressions, the general expression for @(m, L) is not 
known. In particular, simple observations, such as the fact that the numerator of @ ( L ,  L )  
is always 1, are not yet understood. As 'we shall see in section 4, knowledge of all the 
@ ( m ,  L )  would lead to an exact expression for the exponent B ( q )  for all q .  

From the knowledge of the steady-state properties of the reaction-diffusion problem, 
one can predict some properties of the spin system. Namely, one can show that for the 
zero-temperature dynamics of the Pots  chain, the probablity p(q, L )  thal starting, with a 
random initial configuration, a given spin never Rips (from r = 0 until f = 00) is 
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Table 2. The probabilities $(m. L )  of finding m panicles on a lattice of L sites in the steady 
sme of the reaction-diffusion model. 

l i  

This expression can be understood by using the same argument which was used in section 2 
to derive expression (2): the equivalence between the spin model and the reaction-diffusion 
model. Assume that one starts the dynamics of the reaction-diffusion model at t = 0 and 
call P(m. t )  the probability that there are m particles in the system at time t .  For a finite 
system of L sites, P(m, t )  -+ @(m,  L )  as r + 00. Therefore in the infinite time limit, (2) 
becomes (IO). 
Remark 3. For an infinite system, the probability r ( q .  I )  that a given spin has never flipped 
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up to time I decreases to zero as I + co. This is not the case for a finite system: for a 
finite system there is a finite probability (q l -L )  that initially all spins are in the same state 
and obviously p ( q , L )  2 qIFL.  

Using the results given in table 2 for @ ( m ,  L ) ,  one finds for the probability p(q, L )  
that, for a random initial condition, a spin never flips between t = 0 and f = 03, 

2q2+4q+1 

7q2 
P(4t 3) = 

8q3 + 23q2 + 12q + 1 
44qJ PG?> 4) = 

62q4 + 224q3 + 176q2 + 32q + 1 

912q’ + 3864q4 + 3983q3 + 1 135q2 + 81q + 1 
9916q5 

495q4 P(49 5 )  = 

p(q, 6) = 

and so on. 
Clearly, for q = I ,  one has p(1, L )  = 1 for all L:  the ‘random‘ initial configuration 

is the configuration where all spins are the same. Thus the dynamics is trivial and nothing 
ever moves. 

4. Finite-size scaling 

Finite-size scaling is a well known method to obtain accurate estimates of critical exponents 
by calculating exactly the properties of finite systems and by analysing their size dependence 
[23-25,20,21]. Using the analogy with the reaction-diffusion model, the p(q, L )  are 
exactly known for arbitrary q up to size L = 14. (One could certainly do better as the size 
of the transfer matrix is 2L-1 and the matrix is sparse.) Let us assume that p(q, L) decays 
algebraically for large L:  

p(q,  L )  - L-@‘(q). ( [ I )  
This defines an exponent 6”(q) which is, in principle, related to the exponent O(q) of (1) 
by I61 

e w  = 2 ~ .  (12) 

This relation can be justified by the fact that there is a characteristic length I(t)  growing 
with f1I2 and that the dynamics stops when I ( t )  becomes comparable to the system size as 
there is a single domain left in the system. 

The first estimate of O(q) one can make based on (11) and (12) is 

The results of these estimates for q = 2 and q = CO are given for 1 < L 4 13 in column 
0 of tables 3 and 4. The convergence is rather slow but looks regular and one can try to 
extrapolate the data of column 0. If one makes a polynomial extrapolation of the data of 
column 0 by taking k consecutive values XL. .XL+I .  . . . , XL+~- I  of column zero and by using 
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Table 3. Estimates of the exponent S(y) for y = 2. The column 0 is obtained using the finite- 
size Scaling expression (12). Columns I4 ue polynomial extrapolations of degree 1 4  of the 
data of column 0. 

q = 2  

L O  I 2 3 4 5 6 

I 0.207519 
2 0.260576 
3 0.288761 
4 0.305778 
5 0.317063 
6 0.325095 
7 0.331 118 
8 0.335814 
9 0.339584 
10 0.342681 
I 1  0.345274 
I? 0.347477 
13 0.349374 

0.3 I3 634 
0.345 132 
0.356827 
0.362 203 
0.365255 
0.367258 
0.368683 
0.369744 
0.370560 
0.371201 
0.37 I 713 
0.372 130 

