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The fractionr(z) of spins which have never flipped up to timés studied within a linear diffusion
approximation to phase ordering. Numerical simulations showrtfratdecays with time like a power
law with a nontrivial exponen® which depends on the space dimension. The dynamics is a special
case of a stationary Gaussian process of known correlation function. The expoisegiven by the
asymptotic decay of the probability distribution of intervals between consecutive zero crossings. An
approximation based on the assumption that successive zero crossings are independent random variables
gives values of in close agreement with the results of simulations. [S0031-9007(96)01325-7]

PACS numbers: 02.50.—r, 05.40.+j, 82.20.—w

Phase ordering and domain growth in systemdion r(r) of persistent spins decays (1) with a nontrivial
guenched from a disordered phase to a two-phase coexig-which varies with the spatial dimensiah We then
tence region has been for a long time a subject of activehow that determining (¢) for the OJK dynamics is a
research [1]. Recently, a new facet of this problem hagarticular case of a first-passage problem for correlated
been uncovered [2-7]. For an Ising model initially in random variables. In a logarithmic time scale, these prob-
a random configuration, and evolving according to zerdems can be mapped onto stationary Gaussian processes.
temperature Glauber dynamics, the fractidn) of spins  The exponent is given by the asymptotic decay of the
which have never flipped up to time decreases like a distribution of intervals between zero crossings for the as-
power law [2,3] sociated process. To our surprise, given the correlation

- function of the Gaussian process, the determination of this
r() ~ 1% (1) asymptotic decay turns out to be a hard unsolved prob-

Numerical data indicate that the exponenis nontrivial ~ !em [14—16]. We propose here a simple approximation
and varies with the dimension of space [2,3]. Similarwhich consists in taklng. the Ie'ngths of successive inter-
exponents have been found in reaction-diffusion model¥2ls between zero crossing as independent identically dis-
with particles of two different mobilities [5,7,8]. The tnbu_ted random varlables. The probability distribution of
decay (1) has also been observed for the fraction othe mteryal lengths is then c_hosen So as to reproduce the
surface that has never been wet in an experiment on tH@own sign-correlation function of the stationary Gauss-
growth of breath figures [9]. ian process [17]. o , ,

The simplicity of Glauber dynamics and its relation to  We have simulated the diffusion equation (3) by using a
soluble voter models has made possible an exact detef,lnlye d|fference first-order forward Euler scheme on cubic
mination of # for 1D Ising and Potts models [10]. In latticesind =1,2,3
higher dimensions only numerical simulations [3,11] or
approximate methods [12] have been used so far. A very Ait A1) = (1 = 2dAnNAi(1) + A’ZAJ'(I)' 4)
simple (and rather successful) description of coarsening W
for a nonconserved order parameter was proposed somge used mostlyAr = 0.1 on lattices of up tol0° sites
time ago by Ohta, Jasnow, and Kawasaki (OJK) [13]. Inand, in a single run, we measure(), the fraction of
this OJK approximation, the order parameter configuratattice sitesi for which A; never changed sign up to time
tion ¢(7,1) a time ¢ after the quench, is the sign of a ¢ (as long asy/7 is much less than the linear size of the
Gaussian field, initially random with zero average, whichsystem, finite size effects are expected to be negligible).
evolves according to a linear diffusion equation. NamelyOur results are shown in Fig. 1 and indicate thét)

decays as in (1) withh = 0.12in d =1, § = 0.18 in

¢(F.1) = sgriA(7. 1], (@) 4=2 and6 =023 in d = 3. Other choices ofAt
with indicate thaty is not affected by the value &+ (as long
. . . - . - asAr < 1/2d to ensure the stability of the Euler scheme).
3,A(F, 1) = V2A(7, 1) and(A(F, 0)A(r',0)) = 8(F — r'). The stochastic process at a particular lattice point (the
3) origin, say) is of the type
In this Letter, we first report numerical simulations —
showing that even within this approximation, the frac- Al ;)K(x, 28 ®)

0031-900796/77(14)/2871(4)$10.00 © 1996 The American Physical Society 2871



VOLUME 77, NUMBER 14 PHYSICAL REVIEW LETTERS 30 BPTEMBER1996

o T T T T I T T T T T T T T I T T T T I T 7T T T ProdY(u + l/) > 0’0 < ll < l} -~ exq_el) forl >> 1
I 1 (8)

