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For the zero temperature Glauber dynamics of theq-state Potts model, we calculate the exact distribution of
domain sizes by mapping the problem on an exactly soluble one-species coagulation model (A1A→A). In the
long time limit, this distribution is universal and, from its~complicated! exact expression, we extract its
behavior in various regimes. Our results are tested in a simulation and compared to the predictions of a simple
approximation proposed recently. Considering the dynamics of domain walls as a reaction-diffusion model
A1A→A with probability (q22)/(q21) andA1A→f with probability 1/(q21), we calculate the pair
correlation function in the long time regime.@S1063-651X~96!12809-9#

PACS number~s!: 02.50.2r, 05.40.1j, 05.50.1q, 05.20.2y

I. INTRODUCTION

When a ferromagnetic system is quenched from the high
temperature phase to a temperature below its Curie tempera-
ture, one observes a pattern of growing domains. In the long
time limit, when the typical size of domains becomes much
larger than the lattice spacing~or the correlation length! but
is still small compared to the system size, the domains at
different times form a~statistically! self similar structure~see
@1# and references therein!. For a nonconserved order param-
eter, it is well established that the size of the domains grows
with time t like t1/2. Much less is known about the distribu-
tion of domain sizes.

The purpose of the present paper is to give the exact dis-
tribution of domain sizes in the case of the one-dimensional
~1D! q-state Potts model evolving according to zero tem-
perature Glauber dynamics@2# ~in 1D, the low temperature
phase reduces only to zero temperature!. As @3,4# the average
domain size grows with time liket1/2, the distribution of
domain sizes can only be determined up to a change of scale,
and we will rescale the lengthx of the domains so that, for
the distributiong(x;q), the average domain size is unity
~*xg(x;q)dx51!. So far, this distribution has been calcu-
lated only forq5` @5,6# because it is related to the probabil-
ity that two walkers do not meet up to timet. Our goal, here,
is to extend this result to arbitraryq.1.

Our approach is a generalization of a calculation done
recently@7,8# to obtain the fraction of permanent spins~i.e.,
spins which never flip up to timet!. We calculate the prob-
ability Q(N) that N given consecutive spins are parallel at
time t, and explain howg(x;q) can be extracted fromQ(N).
As for the number of persistent spins, the full expression of
Q(N) is rather complicated, but it can be used to write ex-
plicit formulas in various limits.

It has been known for a long time that the zero tempera-
ture Glauber dynamics of the 1D Potts model is fully equiva-
lent to a single-species reaction-diffusion model@4,5,6,9,10#.
If one represents each domain wall by a particleA, and if the
initial spin configuration is random with no correlation, it is
easy to show that the particlesA diffuse along the line, and

that whenever two particles sit on the same bond, they in-
stantaneously react according to

A1A→ HAf with probability ~q22!/~q21!

with probability 1/~q21!. ~1!

We will see that several of our results can be reinterpreted as
properties of this 1D reaction-diffusion problem.

An easy way to implement the zero temperature dynamics
of the 1D q-state Potts model is to say that, during every
infinitesimal time intervaldt, each spinSi(t) is updated ac-
cording to

Si~ t1dt!5H Si~ t !Si21~ t !
Si11~ t !

with probability 122dt
with probability dt
with probability dt.

This shows the close analogy with random walk problems
@11#. As in @7,8,12#, this analogy will be the basis of our
calculation.

The paper is organized as follows. In Sec. II, we recall
several properties of random walks which are used in the
following sections and the relation between random walks
and the zero temperature Glauber dynamics of a spin chain.
In Sec. III, we obtain, using several relations derived in@8#,
the probabilityQ(N) that, at timet, N given consecutive
spins are parallel, and we show how the distribution of do-
main sizes follows from the knowledge of theQ(N). In Sec.
IV, we give more explicit expressions in various limits, and
in Sec. V we compare our predictions with the results of
simulations. In Sec. VI, we calculate the pair correlation for
the reaction diffusion model~1!.

II. PROPERTIES OF RANDOM WALKS
IN ONE DIMENSION AND THE q5` CASE

Let us first recall some properties of random walks in one
dimension. Several of these properties are well known~in
particular they can be obtained by representing the walkers
as free fermions@13–15#!, but we spend some time discuss-
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ing them because they are essential to an understanding of
the following sections. These properties will include the
probability ci , j that two walkers starting at positionsxi,xj
do not meet up to timet, and the probabilityc 1,2,...,2n

(n) that no
pair meets up to timet between 2n walkers starting at posi-
tions x1,x2,•••x2n.

