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Abstract. For the Glauber dynamics of the one-dimensional g-state Potts model at zero
temperature, the fraction of spins which have never flipped up to time ¢ decreases as ¢~6(9)
where the exponent 8(g) varies continuously with g. The calculation of the ¢ dependence of
this exponent can be reduced to the study of a simple reaction—diffusion model. Using finite-size
scaling, this allows one to obtain accurate estimates of §(g) for all values of g. One can also
show that for 4 = | + ¢, the expansion of B(g) is given by 8{g) = (2/m)e + O(e?).

1. Introduction

The zero-temperature dynamics of one-dimensional classical spin models such as the Ising
or g-state Potts model are known as well understood problems [1-5]. If a random initial
spin configuration is quenched at zero temperature, one observes a coarsening phenomenon,
with a characteristic domain size growing with £3/2, It was shown [6], however, that, even
for such simple systems, some dynamical properties are more difficult to understand. For
example, the fraction r(g, ?) of spin which has never flipped [6] up to time ¢ decays with
a power law

rig, 1) = =% (0

where the exponent 8(g) varies with g. Monte Carlo simulations [6-8] give 8(2) =~ 0.376,
8(3) =~ 0.53 8(5) ~ 0.70, #{10) ~ 0.82 and so far, g = oo is the only case [6] for which
the exponent is known exactly (#{co) = 1).

In the present work, the problem of calculating the fraction r(g, t) of spins which have
never flipped for all values of ¢ is reduced to a single (and simple) reaction—diffusion
problem: particles diffuse and aggregate (A + A — A} on a one-dimensional chain with a
source of particles at the origin. I the reaction—diffusion problem starts at t = 0 with no
particle in the system (except at the origin) and if one calls P(m, ¢}, the probability that at
time ¢ there are exactly m particles in the system (including the one at the origin which is
always present), we shall see that r(g, 7} is given by

rig.f)=) P(m,n)g'™". )

m=]
This relationship with the reaction~diffusion problem will allow us:
(i) to obtain the estimates in table 1 for the exponent 8(g) for integer and non-integer
values of g;
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Table 1. Numerical values of #{g) obtained in section 4 using finite-size scaling,

q 05 1.01 1.5 2 3 5 10 100 oo
8(g) —=0.513  0.0063203 02350 03750 05379 0.6928 08310 09815 1.0000
Error ¢.001 00000002 00001 00000 00002 Q0003 00005 00010 000065
Monte Carlo 0,376 0.53 0.70 (.82 1.0
Exact i

(i1} to find the first term of the expansion of 8(g) in powers of g — 1

2

8(9) = ~(g — D+0((g - ). 3
(iii) to obtain bounds on the exponent 8(g): for q; < g2
log g2
<
6(g2) < G(qi)log p )
which combined with (3} gives, for ¢ > 1,

2

) < - logg. (5

The paper is organized as follows. In section 2, the problem of finding the fraction
r(g, 1) of spins which have never flipped is reduced to a simple reaction—diffusion model
and (2) is derived. In section 3, the steady-state properties of the reaction—diffusion model
for finite system sizes are presented. In section 4, these results are analysed, assuming finite-
size scaling to obtain accurate predictions {(of table 1} for the exponent 8{g) for arbitrary
values of g, Analytic expressions for some of the properties of the reaction—diffusion model
can be obtained for arbitrary system sizes and this will be the way, in section 5, of deriving
the first term in the expansion of 8(g). Finally the bounds (4), (5) are obtained using (2)
and Jensen’s inequality,

2. Relation to a reaction—diffusion model

One can implement the Glauber dynamics of a one-dimensional ¢-state Potts model at zero
temperature as follows: during any infinitesimal time interval dz, each spin S;{¢) has a
probability d¢/2 of becoming equal to its left neighbour, d¢ /2 of becoming equal to its right
neighbour, and a probability 1 — dt of keeping its own vatue. The only difference between
the different values of g is in the random initial condition: at r = 0, each spin 5;(0) is
assigned a random integer between { and g.

