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Abstract. We consider a simple model of domain growth: the zero-temperature 1D lIsing
model evolving according to the Swendsen-Wang dynamics. We find that in the long-time
limit, the pair correlation function scales with a characteristic length increasing as the square of
the average domain size. In that limit, a few large domains occupy almost all the space with
many small domains between them. In contrast to the usual picture of coarsening, the average
domain size here is not a characteristic length of the growth problem. Instead, one finds a
power-law distribution for the sizes of large domains with a cut-off at a length which grows as
the square of the average size of the domains.

Coarsening phenomena in two-phase systems, like Ising models below their ordering
temperature, have attracted a lot of interest in the last decades [1, 2]. The usual picture is
that, in the long-time limit, there is a scaling regime with a single characteristic length, the
average size. of the domains (usually, this average size grows as a power law with time
A~ t*). However, a two-length scaling has been found in some systems [3, 4].

The goal of the present work is to describe a simple example of coarsening in a two-
phase system which also exhibits an unusual scaling with a characteristic lengiich
larger than the average domain sizeand a power-law distribution for the size of large
domains with a cut-off at\.

The system we consider is the zero-temperature Ising chain evolving according to a
Swendsen-Wang-like dynamics [5, 6]: during every infinitesimal time intetval each
spin has a probabilityAr of being updated and updating a spin means that the whole
cluster containing this spin is flipped. In other words, each domigof length/(7)) has
a probability At [(I) of flipping during the infinitesimal time intervah¢. (The flipping
interval I means that three intervals, itself and its right and left neighbadwrand I,, are
replaced by a single interval of lengtty) + I(11) + [(12)).

Clearly, during each time intervalz, the total numbew (r) of domains (which is also
the number of frustrated bonds) decreases (on averagd) Ay @vhereL is the total length
of the system), so that as long &%t) is very large, its expression is given by

N(t) = N(0) — 2Lt

If at time r = 0, there is a densityg = N(0)/L of domains, the density at time
becomes

p=po—2t
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and the whole system is reduced to a single domain whenpy/2. The average domain
size A which is

. L _ 1
CN@)  po—2t

diverges ag — po/2. We are interested in the regime where the average domairi size
becomes very large, but is still much smaller than the system Isiae order to have a
large number of domains in the system and to avoid the late stage of the growth where
some domains become comparable in size to the total systeni gibés late stage regime
would be dominated by fluctuations as the sizes of the largest domains in this regime would
fluctuate from sample to sample). Mathematically, this means that here we want to take the
limit L — oo first and then the limit — po/2. For simplicity in what follows, we will
mostly consider two cases for the initial condition: randomly oriented spins (case |) and an
antiferromagnetic initial condition (case II).

The reason which makes possible the calculation of the distribution of domain sizes is
that one can write an exact evolution equation for this distribution. If one defipgs the
number of intervals of length, the evolution of the total number of intervais(r)

N() = ZN,-(o

and of theN;(¢) is given by
N+ At) = N(t) — 2L At

. - 1
Ni(t + At) = Ni(t) + At [—iN,-(t) EPYRA2NN SN N N N"-"k(’)} o
ik

N(r) N(r) NQ@)

Equation (1), whicha priori looks like a mean-field equation is in fact exact for the
following two reasons. First, because if initially the lengths of the intervals along the line
are not correlated (as in cases | and Il), they remain uncorrelated at any later time. This is
because whenever an interval is updated, it merges with its two nearest neighbours but does
not acquire any correlation with its remaining neighbours and so the process preserves the
absence of correlations [7]. The second reason which makes (1) valid is that we consider a
system in the limitL. — oo. Therefore all theV; (r) are self-averaging quantities.

Clearly the process keeps the total lengtltonstant:

L= iN:(t)

As L — oo, it is more convenient to work with the densities

NO N
P(t)—T pi(t) = I

(for randomly oriented spins (case §0) = pg = % and p;(0) = 2=-1, whereas for
an antiferromagnetic initial condition (case WX0) = po = 1 andp;(0) = §;1). These
densities evolve according to (1):

do; (1) . 0i (1) Joi @) pr(t) pi—j—i (1)
= —ip(1) -2 2
4 ipi(t) (1) + jz Xk: 22(0) 2
and as
dp(t) _

dr -2 3
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one can consider the; (t) as functions ofo () and rewrite (2) as

2657_ l+27_221p]pkp,,k )

Equation (4) is valid wher. — oo, and the long-time regime we want to consider is the
limit of large domains ¢ — 0). It has the form of a Smoluchowski equation [8] in a case
where gelation occurs at a finite time: (pp/2).