Consider a random walker on a 1D lattice which hops,
during each infinitesimal time interval to its right with prob-
ability dt, to its left with probabilitydt ~and of course re-
mains at the same position with probability 122dt!. The
probabilitypt(y,x) of finding the walker at positiony at time
t, given that it was initially~at time 0! at positionx, evolves
according to

d

dt
pt~y,x!5pt~y11,x!1pt~y21,x!22pt~y,x!

5pt~y,x11!1pt~y,x21!22pt~y,x!, ~2!

and the solution is

pt~y,x!5
1

2p E
2p

p

du cos~x2y!ue22~12cosu!t. ~3!

Consider now two walkers on this 1D lattice starting at po-
sitionsxi andxj with xi,xj . The probabilityCt(xi ,xj )[ci , j
that these two walkers never meet up to timet evolves ac-
cording to

d

dt
Ct~x,x8!5Ct~x11,x8!1Ct~x21,x8!1Ct~x,x811!

1Ct~x,x821!24Ct~x,x8!, ~4!

with the boundary conditions thatCt(x,x)50 at any timet
and thatC0(x,x8)51 if x,x8. It is easy to check that the
expression

ci , j5Ct~xi ,xj !5
1

2p E
2p

p

du
sinu sin~xj2xi !u

12cosu
e24~12cosu!t

~5!

satisfies~4!. It is remarkable@8# that the probabilities of all
the meeting events ofN coalescing random walkers starting
at positionsx1<x2<•••<xN can be expressed in terms of
the matrix ci , j . For example, for three walkers starting at
positions x1<x2<x3 , the probability that none of them
meets any of the other two up to timet is given by

c1,21c2,32c1,3.

For four walkers starting atx1<x2<x3<x4 , the probability
that no pair meets up to timet is given by

c1,2,3,4
~2! 5c1,2c3,41c1,4c2,32c1,3c2,4. ~6!

Below, we will use the fact that@8# the probability that, up to
time t, no pair meets among 2n walkers starting at positions
x1<x2<•••x2n, is given by the Pfaffian of the 2n32n ma-
trix ci , j

c1,2,...,2n21,2n
~n! 5

1

2nn! (
s

e~s!cs~1!,s~2! ...cs~2n21!,s~2n! ,

~7!

where the sum runs over all the permutationss of the indices
$1,2,...,2n%, e~s! is the signature of the permutations, and
the matrixci , j is antisymmetrized,

ci , j52cj ,i,0 when i. j .

There are several ways of deriving~6! and ~7!, for ex-
ample by considering the walkers as free fermions
@13,14,15,8# or by using the method of images. One can also
simply write equations similar to~4! which govern the evo-
lution of these probabilities, and check that~6! and ~7! do
satisfy these equations with the right boundary conditions
whenci , j is the solution of~4!. ~Note that the above relations
would not be valid in dimensions higher than 1: it is only in
1D that whenever 1 and 2 do not meet, it implies that 1 and
3 do not meet because of the order of the walkers along the
line.!

Apart the probabilities that the walkers never meet, the
knowledge of the matrixci , j allows one to calculate all the
meeting probabilities between coalescing random walkers
@8#. For example, when four walkers start at positions
x1,x2,x3,x4 , one finds for the probabilityc12,34 that
walkers 1 and 2 coalesce, walkers 3 and 4 coalesce, but
walkers 2 and 3 do not coalesce before timet,

c12,345c1,31c2,41c1,2,3,4
~2! 2c1,22c2,32c3,4, ~8!

and for the probabilityc1,23,41c1,2,3,4 that walkers 1 and 2
and walkers 3 and 4 do not meet~without saying whether
walkers 2 and 3 meet or not!

c1,23,41c1,2,3,45c1,31c2,41c1,2,3,4
~2! 2c1,42c2,3. ~9!

In the long time limit, all the above expressions~6!, ~7!,
~8!, and ~9! remain valid, withci , j replaced by the asymp-
totic expression of~5!,

ci , j5Ct~xi ,xj !5 f S xj2xi

A8t D , ~10!

f ~z!5
2

Ap
E
0

z

e2u2du. ~11!