There is a very direct way [2,4,5,8-11] of relating this coarsening phenomenon to
reaction—diffusion models [12-22]: one considers that the domain walls perform random
walks and when two of these random walkers meet, they either annihilate (A+A — @) with
probability 1/(g —1) or they aggregate (A+A — A) with probability (g —2)/(g —1). These
rates are easy to understand by considering what happens when two domain walls meet, i.e.
when a domain disappears: either, the two neighbours of the domain which disappears are
in the same state and the two domain walls annihilate; or they are in different states and the
two domain walls merge into a single domain wall. This reaction—diffusion model with the
fact that in the initial condition, each bond is occupied by a domain wall with probability
(g — 1)/q is completely equivalent to the initial spin problem. Then the density r(g,t) of
spins which have never fiipped up to time ¢ is just the fraction of sites which have never
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been jumped over by a domain wall [6,8,9]. This domain wall description is a useful one,
but the model changes when g varies and difficulties arise if one tries to consider non-integer
values of ¢ (for example for ¢ close to 1, one has to work with negative probabilities).

In this paper, a different reasoning is used to relate the calculation of the fraction r(g, 1)
to a reaction—diffusion model. It is useful to think of the dynamics of the spin model in
terms of random walks. We have seen that the value of 5;(r) at time ¢ is equal to §;_; ( —d¢),
8;(t — dt) or S;41(r — dt) with probabilities d¢/2, 1 — d¢ and d#/2. These spin values, in
turn, depend on §;_a(r — 2d¢), S {t — 2de), 8¢ — 2de), S;41(¢ — 2dt), Si2(t — 2d2) and
so on. Tracing back in time the sequence of spins responsible for the value of S;(¢) defines
a random walk. Thus the value of spin §;(¢) at time ¢ is equal to the value of another
spin §;(0) at time O with a probability p(j — {, 1) where p{j —i,¢) is the probability for a
random walk to go from i to j during time ¢, given that during each time interval dz, the
random walk moves to its left with probability dt/2, to its right with probability d¢/2 or
does not move with probability 1 — d¢. So to know the value of Sy(t), one just needs to
look at the position at time ¢ of a random walk starting at ¢ = 0 at the origin.

Assume that one wants to know the values of Sp(r) and Sg(t') with ¢ > #. Then one
has to consider the positions at time ¢ of two random walkers, the first one starting at the
origin at time ¢ = ( and the second one starting at the origin at time ¢ — ¢'. Clearly, if the
two walkers occupy the same site at a given time, they follow, at any later time, the same
trajectory. So the two walkers are like two diffusing particles which aggregate when they
meet.

Let us call p(l;¢, +') the probability that the two walkers aggregate before time £ and
p{(2;t,¢") the probability that they do not. Then the probability that Sp(2) = Sp(t') is
given by p(l,t;¢) + p(2;t,t")/q. This reasoning can easily be extended to obtain the
probability that Sp(2} = Sp{t") = Sp(t”) = ---. It follows that, to calculate the probability
r(g, t} that the spin at the origin has never flipped up to time ¢, one needs to consider the
following reaction—diffusion problem: the system consists of random walkers which diffuse
and aggregate:; moreover the origin is always occupied (i.e. whenever the walker which is
at the origin jumps to one of its neighbours, a new walker is produced at the origin). If
initially the system is empty (except for the origin) and if one calls P(m, ¢} the probability
of having m walkers in the system at time ¢, the same argument as above {(when comparing
So(t) and Sy(¢")) leads to

oo
rig,0) =y _ P(m,)g"™ O]
m=1

This is the origin of the equation (2) which is the starting point of the present work.
Reaction—diffusion models with sources have already been studied in the literature [2, 11—
13,15]. A number of results are known, but, to my knowledge, the exact expression for
P{m, t) has not yet been given.

3. Steady-state properties of a finite system

Let us consider the reaction—diffusion problem on a ring of L sites. One site (which we
call the origin) is always occupied and all the other sites are either occupied by one particle
or empty. The particles diffuse and when two particles meet, they aggregate (A+A — A).
The effect of the aggregation is to reduce the number of particles in the system whereas
the source at the origin increases this number. The result is a steady state with a probablity

¥{m, L) of finding m sites occupied on a ring of L sites.
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Clearly, a ring of L sites has 2! possible configurations (each site is either occupied
or empty except for the origin which is always occupied). If W(C’, C) dt is the probability
during time dt to go from a configuration € to a configuration C', the weights p(C) in the
steady state are solutions of