0.360881 0.371070 0.371 517 0.373260 0.374975 
0.368523 0.371 428 0.372970 0.374730 0.375 187 
0.370266 0.372456 0.374227 0.375073 0.375037 
0.371 361 0.373468 0.374756 0.375049 0.374983 
0.372264 0.374 112 0.374918 0.375009 0.374989 
0.372957 0.374470 0.374964 0.374998 0.375000 
0.373461 0.374668 0.374980 0.374999 0.375004 
0.373823 0.374781 0.374988 0.375001 
0.374084 0.374850 0.374993 
0.374276 0.374894 
0.374418 

Table 4. Estimales of the exponent e (q )  for y = m. The column 0 is obtained using the 
finitesize scaling expression (12). Columns I 4  are polynomial extrapolations of degree 1 4  
of the dm of column 0. 

y = m  

L O  I 2 3 4 5 6 

I 0.500000 
2 0.690091 
3 0.785564 
4 0.835057 
5 0.863513 
6 0.882071 
7 0.895474 
8 0.905829 
9 0.914178 
10 0.921100 

0.880182 1.024671 
0.976508 0.990568 
0.983 538 0.968034 
0.977337 0.969910 
0.974861 0.978455 
0.975 888 0.985605 
0.978317 0.990255 
0.980970 0.993 123 
0.983401 0.994933 
0.985498 0.996 132 

I I 0.926955 0.987270 0.996964 
12 0.931981 0.988761 
I 3  0.936349 

0.979200 
0.953012 
0.971 786 
0.989 848 
0.997522 
0.999555 
0.999816 
0.999 760 
0.999726 
0.999738 

0.946464 0.988116 1,016309 
0.981 174 1.012281 1.004275 
1.003393 1.006277 0.996287 
1.005 196 0.999617 0.997456 
1.002 096 0.998 321 0.999 578 
1.000209 0.999007 1.000297 
0999662 0999652 1.000272 
0 999658 0.999938 
0.999766 

the polynomial P of degree k which satisfies x ~ + i  = P ( l / ( L  + i)) for 0 < i < k - 1. one 
obtains the data of column k .  

We see that for q = 2 and q = CO, the convergence is greatly improved and leads to 
accurate estimates of B(q). However, one cannot choose polynomials of too high a degree 
because, as the degree of the extrapolation increases, the value obtained is more and more 
sensitive to rounding errors. This is probably why one cannot see much improvement for 
k 4. 

From the data of tables 3 and 4, one can estimate that 

O(2) = 0.3750 f 0.0001 
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and 

O(W) = 1.0000f0.0005. 

For q = CO, one recovers the exact prediction [6] that O(m) = I and the results of table 4 
serve as a test of the accuracy of the extrapolation procedure. 

As the p ( q ,  L )  are known for arbitrary q ,  it is, of course, no problem to repeat these 
calculations for other choices of q .  They lead to the estimates given in table 1 for B(q). 

5. e expansion and bounds 

One can exploit some of the results which are known exactly on finite systems to calculate 
the exponent 8 ( q )  for q close to I :  

q = 1 + E .  (14) 

Equation ( IO)  then becomes 

and one can use the exact result (9) of section 3. The large L dependence of the expression 
(9) is dominated by small values of k and k’ and one finds that for large L 

Then using ( I  I )  and (12), one gets 

B ( q )  = (2/ri)E + O(E7 

Therefore for small E ,  one has O ( q )  
for E = 0.01 reported in table 1 (the small discrepancy being due to the order E * ) .  

Remark 4. There is a situation in which exponents corresponding to non-integer values of q 
could be measured directly in simulations. Assume that one considers the k ing  model with 
a non-zero average magnetization p in the initial condition. Initially each spin is either up 
with a probability + ( I  + p) and down with a probability $ ( I  - p). Let us call r + ( f )  the 
probability that a spin initially up never flips between time 0 and time f and r - ( t )  the same 
quantity if the spin is initially down. By the same reasoning as for equation (10). one can 
show that 

0.63666 and this agrees rather well with the estimate 

Comparing this with (IO) leads to r*(f )  = r(q*, f )  with 

2 
41; = - I f p ’  

Clearly p --t I corresponds to an initial situation in which almost all spins are identical to 
the one at the origin, that is q close to I ,  and p + -1 corresponds to q + ca as almost 
all spins in the system are different from the one at the origin. 
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Relation (10) also gives rizorous bounds for the exponent O(q). If one chooses two 
values qj and q 2  with q1 e 4 2 ,  one can write 

Then using Jensen’s inequality (for a positive random variable x ,  one has ( x y )  2 (x)Y when 
y > 1 j, one finds 

qzp(q2. L )  > [qlp(ql. ~ ) 1 ~ ~ ~ ~ ~ / ~ ~ ~ 4 ~ .  