A. Relation between random walks and the dynamics
of the spin chain

As in @12,7,8#, we are going to use the close analogy
between the problem of coalescing random walkers and the
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properties of a spin chain evolving according to zero tem-
perature dynamics: assume that we want to calculate, for a
Potts chain with no correlation in the initial condition, the
probability that spins at positionx1,x2,•••,xN are equal
at time t. One can considerN coalescing random walkers
starting at positionsx1,x2,•••,xN , and ifP(m,t) denotes
the probability that, at timet, there arem walkers left in the
system, one has@7,8#

Probability$Sx1~ t !5Sx2~ t !5•••SxN~ t !%

5 (
m51

N

P~m,t !
1

qm21 . ~12!

This expression can be understood by noticing that initially
the spins are random, and that the probability thatm spins
have the same color in the initial condition is just 1/qm21.

B. Caseq5`

In the limit q→` only the first term of the sum contrib-
utes, and one finds that

Probability$Sx1~ t !5Sx2~ t !5•••SxN~ t !%512Ct~x1 ,xN!.
~13!

This expression can easily be understood: forq5`, all spins
in the initial configuration are different; ifSx1(t)5SxN(t),
this means that the two walkers starting atx1 and xN have
met before timet and, therefore, at timet, all the spins
located betweenx1 and xN are equal. This can be used to
calculate the distribution of domain sizes in theq→` limit:
if p1( l ) is the density of domains of lengthl , one has

Probability$Sx1~ t !5Sx2~ t !5•••SxN~ t !%

5 (
l>xN2x1

~ l2xN1x1!p1~ l !. ~14!

This leads to

p1~ l !52Ct~0,l !2Ct~0,l11!2Ct~0,l21!, ~15!

and, in the long time limit

p1~ l !52
1

8t
f 9S 1

A8t D . ~16!

For q5`, this allows one to calculate the average domain
size at timet,

^ l &`5

(
l
lp1~ l !

(
l
p1~ l !

.
A8t
f 8~0!

5A2pt ~17!

and the distributiong(x;`) of domain sizes@6# ~normalized
such that the average size is 1!

g~x;`!5^ l &
p1~^ l &x!

(
l 8

p1~ l 8!

5
p

2
xe2x2p/4. ~18!

This expression had been obtained up to a factor in@17#.
For similar reasons, it is easy to see that, forq5`, the

probability thatSx1(t)5Sx2(t)ÞSx3(t)5Sx4(t) is given by

Probability$Sx1~ t !5Sx2~ t !ÞSx3~ t !5Sx4~ t !%5c12,34.
~19!

This can be used to obtainp2( l 1 ,l 2), the density of domains
of length l 1 followed by a domain of lengthl 2 ~because for
q5`, whenever two spins have a certain color, all the spins
between them have the same color!,

Probability$Sx1~ t !5Sx2~ t !ÞSx211~ t !5Sx4~ t !%

5 (
l1>x22x1

(
l2>x42x221

p2~ l 1 ,l 2!.

~20!

and consequently~8!–~11!, the ~normalized! distribution
g2(x,y;`) of neighboring domain sizes is given by

g2~x,y;`!5^ l &2
p2~^ l &x,^ l &y!

( l 8p1~ l 8!
5

p

2
~x1y!@e2~x21y2!p/4

2e2~x1y!2p/4#. ~21!

This means that the lengths of consecutive domains in the
limit q→` are correlated. In particular, ifl 1 and l 2 are the
lengths of two consecutive domains, one has

^ l 1l 2&

^ l &2
5E

0

`

dxE
0

`

dy g2~x,y;`!xy5
3

p
Þ1. ~22!

Remark 1:The knowledge of the distribution of domain sizes
and of all the correlations between consecutive domain sizes
for q5` gives the distribution of domain sizes for arbitrary
q. If l 1 ,l 2 ,...,l n ,... are the lengths of consecutive domains
whenq5`, one can obtain the lengthl of a typical domain
for finite q by

l55
l 1
l 11 l 2
•••
l 11 l 21•••1 l n
•••

with probability
q21

q

with probability
q21

q2

with probability
q21

qn
.

~23!

This is because one way of performing the dynamics at finite
q is first to make the system evolve with all spins different in
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the initial condition~as in the caseq5`!, and then suppress
the domain walls with probability 1/q. This is due to the fact
that, for finiteq, two initial values are identical with prob-
ability 1/q.

A consequence of~23! is that, in the long time limit, the
average length for finiteq is given by~17!