YW OpCy =) W CHpC). Q)
c' (o

For L not too large, the matrix W{C’, C} can be constructed explicitly by enumerating all
possible configurations and all possible moves and it is then easy to find numerically the
weights p(C) by solving equations (7). For example for L = 4, and if the origin (i.e. the
source of particles) is at position 4, one finds the following weights in the steady state for
the 2% possible configurations

p(0001) = £ p(1001) = p(0011) =
pQ1o1n) = & p(1101) = p(0111) =

p(0101) =

8
44
2 p(1111) =

Z
a3
L
%

and therefore
v, =% yv2H=3% y3H=5 yusH=%
Table 2 gives all the ¥{m, L) for L £ 14
One finds that the yr(m, L) are rational numbers which are listed in table 2 (for each

m, the numerators of yr(m, L} are given in table 2 and at the end of each list, the sum of
all the numerators gives the denominator).

Remark I. So far, there are two properties of the (m, L) which could be obtained
analytically for all L: first, the exact expression for ¥(1, L) is

16 sin? ko sin® Ko

v, L) = (L +1)? L = (cosk’o — coska)(2 — cos ko — cos K'er) ®)
second, one can alsc show that
L 802 !
2 (m = Dym, L) = L f N2 2 (cosk'a —s::gsig:;j:j: ko;)- cosk'a)
m=] k even ¥ odd
9

where the range of the sums over k and k' are

2k L 1€ <L
and

o
@=7 T

The derivation of these two expressions is explained in the appendix.

Remark 2. Except for these two expressions, the general expression for ¥ (m, L) is not
known. In particular, simple observations, such as the fact that the numerator of ¥ (L, L)
is always 1, are not yet understood. As we shall see in section 4, knowledge of al] the
¥{m, L) would lead to an exact expression for the exponent 8{g) for all ¢.

From the knowledge of the steady-state properties of the reaction—diffusion problem,
one can predict some properties of the spin systern. Namely, one can show that for the
zero-temperature dynamics of the Potts chain, the probablity p(g, L) that starting, with a
random initial configuration, a given spin never Rips (from ¢t = O until ¢ = oc) is

L
1
plg, LYy = z W (m, L)QTT' (10)
m=1\
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Table 2, The probabilities ¥r(m. L) of finding m particles on a lattice of L sites in the steady
state of the reaction-diffusion model.

n v, 13
| AET2RBUETRN 13108
2 2421 1360923070363
3 U221 10T56 1172352
[ m w{m. ) N ;i;{;TJSI:\)??SZ‘?]S?
e 5 FT09TO1 LR
j flﬁlfjj’{;’f fg’ 6 214 (RTGEH 398223
I 112007236 7 IZE{I’IE:UIH(:?EHIEH:
‘ A 2 2654567 L 1t
m [ w(m5) i ?1:;583§i 9 L0539 1 156
1 a1z : RS {0 3R2 15653
' e 6 Y3462 "
TN ST | el aisie0 || L 72}
| 1 3 3083 . st |12 |
Y 1 1 1 145 4 p {Lsum [3RATAGAIGTY26 [ 82 1
st 2 [: 311 L.sum 260243569 “[1 - zt;zatntfrmil:”
——— AT2H6329289 1158 1886
A N 71| R el w asumsTasasseacus
5 I [ et 1) ; (219697 115 3 SBAAB55288 1310 13408
X X 1 BOG ||y vaosrriass || SRUIARHTIURY 190
i T 21 I g sguggsaronn || 5| 2UTSUGLEMOTIU0M5TN)
| ol 1) : “Sf.l? 5 38560644737 b ';f’{m."ﬁ;gf.‘ 2851 THSG
| e . N 6 3765492761 ‘ ABGLIZO5R03T I8 1
" 3 5 G750 7 12209278 & TOISTEITH1461706
: " G 200 121145 g 72121885757 T80
: f 7 vy san || 10 LISTORATL424
- y sum 60161 ]h I 11 214205400
T ] | 560355000406 i ol
z 627 o geess36 |20 A ) sam | 1657927 1700881070 1287
2 221 e T| 6388081874754
3 9THR4 . e m vim, 1)
4 L T 4070841950984 T GU3GTI3I204555133541 12
i 32 ol I 3| 8020004078610 [| 1 s 0
. | 5 Jr.S_l(JU 4 604817334 18936 2 .:U.JU.J.-H_NU-) i 28-)1-:[91
: ! 51 38718 o | 183 10980302802 3 | 1193 IURTAISATORINGLT2
IR L L 8% 6| ouraronante 4 | 1ITOUSTATIRITONGLA517952
8 I i a0nLThnsy | 5| BUBSBTBEBGH65856257 120
st | 2320608 || ¢ IS aRATO B YTAZIVAGIYRY IRIBER1 21N
o Pty 7| s220sT205008MTIT I
0 Py 8 290554 TARBH 1 TO269599
1" 1 9 014615 1 TTO8T 8251
s | 20811200350 1639 :‘: ! ”"f:(‘] i él‘gfl ‘“’f;f!"l
12 12011336150
13 07500
14 !
s | 33 16103821362 155708032