By multiplying (4) by i" and by summing over it is easy to generate evolution
equations for the moments, defined by

N
op = E pi i
i

In addition to the known fact that
oo =p and op=1
this gives the following evolution equations:
dos 20> 1
dp p P2

d(73 303 30’22 602

dp o o p?

d0‘4 40‘4 100‘20‘3 100‘3 150‘22

dp ) P p? p?
and so on. The evolution equation @f involves onlyo, itself or lower moments, and so
in principle the whole hierarchy can be solved:

B 1
o= — — —
% p
32 Cc 3
o3= — + —+ 5
STt T3 p2 ©)
158 10BC+15B> D 15
BT e T p° ot 03

etc, where the integration constar8sC, D, ... depend only on the initial condition. The
above expressions of the first moments indicate thatfprl andp — O

B n—1
O’ ~
! <p2)

meaning that the intervals which contribute mostly to the moments have a length of order
p~2 whereas the average size of the domains is of opdér
An easy way of obtaining all the moments is to consider the generating function

n

gs) = Ze p,—znlan (6)

From (4), one can easily derive the evolution equatiog @¥:

dg _log g g g

_-%,8_ & % 7
0p 20s p 2p20s ™
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and so given an initial distribution of domain sizes and its generating fungton, one
can follow g(s) asp — 0 by integrating (7). For example, if initially the spins are random
(case 1), one hag; = 2='~* and this implieso = % and go(s) = €'/(2 — ¢€') for the initial
condition, whereas if the initial configuration is antiferromagnetic (caseoll}= §;1 and
go(s) = € for p = 1.

In principle (7) can be solved exactly by the method of characteristics. It is convenient
to introduce the functiok such thatg(s) = ph(s), as neithero nor s appear explicitly in
the equation thak satisfies:

oh _ 1dh  h?dh

dp  2ds 2 ds
For example, in case |, one can show th&) is solution of

1 2h
2 +@A-hr)(p—=)—-2log-—— =0 8
+ ( )(p 2) 09,1 (8)

whereas in case Il, it is given by the solution of
25 + (1 —h?(p—1) —2logh = 0. 9)

More generally, if in the initial condition the density is and the functiom: is hg(s), the
solutionk(s) is given implicitly in terms ofs and p by the solution of

ho (s + 31— k) (o — po)) = h. (10)
The solution is in general complicated enough to make the explicit expression @f the
difficult to obtain in the limitp — 0.

As for p — 0 one expects from (5) that all integer momeats~ (B/p?)"~* (except
oo = p), the generating functiog(s) should satisfy the following scaling:

2

b Bs

g(s)—,o_EG <,02) (11)

where according to (5)5(0) =0, G’'(0) =1, G"(0) = 1, G®(0) = 3 andG?¥(0) = 15. If

one tries to find a solution of the form (11), one obtains the requiremenGioagt should
satisfy the following equation:

/ / P 2~/ G

— 2x - _ " o

G G'+ GG 58 G°G' —»p 5

wherex = Bs/p?. In the long-time limit,o — 0 and one finds that the following expression
for G(x):

(12)

G(x) =1-+1—2¢ (13)

becomes a solution of (12) satisfyirg (0) = 1.

The constanB can be obtained from the initial conditid® = o202 + p. For randomly
oriented spins in the initial condition (case I), one has % ando, = 3 so thatB = %.
For an antiferromagnetic initial configuration (case )= 1, 0o = 1 andB = 2. This
agrees with (8)—(10) when one looks for a solutig@a) = ph(s) in the limit p — 0 and
s ~ p? and one uses the fact thag(s) = 1+ s/po + (B — po)s?/2p03 + O(s*) as (10)
becomes — p(h — 1) + B(h — 1)2/2 = 0. The solution of this quadratic equation recovers
(11) and (13).

From (11), (13), one can see that for al> 1

_T—3 (23)”‘1
v\
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and if one defines a length by
A =2B/p?
for i ~ A one has
N 1 1 1
P T AV 32

It is interesting to note that the long-time behaviour of all the integer moments is
determined by the knowledge @f and o, in the initial condition, i.e. by the first two
moments of the initial distribution of the lengths of the intervals.