^ l &q5
q

q21
^ l &`.

q

q21
A2pt . ~24!

It is clear also from~23! that the calculation of any other
moment^ l n& of the length would require the knowledge of
all the correlations between thel i .

Remark 2:If these correlations between successive do-
main sizes forq5` were absent, the calculation of the nor-
malized distribution g(x;q) for arbitrary q would be
straightforward: neglecting the correlations in~23! would
give, for the generating function ofg(x;q),

E
0

`

dx g~x;q!eaqx/~q21!dx5
~q21!*0

`dx g~x;`!eaxdx

q2*0
`dx g~x;`!eaxdx

.

~25!

Then using expression~18!, one would find~by analyzing
the limit a→2`!

g~x;q!5
p

2

q

q21
x2

p2

24

~3q21!q2

~q21!3
x3

1
p3

960

~15q226q11!q3

~q21!5
x51O~x7! ~26!

and ~by analyzing the pole ina!

g~x;q!.exp@2A~q!x1B~q!# for large x, ~27!

whereA(q) is the root of

p

2 E
0

`

dx x expF2
px2

4
1

~q21!x

q
A~q!G5q, ~28!

andB(q) is given by

B~q!5 lnH q2pA~q!

qp12~q21!A~q!2 J . ~29!

For q52, this is precisely the prediction recently given in
@16#, based on the assumption that the intervalsl 1 ,l 2 ,... are
uncorrelated. We have already seen@~21! and ~22!# that this
assumption is not valid. Our goal in the following sections is
to obtain the true distributiong(x;q) where these correla-
tions have been taken into account. We will see that the
exact expression ofg(x;q) differs from ~26!, ~28!, and~29!.

III. ARBITRARY CORRELATION FUNCTIONS

Our solution for the distribution of size of domains is
based on our ability to write exact expressions for all corre-

lation functions~valid at an arbitrary time! when the initial
condition is random with no correlation~i.e., each spin ini-
tially takes one of theq possible colors with equal probabil-
ity!. These exact expressions involve the probabilitiesc(n)

given by ~5!–~7!. One can show in particular that the prob-
ability that N spins located at positionsx1<x2<•••xN are
identical at timet is given by

Prob$Sx1~ t !5•••SxN~ t !%

512m (
i51

N21

ci ,i111m2(
i, j

ci ,i11,j , j11
~2!

2m3 (
i, j,k

ci ,i11,j , j11,k,k11
~3!

1•••2lH mc1,N2m2(
i
c1,i ,i11,N

~2!

1m3(
i, j

c1,i ,i11,j , j11,N
~3! 2•••J , ~30!

where

l5q21, ~31!

m5
q21

q2
. ~32!

@Note that as long asN is finite, ~30! is the sum of a finite
number of terms and is therefore a polynomial in the variable
m.#

The proof of~30! is exactly the same as the one given in
@7#: one shows that~30! is equivalent to~12! for N coalesc-
ing random walkers starting at positionsx1<x2<•••xN by
considering all possible coalescing events between theN
walkers. The weightam in ~30! of an event where at timet
theN walkers have merged intom walkers is given by

am512~m21!m1
~m22!~m23!

2!
m2

2
~m23!~m24!~m25!

3!
m3...2lS m2~m23!m2

1
~m24!~m25!

2!
m3...D , ~33!

which is justam51/qm21 @see~31! and~32!#. This therefore
proves that~30! is equivalent to~12!.

In @8#, several ways of rewriting~30! were given. In par-
ticular it was shown that~30! can be rewritten as the square
root of a determinant
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Prob $Sx1~ t !5•••SxN~ t !%5U 1
1 0 0 0

0 1 0 0

0 0 •

•

•

1

2
1m1

0 1 0 0 l

21 0 1 0 0

0 21 0 1 0

1 • •

0 • 1

2l 0 21 0

2 1 ci , j 2U
1/2

. ~34!

By choosingN consecutive sites forx1<x2<•••xN , expres-
sions ~30! and ~34! give the probabilityQ(N) that N con-
secutive spins are parallel and the densityp1( l ) of domains
of length l follows from a relation similar to~14!,

Q~N!5 (
l>N

~ l2N11!p1~ l !.