1 and # measures the (inverse) decorrelation time in dhe
r 1 variable. The asymptotic behavior (8) implies that the
probability of not flipping in the originat variable from
1 time ¢, to t, with 1, < 1, is a power law(t;/t,)? as
T numerically observed above.
. In order to compute), one needs the largebehavior
T of the distributionp(/) of the lengthsl of intervals be-
. tween consecutive zeros of a Gaussian stationary process
1 characterized by a givefi(/). As observed by Rice more
- than forty years ago [14], this is a surprisingly hard prob-
. lem which is still unsolved [15,16,18]. So one has to
- 8 resort to approximate methods. Perturbative and varia-
—sb b b b L tional techniques using the free Brownian walk as a start-
R 3 4 5 6 4 ing point have been proposed recently [12,20]. However,
Log(t) the free Brownian walk and other similar Markovian pro-
FIG.1.  Log-log plot of the fractiom(¢) of sitesi for which ~ cesses have an infinite density of zero crossings and are not
A; has never changed sign vs time for the discretized diffusiora good starting point for cases, for whi€t(0) is finite like
equation in dimension/ = 1,2,3. r() shows a power-law the OJK process, which have a finite density of zero cross-

decay with an exponent which dependscn ings [the density of zeros is given [14] Ry—C"(0)/].

We propose here an approximation more suited to these
where ther, are random Gaussian variables (wiff) —  C2S€S Which_ is i_nspi_red by recent W_orks on the distribu-
1) and the kernekK (x, 1) is tion of domayn sizesin a 1D coarsening Ising model [21],

where a similar approximation has been shown to be rather

K(x,1) = constX x“~V/2exp(—x?/41)/(4m1)¥2. (6)  accurate [22]. It consists in considering the lengths be-
tween consecutive zero crossings as independent random
variables, identically distributed according to a probabil-
ity distribution p(I). This p(I) is determined by requiring
that the sign correlation function is the same for the ap-
proximate independent interval approximation and for the
original stationary Gaussian process [23].

|
o
o0

T

|

Log(r(t))

Other examples with different kernels include usual ran
dom walks @ = 7n,) for which K is the Heavyside
function K(x,t) = H(t — x) and # = 1/2, and walks
under the influence of a random forcd € 7,) for
which K(x,t) = (t — x)H(t — x) and§ = 1/4 [18,19].
Clearly, the first passage expon@ntdepends on thehape ) ; -
of the kernelK (x, r) and takes different values for square, , . _For a process with correlation f_uncfu(df(l), the proba-
triangular, or diffusive kernels, bility P (1) thatY(u)Y(u + 1) > 0 is given by [14]

It is useful to note that (5) is a Gaussian process since 1 1 :
it is a linear combination (of) random Gaussign variables. Pe) =5+ - arcsinC (1)} ©)
This process is therefore entirely characterized by ito obtain the corresponding probability for the indepen-
pair correlation function(A(¢)A(#')). This is also true dent interval process, it is convenient to determine first
of the rescaled variables(r) = A(t)/\/(A(t)A(?)), which  the probabilityP,.(I) that a point at distanckfrom an up
can be considered as well since we are only interestegrossing be positive. Either the first interval after the up
in the sign changes oi(z). In the long time limit, the crossing is longer thah or the interval is of sizé, < [
correlation functionX(1)X(')) depends only on the time and the point is positive with probability — P (I — 1;).
ratio ¢/t' for the process considered (6). In a logarithmicSo P, (/) satisfies

time scaleu = In(z), if one definesy' (u) = X(¢), Y(u) is +oo
therefore a Gaussian stationary process P.(l) = [ dlip(ly)
1
YY)y =Cu— u), (7)

1
# [ Canpul = Pott = ). (10

with C(u) = [1/ coshu/2)]%/? for the OJK process in _ 0 _ o

dimension d [and C(u) = exp(—|ul/2) for the usual Taking Laplace transforms (which we denote with tilde),

random walk]. C is a rapidly decreasing function of ~ One obtains

ThereforeY (u) andY (u + I) are effectively uncorrelated 5 _ 13 —1

for sufficiently largel and it is intuitively clear that the Per() = {ALL+ pOVT (11)

probability thatY (1) keeps the same sign for an interval This can now be used to determine the probability that

of length/ decreases exponentially witHor large! Y(u)Y(u + 1) > 0 for the independent interval process.
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A given point is at a distanck from the first crossing on plotted in Fig. 2 and compared with results of direct

its right, with probability simulations of the stationary Gaussian processes.
;]—oop(l)dl . pA) — 1 We have shown that nontrivial exponents for the
o) = or Q(A) = W (12)  number of persistent spins appear even in the simple