This expression can be understood by using the same argument which was used in section 2
to derive expression (2); the equivalence between the spin model and the reaction—diffusion
model. Assume that one starts the dynamics of the reaction—diffusion model at t = 0 and
call P{m.1t) the probability that there are m particles in the system at time ¢. For a finite
system of L sites, P(m, ) — ¥ (m, L) as ¢+ — oo. Therefore in the infinite tirge limit, (2)
becomes (10).

Remark 3. For an infinite system, the probability r(g, ¢) that a given spin has never fipped
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up to time ¢ decreases to zero as £ = oo. This is not the case for a finite system: for a
finite system there is a finite probability {(g'~%) that initially all spins are in the same state
and obviously o(g, L) > ¢'%.

Using the results given in table 2 for v (m, L), one finds for the probability p(g, L)
that, for a random initial condition, a spin never flips between ¢ = 0 and r = oo,

olg, =1
g+1
2) =
p{g %2
29 +4g 11
3 = ——_
plg,3) 7o
8g° + 232 + 12¢ + 1
62g* +224¢° + 17692 +32¢ + 1
0(g,5) =~ pa B
405q
@.6) = 912g% + 38649* + 3983¢% + 113542 + 81g + 1
PRg = 997645

and so on.

Clearly, for g = 1, one has p(1,L) = 1 for all L: the ‘random’ initial configuration
is the configuration where all spins are the same. Thus the dynamics is trivial and nothing
ever moves,

4. Finite-size scaling

Finite-size scaling is a well known method to obtain accurate estimates of critical exponents
by calculating exactly the properties of finite systems and by analysing their size dependence
[23-25,20,21]. Using the analogy with the reaction-diffusion model, the p(g, L) are
exactly known for arbitrary g up to size L = 14. (One could certainly do better as the size
of the transfer matrix is 2°~ and the matrix is sparse.) Let us assume that p{g, L) decays
algebraically for large L:

plg, L) ~ L7, (11)

This defines an exponent &'(g) which is, in principle, related to the exponent 8(g) of (1)
by (6]

6'(q) = 26(g). (12)

This relation can be justified by the fact that there is a characteristic length I(t) growing
with £'/2 and that the dynamics stops when {¢) becomes comparable to the system size as
there is a single domain left in the system.

The first estimate of 8(g) one can make based on (11) and (12) is

6(g) = _lloglpg. L + 1)/p(g. L))

2 logl{(Z + 1)/L]}
The results of these estimates for g = 2 and g = co are given for 1 € L < 13 in column
0 of tables 3 and 4. The convergence is rather slow but looks regular and one can try to
extrapolate the data of column 0. If one makes a polynomial extrapolation of the data of
column O by taking & consecutive values Xz, Xp4). ..., Xz+£—1 0f column zero and by using

(13)
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Table 3. Estimates of the exponent 8(g) for ¢ = 2. The coluran 0 is obtained using the finite-
size scaling expression (12). Columns -6 are polynomial extrapolations of degree 1-6 of the
data of column 0,

g=1

0 i 2 3 4 5 6

[

0.207519 0313634 0.360881 0371070 0371517 0373260 0.374975
0260576 0.345132 0368523 0371428 0372970 0374730 0.375187
0288761 0356827 0370266 0.372456 0374227 0375073 0375037
0305778 0362203 0370360 0.373468 0374756 0375049 0374983
0317063 0365255 0372264 0374112 0374918 0375009 0374989
0325095 0367258 0372957 (374470 0374964 0374998 0.375000
0331118 0368683 0373461 0374668 0374980 0374999 (.375004
0335814 0369744 0373823 0374781 0374988 0.375001