Long time regime

In the long time limit,ci , j varies slowly with the positions
xi and xj of the sites, and becomes a continuous function
c(xi ,xj ) of these two positions. Moreover, for largeN, all
the sums in the expression~30! become integrals. As in@8#,
one can show that in this continuum limit,~30! or ~34! can be
rewritten as

Q~N!5@A12m c̃~N,N!2lA2m c̃~N,N!#exp@ 1
2 tr lnM #,

~35!

where this timec(x,y)5 f @(y2x)/A8t# as in~10! and~11!;
the matrixM is defined by

M ~x,y!5d~x2y!12m
d

dx
c~x,y!,

and the quantities appearing in~35! are given by

tr lnM52 (
n51

`
~22m!n

n E
0

N

dx1 ...

3E
0

N

dxn
d

dx
c~x1 ,x2!...

d

dx
c~xn ,x1! ~36!

and

c̃~N,N![E
0

N

dy c~N,y!M21~y,N!

5 (
n51

`

~22m!nE
0

N

dx1 ...E
0

N

dxnc~N,x1!

3
d

dx
c~x1 ,x2!...

d

dx
c~xn ,N!. ~37!

If one normalizes all the distances on the lattice to make
the average domain size become 1, one definesx by

N5A2pt
q

q21
x, ~38!

and the distribution of domain sizesg(x;q) is then given by

Q~N!5E
x

`

dy~y2x!g~y;q!,

so that, in the long time limit, one ends up with

E
x

`

dy~y2x!g~y;q!5@A12mA1~x!2lA2mA1~x!#eA2~x!,

~39!

where

A1~z!5 (
n51

`

~22m!nE
0

z

dx1 ...E
0

z

dxng~z,x1!

3
d

dx
g~x1 ,x2!...

d

dx
g~xn ,z! ~40!

and
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A2~z!52
1

2 (
n51

`
~22m!n

n E
0

z

dx1 ...E
0

z

dxn
d

dx
g~x1 ,x2!...

3
d

dx
g~xn ,x1!, ~41!

where

g~x,y!5F~y2x!5
2

Ap
E
0

Ap~y2x!q/2~q21!
e2u2du ~42!

and

d

dx
g~x,y!52

q

q21
expF2p~y2x!2q2

4~q21!2 G .
Differentiating~39! twice with respect tox leads to the exact
expression ofg(x;q).

IV. EXPANSIONS FOR THE DISTRIBUTION
OF DOMAIN SIZES

The exact expression~39! for g(x;q) requires the calcu-
lation of A1 and A2, which we did not succeed in doing
explicitly for generalq and x. However, it can be used to
expand to arbitrary orders in various limits: smallx, largex,
and largeq.

A. Small x

The smallx expansion is straightforward. One just needs
to expandg(x,y) in ~42! in powers ofy2x,

g~x,y!5F~y2x!5
q

q21
~y2x!2

p

12 S q

q-1D
3

~y2x!3

1
p2

160 S q

q21D
5

~y2x!5...,

and to replaceg by its expansion in~39!, ~40!, and ~41!.
MATHEMATICA performs this to high order, and we found, for
g(x;q) up to orderx13,

g~x;q!5
p

2

q

q21
x2

p2

8

q3

~q21!3
x31

p2

24

q3

~q21!4
x41

p3

64

q5

~q21!5
x52

p3

120

q5

~q21!6
x62

p4

768

q7

~q21!7
x7

1
p4

26 880

q6~3123q!

~q21!8
x81

p5

12 288

q9

~q21!9
x92

p5

483 840

q8~11129q!

~q21!10
x102

p6

245 760

q11

~q21!11
x11

1
p6

170 311 680

q10~4291547q!

~q21!12
x121

p6

1 857 945 600

q10~64264q1315pq3!

~q21!13
x131O~x14!. ~43!

This expression is clearly different from the one obtained
~26! in the uncorrelated approximation@16#. Note that only
the first term in both expansions is identical.

B. Large x

For domains much larger than the average size, we expect
that, for finiteq, g(x;q) decays exponentially:

g~x;q!.exp@2A~q!x1B~q!#. ~44!

This can be understood by recalling that a large domain of
sizeL at finiteq is created~23! by combiningn domains at
q5` with n typically L/^ l &q5` . The probability of this is
exponentially small inn. If the domains atq5` were not
correlated, the constantsA(q) andB(q) would be given by
~28! and ~29!. The existence of correlations between the
lengths of domains~22! alters the coefficients of the decay,
but not the exponential decay itself.