+ o0

o Ip(Ddl OJK approximation of coarsening. Contrarily to the case
If Y(u) and Y(u + ) have the same sign either they of Glauber dynamics [3,4]¢ increases with dimension.
belong to the same interval or(u + [) has a sign This means the OJK theory is too crude an approximation
opposite to points immediately to the right of the firstto predict »(¢) for Glauber dynamics. It is remarkable

crossing afteu, so that that the independent interval approximation [21,22] gives
+oo here such accurate predictions for the OJK exponents.
Pi(l) = /; dlQ(ly) still, it would be interesting to better understand it, for

; example, by a maximum entropy argument. Of course,
+ f dliO()[1 — Pe(1 — 1;)]. (13) it would be also interesting to estimate the correlations
0 p(ly, L) between successive intervals and see whether one

This gives for the Laplace transforms could develop a systematic method of including these
- B S s correlations. Another issue would be to see under what
Pe) = 1/4 = Q)P (A). (14)  conditions the distributiong (/) obtained via (15) are

Substituting (11) and (12) into (14), one finally relatesPositive for general kernel& (as nothing guarantees
the distributionp(l) of interval lengths to the probability & Priori that it is so). _
P, (1) that two points at distancehave the same sign for ~We have considered here a first passage problem at

the independent interval process (or rather their Laplac® threshold zero in the case where the initial Gaussian
transforms) field A(F,t) has a zero average. If this average initial

1 — [A2P,()) — Ap'(0) field, or the threshplq, Was'no_nz_evdt) would n_ot vanish

p(A) = 3 — . (15) in the long time limit. This is in contrast with the 1D
I+ [A2P4(4) — A]p'(0) Ising model wherer(r) vanishes even for a nonzero

For an integrable distribution of interval lengthg(A) initial magnetization with a first-passage exponent which
should tend to zero a8 — +«. Using (15), this gives depends on this initial magnetization [4,10]. There are
p'(0) = 1/P’.(0), which simply means that the mean also interesting examples where the threshold depends
interval size |- p/(0)] is the inverse of the density of zeros on time [26]. It would be interesting to extend the
[—P(0)]. independent interval approximation to such cases. Lastly,

Equation (15) would be exact if the successive interval®ne could try to extend the OJK approximation to cases
were uncorrelated. Here the heart of the approximation isvhere the order parameter is more complicated than a
to choose the exadt (/) given by (9) for a given process
and determing (/) through (15). The largé behavior of
p(l) is given by the singularity of its Laplace transform 0.20
with the largest (negative) real part, i.e., by the largesi
zero of P/.(0) = A — A2P.(A) or, using (9),

J—C"(0) = —ej:m dlexp@)C'()[1 — C*(1)] V2.

(16)

In the OJK caseC(l) = [1/coshi/2)]%/2. A numerical
solution of (16) give® = 0.1203 ford = 1, 8 = 0.186
for d =2, and 6 = 0.2358 for d = 3 in very good
agreement with the previous numerical results. For large
d the independent interval approximation (16) gives
6 ~ k/d with k = 0.1455 [24]. Note that, asC(/) =
exp(—|{|/2) for the case of a free Brownian motion,
C"(0) = o and the only possibility to satisfy (16) is that
the integral on the right-hand side diverges, leading tc Interval size |
# = 1/2 which is exact. FIG. 2. The probability distribution function of having an

The whole distributionp(I) can also be obtained by interval of length [ for the Gaussian stationary process
inverting the Laplace transform. One can obtain thedssociated to the diffusion equation dh= 1,2,3 as obtained

. o . in the independent interval approximation (lines) and by direct
Taylor expansion of(/) around! = 0 easily from (15) gy jations of the Gaussian processes=(1 circles, d = 2

and then drawp(/) using Padée approximants [25]. The pjuses,d = 3 diamonds) in Fourier space (1000 realizations of
obtained shapes for the diffusive casedin= 1,2,3 are length 3276.8; bin size 0.1).

P
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scalar (as in the Potts model) to see how the abovfl5] M. Kac, SIAM Rev.4, 1 (1962).

approximation can be adapted to such cases. [16] H. Cramer and M.R. LeadbetteBtationary and Related
We are grateful to D. Dhar for many enlightening Stochastic Process¢®iley, New York, 1967).

discussions on the subject of this paper when two ofl7] After an oral presentation of our results at tf@6

us (B.D. and V.H.) were visiting the Newton Institute Nordic Stat. Phys. Workhopn Copenhagen, A. Bray

. informed us that results similar to ours have been obtained
i(ri:;gzzilgg%ogr?én:/sve also thank J.P. Bouchaud for independently in S.N. Majumdar, C. Sire, A.J. Bray, and

S.J. Cornell, preceding Letter, Phys. Rev. L&, 2867

(1996).
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