0339584 0370560 0374084 (.374850 0.374993

IG 0342681 0371200 0374276 (.374894

11 0345274 0371713 0374418

12 0347477 0372130

13 0349374

000N O WD —

Table 4. Estimates of the exponent 8(g) for ¢ = co. The ¢olumn 0 is obtained using the
finite-size scaling expression (12). Columns [-6 are polynomial extrapolations of degree 1-6
of the data of column 0.

qg=w

a 1 2 3 4 5 6

0.500000 0.880182 1024671 0979200 0946464 0588116 1.016309
0.650001 0976508 (0.990568 0953012 0981174 1012281 1.004275
0.785564 0983538 0968034 0971786 1003393 1.006277 0.596287
0.835057 0977337 0569910 0.989848 1005196 0599617 0.997456
0.863513 0974861 0.978455 0997522 1.00209 0998321 0.999578
0.882071 0975888 0985605 0.999555 1000209 0.999007 [.000297
0.895474 0978317 0990255 0.9998l6 0.999662 0999652 1.000272
0.90582% 0980970 0993123 0959760 (999658 0.999938

0914178 0.98340F 0994933 0999726 {(.995766

10 0921100 (985498 0996132 0999733

I 0926955 0987270 0.995964

12 0931981 0988761

13 0936349

=

M2 O B L B e

the polynomial P of degree k which satisfies x;; = P(I/(L+iY) for0Li <k~ 1, one
obtains the data of column k.

We see that for ¢ = 2 and ¢ = oo, the convergence is greatly improved and leads to
accurate estimates of &(g). However, one cannot choose polynomials of too high a degree
because, as the degree of the extrapolation increases, the value obtained is more and more
sensitive to rounding errors. This is probably why one cannot see much improvement for
k>4

From the data of tables 3 and 4, one can estimate that

@¢2) = 0.3750 £ 0.0001
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and
f{co) = 1.0000 £ 0.0005,

For ¢ = 00, one recovers the exact prediction [6] that 8(co) = 1 and the results of table 4
serve as a test of the accuracy of the extrapolation procedure.

As the p{g, L) are known for arbitrary g, it is, of course, no problem io repeat these
calculations for other choices of g. They lead to the estimates given in table 1 for &(g).

5. ¢ expansion and bounds

One can exploit some of the results which are known exactly on finite systems to calculate
the exponent 8(g) for g close to 1:

g=1+e. (14)
Equation {10) then becomes
L
pll+e L)=1—€) (m—1D)yyim, L)+ O (15)
nr=]

and one can use the exact result (9) of section 3. The large L dependence of the expression
{(9) is dominated by small values of £ and X' and one finds that for large L

L 4
> n = )(m, L)~ —logL.

m=]

Then using (11) and (12), one gets
8(g) = (2/7)¢ + O(e?). (16)

Therefore for small €, one has 8(g) = 0.6366¢ and this agrees rather well with the estimate
for € == 0.01 reported in table 1 (the small discrepancy being due to the order €2},

Remark 4. There is a situation in which exponents corresponding to non-integer vaiues of g
could be measured directly in simulations. Assume that one considers the Ising model with
a non-zerp average magnetization u in the initial condition, Initially each spin is either up
with a probability $(1 + ) and down with a probability (1 — ). Let us call r.(t) the
probability that a spin initially up never flips between time 0 and time ¢ and r_(¢) the same
quantity if the spin is initially down. By the same reasoning as for equation (I0), one can
show that

L £+ mn=1
@ =3 Pm.1) (12—’*) .

m=|
Comparing this with (10) leads to ry.{z) = r{gs, ) with

2
4 = 74—

BEE
Clearly 1 — 1 corresponds to an initial situation in which almost all spins are identical to
the ane at the origin, that is g close to 1, and u — —] corresponds to ¢ = co as almost
all spins in the system are different from the one at the origin.
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Relation (10) also gives rigorous bounds for the exponent 8(g). If one chooses two
values gy and g» with ¢, < g2, one can write

L 4
q20(gy, L) = Z Yim, L)g;™ = Z W (m, L)[gy™]osad losdr,
m=I m=1

Then using Jensen’s inequality (for a positive random variable x, one has {x¥} > {x}¥ when
y 2 1), one finds

220(q2, L) 2 [q1p(qn, L2 0/ 20
This obviously leads to
log g2

logq
and therefore to (4). As 6(g) is known for ¢ close to I, this leads for g > 1 to

8'(g2) < 8'(g1)

2
f(q) < ;logq-

For example this bound predicts 8{2) < 0.44127 which is clearly satisfied by the estimate
&(2) ~ 0.3750 of table 1.