The largex behavior ofg(x;q) is directly connected~39!
to the largeN behavior ofQ(N),

Q~N!5E
x

`

dy~y2x!g~y;q!

.exp@2A~q!x1B~q!22 ln A~q!#. ~45!

Therefore, we need the largex behavior ofA1(x) andA2(x)
given by ~40! and ~41!. It turns out that~as in @8#! the pref-
actorA12mA1(x)2lA2mA1(x) vanishes asx→`, when
q.2 but has a nonzero finite limit whenq,2. One has there-
fore to examine these two cases separately.

~i! For q,2, the prefactor~which has been calculated in
equation~35! of @8#! has the following limit:

A12mA1~x!2lA2mA1~x!→Aq~22q! for x→`.
~46!

To evaluate the largex behavior ofA2(x), one can use well
known results on Toeplitz determinants@18–20#, namely,
that for an even functiona(u) which decays asu→6`,
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2 (
n51

`
~22m!n

n E
0

x

du1 ...E
0

x

duna~u12u2!...a~un2u1!

.
x

2p E
2`

`

ln@112mã~k!#dk

1E
0

`

u du
1

4p2 U E
2`

`

e2 iku ln@112mã~k!#dkU2,
~47!

where

ã~k!5E
2`

`

eikua~u!du.

When this is used in the case ofA2(x) given by ~41! and
~42!, one finds that

a~u!52
q

q21
expH 2pu2q2

4~q21!2 J
and

ã~k!522 expH 2k2~q21!2

pq2 J . ~48!

This leads to the following expressions in terms of
m5(q21)/q2:

A~q!5
1

4

q

q21 (
n51

`
~4m!n

n3/2
, ~49!

B~q!22 lnA~q!5 1
2 lnq~22q!

1
1

4p (
n52

`
~4m!n

n (
p51

n21
1

Ap~n2p!
,

~50!

which can be rewritten in order to make each term have a
finite limit in the previous expression whenq→2,

B~q!22 lnA~q!5 lnq2
q21

q2
1

1

4p (
n52

`
~4m!n

n

3H 2p1 (
p51

n21
1

Ap~n2p!
J . ~51!

In ~49! and~51!, the series are convergent for all values ofq
@since (q21)/q25m<1

4#, and so these expressions can be
used to calculate numericallyA(q) andB(q). In Sec. V, we
will compare the values predicted by~49! and ~51! to those
@~28! and ~29!# of the approximation where the domains are
uncorrelated.

Remark 1:The radius of convergence of the sums which
appear in~49! and ~51! is m51

4. So asm→1
4, that isq→2,

these expressions could become singular. Asm,1
4 when

q.2, ~49! and ~51! can be computed for both forq,2 and
q.2. However, it is easy to see that these expressions as a
function of q are not analytic atq52 „for example, it is
possible to show that (d/dq)/(q21/q)A(q)→Ap/4 as
q→2, so thatA(q) given by ~49! has a cusp atq52…. We
will argue below, that forq.2, expressions~49! and~51! are
no longer valid as they are, but should be replaced by their
analytic continuation from the rangeq,2.

Remark 2: A priori, in the Potts model,q is an integer and
so the caseq,2 is of little interest. However, Fortuin and
Kasteleyn@21# showed a long time ago that noninteger val-
ues ofq have physical realizations as cluster models. Here it
is very easy to check that, if one considers the zero tempera-
ture dynamics of an Ising chain where the spins are initially
uncorrelated, but a nonzero magnetizationm, the distribution
of the sizes of domains of1 spins is exactly the same as for
theq-state Potts model when

q5
2

11m
.

In particular,q→` corresponds to an initial condition where
the1 spins are very rare, whereasq→1 corresponds to very
few 2 spins. Som can take any value between21 and 1,
and q can vary continuously between 1 and̀. Also, for
q.2, the reaction diffusion model~1! makes sense for a
nonintegerq.

~ii ! For q.2, the largex behavior ofA2(x) is exactly the
same as forq,2. However the prefactor in~39! vanishes as
x→`. The evaluation of this prefactor for largex is not
simple. A similar calculation was done in@8#, and the result
for q.2 turned out to be simply the analytic continuation of
the result obtained forq,2. Here we assume that this prop-
erty remains true forg(x;q) ~in the smallx expansion, at
least, one can easily check that all the coefficients can be
analytically continued atq52!, and thatA(q) andB(q) in
the range q.2 are given by the analytic continuation
A(q),B(q) of their expressions~49! and ~51! for q,2.

