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Persistent Spins in the Linear Diffusion Approximation of Phase Ordering and Zeros
of Stationary Gaussian Processes
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The fractionrstd of spins which have never flipped up to timet is studied within a linear diffusion
approximation to phase ordering. Numerical simulations show thatrstd decays with time like a power
law with a nontrivial exponentu which depends on the space dimension. The dynamics is a special
case of a stationary Gaussian process of known correlation function. The exponentu is given by the
asymptotic decay of the probability distribution of intervals between consecutive zero crossings. An
approximation based on the assumption that successive zero crossings are independent random variab
gives values ofu in close agreement with the results of simulations. [S0031-9007(96)01325-7]
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Phase ordering and domain growth in syste
quenched from a disordered phase to a two-phase co
tence region has been for a long time a subject of ac
research [1]. Recently, a new facet of this problem
been uncovered [2–7]. For an Ising model initially
a random configuration, and evolving according to z
temperature Glauber dynamics, the fractionrstd of spins
which have never flipped up to timet decreases like
power law [2,3]

rstd , t2u . (1)

Numerical data indicate that the exponentu is nontrivial
and varies with the dimension of space [2,3]. Sim
exponents have been found in reaction-diffusion mo
with particles of two different mobilities [5,7,8]. Th
decay (1) has also been observed for the fraction
surface that has never been wet in an experiment on
growth of breath figures [9].

The simplicity of Glauber dynamics and its relation
soluble voter models has made possible an exact d
mination of u for 1D Ising and Potts models [10]. I
higher dimensions only numerical simulations [3,11]
approximate methods [12] have been used so far. A
simple (and rather successful) description of coarse
for a nonconserved order parameter was proposed s
time ago by Ohta, Jasnow, and Kawasaki (OJK) [13].
this OJK approximation, the order parameter configu
tion fs$r , td a time t after the quench, is the sign of
Gaussian field, initially random with zero average, wh
evolves according to a linear diffusion equation. Name

fs$r , td ­ sgnfAs$r, tdg , (2)

with

≠tAs$r, td ­ =2As$r, td andkAs$r, 0dAs $r 0, 0dl ­ dds$r 2 $r 0d .

(3)
In this Letter, we first report numerical simulatio

showing that even within this approximation, the fra
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tion rstd of persistent spins decays (1) with a nontriv
u which varies with the spatial dimensiond. We then
show that determiningrstd for the OJK dynamics is a
particular case of a first-passage problem for correla
random variables. In a logarithmic time scale, these pr
lems can be mapped onto stationary Gaussian proce
The exponentu is given by the asymptotic decay of th
distribution of intervals between zero crossings for the
sociated process. To our surprise, given the correla
function of the Gaussian process, the determination of
asymptotic decay turns out to be a hard unsolved p
lem [14–16]. We propose here a simple approximat
which consists in taking the lengths of successive in
vals between zero crossing as independent identically
tributed random variables. The probability distribution
the interval lengths is then chosen so as to reproduce
known sign-correlation function of the stationary Gau
ian process [17].

We have simulated the diffusion equation (3) by usin
finite difference first-order forward Euler scheme on cu
lattices ind ­ 1, 2, 3

Aist 1 Dtd ­ s1 2 2dDtdAistd 1 Dt
X
kijl

Ajstd . (4)

We used mostlyDt ­ 0.1 on lattices of up to106 sites
and, in a single run, we measuredrstd, the fraction of
lattice sitesi for which Ai never changed sign up to tim
t (as long as

p
t is much less than the linear size of t

system, finite size effects are expected to be negligib
Our results are shown in Fig. 1 and indicate thatrstd
decays as in (1) withu . 0.12 in d ­ 1, u . 0.18 in
d ­ 2, and u . 0.23 in d ­ 3. Other choices ofDt
indicate thatu is not affected by the value ofDt (as long
asDt , 1y2d to ensure the stability of the Euler schem

The stochastic process at a particular lattice point
origin, say) is of the type

Astd ­
X
x.0

Ksx, tdhx , (5)
© 1996 The American Physical Society 2871
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FIG. 1. Log-log plot of the fractionrstd of sitesi for which
Ai has never changed sign vs time for the discretized diffusi
equation in dimensiond ­ 1, 2, 3. rstd shows a power-law
decay with an exponent which depends ond.

where thehx are random Gaussian variables (withkh2
x l ­

1) and the kernelKsx, td is

Ksx, td ­ const3 xsd21dy2 exps2x2y4tdys4ptddy2. (6)

Other examples with different kernels include usual ra
dom walks (ÙA ­ htd for which K is the Heavyside
function Ksx, td ­ Hst 2 xd and u ­ 1y2, and walks
under the influence of a random force (Ä ­ ht) for
which Ksx, td ­ st 2 xdHst 2 xd and u ­ 1y4 [18,19].
Clearly, the first passage exponentu depends on theshape
of the kernelKsx, td and takes different values for square
triangular, or diffusive kernels.