This obviously leads to 

and therefore to (4). As O(qj is known for q close to 1, this leads for q > 1 to 
2 < ir logq 

For example this bound predicts O(2j e 0.441 27 which is clearly satisfied by the estimate 
O(2) Y 0.3750 of table I .  

6. Conclusion 

In this paper, the calculation of the fraction of spins which have never flipped in the 
zero-temperature dynamics of the one-dimensional Potts model has been related to the 
properties of a simple reaction-diffusion model. This analogy has been used to obtain 
accurate estimates for the exponent B(q)  for any q ,  the first term of an €-expansion for q 
close to 1 and bounds on this exponent. 

The numerical estimate indicates e(q)  is very close to 3/8 for q = 2 and it would 
certainly be of interest to see whether this prediction is exact. More generally, we have 
seen that some properties (8), (9) of the reaction-diffusion model can be obtained exactly. 
With more work, one could try to push further the E expansion or to obtain a large q 
expansion (this would require an exact expression of @(2, L )  for all L). One can even 
hope to find a complete analytic solution of the reaction4iffusion model. This would 
automatically lead to the exact expression of O(qj for all q .  
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Appendix A. 

In this appendix some of the steady-state properties of the reaction4iffusion model are 
calculated exactly. These properties give, as special cases, the results (8), (9). We consider 
the reaction-diffusion model on a ring of L sites with the origin located at position L, i.e. 
the site 0 (G site L )  is always occupied. Then during any time interval dt, each particle in 
the system jumps with probability d t /2  to its left and dt/2 to its right. When two particles 

r 
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occupy the same site, they instantaneously coalesce A + A +. A. Also if the panicle at the 
origin jumps to one of its neighbours, the origin is instantaneously filled by a new particle. 

Let us call f ( i ,  j) the probability that in the steady state, all the sites k between i and 
j are empty (i < k < j ) .  Clearly with this definition, the probability that site i is empty is 
just f(i.  i). Moreover as the origin is always occupied, one has for all i and j 

(AI) f(0, j )  = f ( i .  L) = 0. 
During each time interval dt, it is possible to write a steady-state equation for i < j: 
dt dt 
-[f(i + 1, j) - f ( i ,  j ) l  + -$V. j - 1) - f(i.  j)l 2 

dr 
= p i .  j )  - f ( i  - 1. j ) l  + dt 

(A21 

The left-hand side of this equation is the probablility of entering into a configuration where 
all sites between i and j are empty. This happens either if all sites between i + 1 and j 
are empty with a particle present at site i (first term) or if all sites between i and j - 1 are 
empty with a particle present at site j (second term). The right-hand side can be understood 
as the probability of leaving the configuration. The case i = j has to be treated separately, 
and one finds that (A2) is replaced by 

dr dr 
df[l  - f ( i ,  i)l = - [ f ( i ,  i )  - f ( i  - 1, i ) l+ T[,f(i,  i) - f ( i ,  i + I)]. 

2 
Clearly (A2) and (A3) are equivalent to 

j )  - f ( f ,  j + I)]. 

643) 

4f(L j )  = f ( i  - I .  j )  + f ( i  + 1, j )  + f ( i ,  j - I )  + f($ j +  I)  

4f(i, i) = 2 + f ( i  - 1, i) + f(i,  i + I ) .  

(A41 

645) 

and 

The solution for f (i. j )  is then 

(A61 
Ssinkasink'aIsinkiasink'(j  + I)a -sink' iasink(j  + l )a]  

(L + 1)2(cosk'a - C O S ~ L Y ) ( ~ - ~ ~ S ~ C Y  - cosk'a) f ( i , j ) =  

where 
I w e n  k' odd 

Then (8) and (9) follow as 

* ( I ,  L) = f ( l .  L - 1) 

and 

(this last expression just means that the average occupation of site i is just 1 - f ( i ,  i ) ) .  
The easiest way to check that (A6) is the solution of (A4)-(A5) is numerically on 

a computer. It is also possible to derive a proof based on the foIlowing higonometric 
identities: 
sinxsiny[sinixsin(j + I)y -s iniysin( j+ I)x] 

cosy-cosx 
I-i j t i  

= C C s i n ( p + q - j j ) x s i n x s i n ( q - p - i ) y s i n y  
,,=a 4=0 
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and for -L < II < L 

1491 

where k, k' and CY satisfy (A7). 
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