In the Appendix, we give a way of deriving the following
expressions ofA(q) andB(q):

A~q!5
qAp

q21
A2 ln 4m1

1

4

q

q21 (
n51

`
~4m!n

n3/2
, ~52!

B~q!22 ln A~q!5 1
2 lnq~q22!2 ln42 ln~2 ln4m!

1
1

4p (
n52

`
~4m!n

n (
p51

n21
1

Ap~n2p!

22(
n51

`
1

nAp
E

A2n ln4m

`

dv e2v2.

~53!

C. Large q expansion

In the largeq limit, m, l andg(x,y) can be expanded in
powers of 1/q @see~31!, ~32!, and~42!#. This leads to
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A1~z!52mg2~0,z!14m2g~0,z!E
0

z

dx g~0,x!
dg~x,z!

dx

1OS 1q3D ,
A2~z!52

x

q
1OS 1q2D ,

and to

Q~N!512E
0

x

du e2pu2/41
1

q H 2xS 12E
0

x

du e2pu2/4D
12E

0

x

du e2pu2/42xe2px2/4

22E
0

x

dyE
0

y

dz e2p/4@z21~x2y!2#J 1OS 1q2D , ~54!

which, using~39!, becomes

g~x;q!5
p

2
xe2x2p/41

1

q H 2
p2

4
x3e2x2p/42

p

2
x2e2x2p/4

1
p

2
xe2x2p/41

p

2
xE

0

x

dze2@~x2z!21z2#p/4J
1OS 1q2D . ~55!

For the moments of distributiong(x;q), this gives

^xn&5S 2

Ap
D nFGS n211D 1

1

q H 2~n11!GS n211D
2

2

Ap
GS n11

2
11D

1
2

Ap
(
p50

n S npD GS p11

2 D GS n2p12

2 D J G1OS 1q2D .
~56!

and, in particular,

^x2&5
4

p S 11
1

2qD1OS 1q2D .
Remark:Because of~23!, all the results to order 1/q can

be recovered from the knowledge@~18! and~21!# of g(x;`)
andg2(x,x8;`), and it is easy to check that

g~x;q!5S 11
1

qD H S 12
1

qD gF S 11
1

qD x;`G
1
1

q E
0

@111/q#x
dz g2F S 11

1

qD x2z,z;`G J 1OS 1q2D

is equivalent to~55!. It is straightforward in principle to gen-
erate higher order terms in 1/q, but the expressions become
quite complicated.

V. SIMULATIONS

In order to check the validity of our results against the
predictions of the independent interval approximation@16#,
we made a simulation. Because of~23!, the distribution of
domain sizes for all values ofq can be extracted from a
single simulation done atq5`. One starts with a random
initial condition atq5` ~this is done by choosing initially
each spin with a different value: for example, spini is given
color i ! and let the system coarsen according to zero tem-
perature Glauber dynamics. Once the system atq5` has
evolved for a certain time, one obtains a system for an arbi-
trary value~integer or noninteger! of q by removing each
domain wall with probability 1/q.

The easiest properties one can measure are the moments
of the distribution of domain sizes. Our data~for a system of
106 spins! for the second moment̂x2& of the distribution
g(x;q) of domain sizes forq52, 3, and 5 are shown in Fig.
1 as a function of the average size^ l &` of the domains for
q5`. For Glauber dynamics, this average^ l &` increases
with time like t1/2. The larger̂ l &` is, the closer we are from
the asymptotic regime. However, as the simulation is done
for a finite system, the results become noisy if one waits too
long, simply because the number of domains is too small to
allow good statistics.

These numerical results can be compared to the approxi-
mation where the correlations are neglected~25!,

^x2& independent5
q21

q

4

p
1
2

q
. ~57!

We see in Fig. 1 that our numerical data seem stable and
accurate enough to show a clear discrepancy from the ap-
proximation. Unfortunately, our exact expression~39! is
complicated, and we were unable to obtain closed expres-
sions of the moments for the whole range ofq. However, we

FIG. 1. The second moment^x2& vs ^ l &` for q52, 3, and 5 for a
system of 106 spins. The plain lines indicate the values predicted by
the improved approximation~58!, and the dashed lines those of the
independent approximation~57!.
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could test our conviction that correlations between the do-
mains atq5` have an effect. If in the calculation of^x2&, we
neglect the correlations between all pairs of domains except
for nearest neighbor domains~22!, we find an improved es-
timate

^x2& improved5
q21

q

4

p
1
2

q
12

q21

q2 S 3p21D , ~58!

which, although not exact, seems to be in much better agree-
ment with the results of the simulations.