It is useful to note that (5) is a Gaussian process sin
it is a linear combination of random Gaussian variable
This process is therefore entirely characterized by
pair correlation functionkAstdAst0dl. This is also true
of the rescaled variablesXstd ­ Astdy

p
kAstdAstdl, which

can be considered as well since we are only interes
in the sign changes ofAstd. In the long time limit, the
correlation functionkXstdXst0dl depends only on the time
ratio tyt0 for the process considered (6). In a logarithm
time scale,u ­ lnstd, if one definesY sud ­ Xstd, Y sud is
therefore a Gaussian stationary process

kYsudY su0dl ­ Csu 2 u0d , (7)

with Csud ­ f1y coshsuy2dgdy2 for the OJK process in
dimension d [and Csud ­ exps2jujy2d for the usual
random walk]. C is a rapidly decreasing function ofu.
ThereforeY sud andY su 1 ld are effectively uncorrelated
for sufficiently largel and it is intuitively clear that the
probability thatYsud keeps the same sign for an interva
of lengthl decreases exponentially withl for largel
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ProbhY su 1 l0d . 0, 0 , l0 , lj , exps2uld for l ¿ 1

(8)

and u measures the (inverse) decorrelation time in thu
variable. The asymptotic behavior (8) implies that
probability of not flipping in the originalt variable from
time t1 to t2 with t1 ø t2 is a power lawst1yt2du as
numerically observed above.

In order to computeu, one needs the largel behavior
of the distributionpsld of the lengthsl of intervals be-
tween consecutive zeros of a Gaussian stationary pro
characterized by a givenCsld. As observed by Rice mor
than forty years ago [14], this is a surprisingly hard pr
lem which is still unsolved [15,16,18]. So one has
resort to approximate methods. Perturbative and va
tional techniques using the free Brownian walk as a st
ing point have been proposed recently [12,20]. Howe
the free Brownian walk and other similar Markovian pr
cesses have an infinite density of zero crossings and ar
a good starting point for cases, for whichC00s0d is finite like
the OJK process, which have a finite density of zero cr
ings [the density of zeros is given [14] by

p
2C00s0dyp].

We propose here an approximation more suited to th
cases which is inspired by recent works on the distri
tion of domain sizes in a 1D coarsening Ising model [2
where a similar approximation has been shown to be ra
accurate [22]. It consists in considering the lengths
tween consecutive zero crossings as independent ran
variables, identically distributed according to a proba
ity distributionpsld. Thispsld is determined by requiring
that the sign correlation function is the same for the
proximate independent interval approximation and for
original stationary Gaussian process [23].

For a process with correlation functionCsld, the proba-
bility P1sld thatY sudY su 1 ld . 0 is given by [14]

P1sld ­
1
2

1
1
p

arcsinfCsldg . (9)

To obtain the corresponding probability for the indep
dent interval process, it is convenient to determine
the probabilityPcr sld that a point at distancel from an up
crossing be positive. Either the first interval after the
crossing is longer thanl, or the interval is of sizel1 , l
and the point is positive with probability1 2 Pcr sl 2 l1d.
SoPcr sld satisfies

Pcr sld ­
Z 1`

l
dl1psl1d

1
Z l

0
dl1psl1d f1 2 Pcr sl 2 l1dg . (10)

Taking Laplace transforms (which we denote with tild
one obtains

P̃cr sld ­ hlf1 1 p̃sldgj21. (11)

This can now be used to determine the probability t
Y sudYsu 1 ld . 0 for the independent interval proces
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A given point is at a distancel1 from the first crossing on
its right, with probability

Qsl1d ­

R
1`

l1
pslddlR1`

0 lpslddl
or Q̃sld ­

p̃sld 2 1
lp̃0s0d

. (12)