6. Conclusion

In this paper. the calculation of the fraction of spins which have never flipped in the
zero-temperature dynamics of the one-dimensional Potts model has been related to the
properties of a simple reaction-diffusion model. This analogy has been used to obtain
accurate estimates for the exponent 8{g) for any g, the first term of an ¢-expansion for g
close to 1 and bounds on this exponent.

The numerical estimate indicates #(g) is very close to 3/8 for g = 2 and it would
certainly be of interest to see whether this prediction is exact. More generally, we have
seen that some properties (8), (9) of the reaction—diffusion model can be obtained exactly.
With more work, one could try to push further the € expansion or to obtain a large g
expansion (this would require an exact expression of (2, L) for ali L). One can even
hope to find a complete analytic solution of the reaction—diffusion model. This would
automatically lead to the exact expression of 8{g) for all g.
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Appendix A.

In this appendix some of the steady-state properties of the reaction—diffusion model are
calculated exactly. These properties give, as special cases, the results (8), (3). We consider
the reaction—diffusion model on a ring of L sites with the origin located at position L, i.e.
the site 0 (= site L) is always occupied. Then during any time interval dz, each particle in
the system jumps with probability d/2 to its left and df/2 to its right. When two particles
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occupy the same site, they instantaneously coalesce A + A — A, Also if the particle at the
origin jumps to one of its neighbours, the origin is instantancously filled by a new particle.
Let us call f(i, j) the probability that in the steady state, all the sites & between i and
jare empty (i €k € j). Clearly with this definition, the probability that site i is empty is

just f(i, ). Moreover as the origin is always occupied, one has for all { and j
[0, /)= f. Ly=0. (A}

During each time interval dz, it is possible to write a steady-state equation for { < J:
de , ; . de . . .
-i"[f(! +1,0) = F, D1+ E-[f(hf - 1= f. Nl

d d
= SUFG ) = FG = LD+ SUG N = £ J+ D) (42)

The left-hand side of this equation is the probablility of entering into a configuration where
all sites between { and j are empty. This happens either if all sites between i 4- 1 and j
are empty with a particle present at site i (first term) or if all sites between § and j — 1 are
empty with a particle present at site j (second term). The right-hand side can be understood
as the probability of leaving the configuration. The case { = j has to be treated separately,
and one finds that (A2) is replaced by

de[1 = f(, D] = d—;[f(i, H—-fi-10)+ d—;[f(f. H—fEi+1Nl. {A3)
Clearly (A2) and (A3) are equivalent to

4f N=f0-L+7FGC+LD+FET-D+ G T+1) (Ad)
and

4FG, D=2+ Ff0G— 1,0+ f@G i+ D. (AS5)
The solution for f(i, j) is then '

. 8sinka sinKafsinkiesink’ (7 + Do — sinkiasink{j + DNe
Fo. =3 > e (Jk ); : k(rJ LIPS
K even K odd (L + 1)?(cos k't — cos kar) (2 — coskee — cos k'er)
where
i
= 2€kgL 1<k <L, 7
*= 1T Sk (AT)

Then (8) and {9) follow as ‘

and
L—1 L
L—1=Y" fi,i)=> (m—1)y(m,L)
i=] m=]

(this last expression just means that the average occupation of site { is just 1 — f(i, {)).
The easiest way to check that (A6) is the solutton of (A4)-(A5) is numerically on

a computer. It is also possible to derive a proof based on the following trigonometric

identities:

sin x sin y[sinix sin(j + Dy — siniysin(j + 1}x]

COSy — COS X
J=i J+i
= ZZsin(p-i-q—j)xsinxsin(q——p—i)ysiny (A8)

p=0 4g=0
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and for —-L <n £ L

L1
S sinka sinnke = 2[5, = 8n-1 + 8t — a1 (A9)
k even 4
L4
Z sink'asinnk’a = T{-—Sn.-:_ — 8wt +8n1 + 8a 2] (A10)
¥ odd

where &, k' and o satisfy (A7),
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