Expression (14) does not hold downite- 1. Fori ~ 1, the p; have more complicated
expressions than (14) and all the details of the initial distribution of domain sizes become
important, even in the limip — 0. For example, if the initial spin configuration is random
(case 1) one can calculate easily thadependence of the firgt from (4), and one finds

pr = 3pe® D/ pa = 3D/ p3 = 3,(5p — 2p°)e» /4

whereas for an initial antiferromagnetic configuration (case Il), one finds
2)6(3,373)/2_

e /A (14)

o1 = peP=D/2 p2=0  p3=1(p—p

These two examples show that as— 0, a finite fraction of domains are domains
of length 1 (withp; ~ pe~Y/4/2 in case | andp; ~ pe %2 in case ll). Clearly the spins
belonging to these domains of length 1 are spins which never flipped under the dynamics.
So the picture is that in the limjg — 0, almost all the line is occupied by large domains
of size of orderA ~ p~—2 whereas almost all domains are small of size of order 1. Between
two consecutive large domains, there are an infinite number of small domains.

This picture can be confirmed by calculating the pair correlation fun¢Sgsk ) between
two spins at positions 0 an®. Because the sizes of successive domains are uncorrelated
it is possible to relate the distribution of domain sizes and the correlation function [9, 10].
This relation is easier to write for the Laplace transforms. If

F(s) = e®(SoSk)

R>0
one can show in a very similar way to [9, 10] that
- 1
Fs) = 2p g(s)—p

@-12 gs)+p e—1
which, using (11), in the limiip — 0 ands ~ p? becomes

1] p? Bs
Fs)~-|—G|—)—-1]. 15
© S[BS <p2) } 49
It is easy to check that the same expression would be obtained in this gimit Q, s ~ p?)
if (SoSg) was given only by the contribution of the pairs belonging to the same domain, i.e.

(SoSRr)approx = Z(’ — R)p;i

iZR

as this would give

€
Fapprox(s) = m (g(s) — p) — e _1
which becomes identical to (15) when— 0 ands ~ p2. This is because between two
large domains, there are always so many small domains that the contributions of an even
or an odd number of these small domains almost cancel.



L594 Letter to the Editor

From (14) it follows that wherp — 0, (SoSg) becomes a function of the ratio= R/A:

—R _. ®dy y—x
(SoSg) ~ L e~ = e,
ZZR; \/‘ A1/2 13/2 L Jm 2

Note that forx — 0, (SoSg) ~ 1 — 4x¥2//m. The limit 1 asx — 0 means that domains
described by (14), i.e. of size A, occupy almost all the space (as two spins at a distance
small compared with\ are likely to be parallel). The fact that the correction 16> means
that between two such large domains, there are infinitly many small domains in contrast to
normal cases [2], where the first correction is lineaxin

Another quantity one can consider is the fractioaf persistent spins [7, 11] (the spins
which never flip up to time). As all the spins belonging to domains of length 1 have never
flipped, one has > p1 ~ p. One does not expect a large contribution from large domains
as most of the spins of large domains have flipped many times. We did a simulation which
confirmed that- ~ p whenp — 0. This, in fact, can be shown analytically but we omit
the details here, because the calculation of the limiting value of the ngti@sp — 0 is
rather complicated.

The calculations done above in the Ising case can be easily generalized to the Potts
model. For Potts spins, each domain carries ong ablours and each time a domain
is updated, all the spins of this domain adopt the colour of one of the two neighbouring
domains (chosen at random). Therefore, if initially the spins are randomly chosen, when a
domain is updated, it merges with its two neighbours with probabilfigy - 1), with its
left neighbour only with probabilityg — 2)/(2g — 2) and with its right neighbour only with
probability (¢4 — 2)/(2¢ — 2). This means that for generaland if the initial condition is
random (¢b/dt = —q/(q — 1)) the mean-field-like equation (4) becomes

doi g - 1 Jp, pi—j 1 Jpj Pk Pi—j—k
1= Zip, + o - b Pr Dimjk (16)
- D

In contrast to other dynam|cal rules [7], this equation is still exact for arbitgargs the
dynamics preserve the absence of correlation between the lengths of the domains: As
the solution takes also the scaling form (11) except that

= B/p® — 2/qp

with B = (¢ +3)(¢g — 1)/q? (aspo = (¢ — 1)/q andor, = (¢ + 1)/(¢ — 1) for random
initial conditions). So up to a change of the const&nthe picture in the Potts case is the
same as in the Ising case.
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