If Y sud and Ysu 1 ld have the same sign either the
belong to the same interval orY su 1 ld has a sign
opposite to points immediately to the right of the fi
crossing afteru, so that

P1sld ­
Z 1`

l
dl1Qsl1d

1
Z l

0
dl1Qsl1d f1 2 Pcr sl 2 l1dg . (13)

This gives for the Laplace transforms

P̃1sld ­ 1yl 2 Q̃sldP̃cr sld . (14)

Substituting (11) and (12) into (14), one finally relat
the distributionpsld of interval lengths to the probabilit
P1sld that two points at distancel have the same sign fo
the independent interval process (or rather their Lap
transforms)

p̃sld ­
1 2 fl2P̃1sld 2 lgp̃0s0d
1 1 fl2P̃1sld 2 lgp̃0s0d

. (15)

For an integrable distribution of interval lengths,p̃sld
should tend to zero asl ! 1`. Using (15), this gives
p̃0s0d ­ 1yP0

1s0d, which simply means that the mea
interval size [2p̃0s0d] is the inverse of the density of zero
[2P0

1s0d].
Equation (15) would be exact if the successive interv

were uncorrelated. Here the heart of the approximatio
to choose the exactP1sld given by (9) for a given proces
and determinepsld through (15). The largel behavior of
psld is given by the singularity of its Laplace transfor
with the largest (negative) real part, i.e., by the larg
zero ofP0

1s0d ­ l 2 l2P̃1sld or, using (9),q
2C00s0d ­ 2u

Z 1`

0
dl expsuldC0sld f1 2 C2sldg21y2.

(16)
In the OJK case,Csld ­ f1y coshsly2dgdy2. A numerical
solution of (16) givesu . 0.1203 for d ­ 1, u . 0.186
for d ­ 2, and u . 0.2358 for d ­ 3 in very good
agreement with the previous numerical results. For la
d the independent interval approximation (16) giv
u , k

p
d with k . 0.1455 [24]. Note that, asCsld ­

exps2jljy2d for the case of a free Brownian motio
C00s0d ­ ` and the only possibility to satisfy (16) is th
the integral on the right-hand side diverges, leading
u ­ 1y2 which is exact.

The whole distributionpsld can also be obtained b
inverting the Laplace transform. One can obtain
Taylor expansion ofpsld aroundl ­ 0 easily from (15)
and then drawpsld using Padé approximants [25]. Th
obtained shapes for the diffusive case ind ­ 1, 2, 3 are
t
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plotted in Fig. 2 and compared with results of dire
simulations of the stationary Gaussian processes.

We have shown that nontrivial exponents for th
number of persistent spins appear even in the sim
OJK approximation of coarsening. Contrarily to the ca
of Glauber dynamics [3,4],u increases with dimension
This means the OJK theory is too crude an approximat
to predict rstd for Glauber dynamics. It is remarkabl
that the independent interval approximation [21,22] giv
here such accurate predictions for the OJK expone
Still, it would be interesting to better understand it, f
example, by a maximum entropy argument. Of cour
it would be also interesting to estimate the correlatio
psl1, l2d between successive intervals and see whether
could develop a systematic method of including the
correlations. Another issue would be to see under w
conditions the distributionspsld obtained via (15) are
positive for general kernelsK (as nothing guarantee
a priori that it is so).

We have considered here a first passage problem
the threshold zero in the case where the initial Gauss
field As$r , td has a zero average. If this average init
field, or the threshold, was nonzero,rstd would not vanish
in the long time limit. This is in contrast with the 1D
Ising model whererstd vanishes even for a nonzer
initial magnetization with a first-passage exponent wh
depends on this initial magnetization [4,10]. There a
also interesting examples where the threshold depe
on time [26]. It would be interesting to extend th
independent interval approximation to such cases. Las
one could try to extend the OJK approximation to cas
where the order parameter is more complicated tha

FIG. 2. The probability distribution function of having a
interval of length l for the Gaussian stationary proces
associated to the diffusion equation ind ­ 1, 2, 3 as obtained
in the independent interval approximation (lines) and by dir
simulations of the Gaussian processes (d ­ 1 circles, d ­ 2
pluses,d ­ 3 diamonds) in Fourier space (1000 realizations
length 3276.8; bin size 0.1).
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scalar (as in the Potts model) to see how the ab
approximation can be adapted to such cases.
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