As we could not calculate the moments from~39!, we
tried to test our results by measuring the exponential tail of
the distributiong(x;q). It is always difficult to measure a
probability distribution numerically, because one has to use
bins: if they are too narrow, the data are noisy, and if they
are too broad, all the details of the distribution are smooth-
ened out. To avoid this difficulty, we measured the integrated
distributionh(x;q),

h~x;q!5E
x

`

g~y;q!dy

and we compared it to our prediction~44! for the tail @~49!
and ~51!# for q,2 and @~52! and ~53!# for q.2. We also
compared the results of our simulations to the prediction of
the independent domains approximation~28! and ~29!. In
Fig. 2, we plot the logarithm of the integrated distribution
divided by its predicted form@A(q)x2B(q)1lnA(q)#
1ln h(x;q) versusx for q55 for a system of two millions
spins, after 1000 updatings per spin. We see that the agree-
ment is very good when~52! and~53! are used, whereas, for
~28! and ~29!, there is a small but visible discrepancy. Of
course, for anx that is too large, our data are too noisy, and
for anx that is too small, the asymptotic form has no reason

to be valid, so that the range where the agreement is the best
is 1,x,3.5. In that range, the independent interval approxi-
mation presents a nonvanishing slope, indicating that~28! is
not correct. Moreover, if one considers that the data~in the
independent case! flatten forx.3.5 ~where the data start to
be noisy!, the fact that the limit in Fig. 2 is below zero
indicates that prediction~29! for B(q) is not correct.

In Table I, the exact values ofA(q) andB(q) obtained
from ~49! and~51! for q,2 and from~52! and~53! for q.2
are compared to those coming from the independent domains
approximation~28! and~29!. We see that, although different,
they are very close.

We tried also to see whether one could distinguish by
numerical simulations our exact results from the independent
interval approximation for smallx, but we found that this
was even more difficult than in the largex limit.

As we did not obtain a closed form for the distribution
g(x;q), we used Pade´ approximants based on the expansion
~43! to draw the shapes ofg(x;q) shown in Fig. 3. We see
that asq→1, the shape becomes an exponential.

VI. REACTION-DIFFUSION MODEL

The relation between the spin dynamics and the reaction-
diffusion model ~1! can be used to calculate all kinds of
properties of the reaction-diffusion model. For the zero tem-

FIG. 2. The logarithm of the~measured! integrated distribution
h(x;q) divided by its predicted asymptotic formA(q)x2B(q)
1lnA(q)1lnh(x;q) for a system of 23106 spins after 1000 updat-
ings per spin. When the exact expressions ofA(q) andB(q) are
used~circles!, the agreement is very satisfactory in the range 1,x
,3.5, wherex is large enough but the data are not yet too noisy,
whereas, when one takesA(q) andB(q) of the independent domain
approximation~crosses!, there is no range where the data are con-
sistent with the limiting value 0.

TABLE I. The exact values ofA(q) andB(q) obtained from
~49! and~51! for q,2, and~52! and~53! for q.2, are compared to
those coming from the independent domain approximations~28!
and ~29!.

q ExactA(q) ExactB(q)
Approximate

A(q)
Approximate

B(q)

1.2 1.0769 0.153 1.0675 0.133
1.5 1.1748 0.344 1.1532 0.299
2.0 1.3062 0.597 1.2685 0.517
3.0 1.4998 0.963 1.4370 0.832
5.0 1.7537 1.439 1.6630 1.239
10.0 2.1066 2.101 1.9777 1.809
100.0 3.2273 4.369 3.0065 3.804

FIG. 3. The shapes of the distributiong(x;q) of the interval
lengths obtained from a Pade´ analysis of expansion~43!.
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perature Glauber dynamics of the Potts chain, it results from
the analogy to random walks~Sec. II! that

Prob$Sx1~ t !ÞSx2~ t !%5S q21

q D c1,2
and that@Eq. ~9!# for x1,x2,x3,x4 :

Probability$Sx1~ t !ÞSx2~ t ! and Sx3~ t !ÞSx4~ t !%

5S q21

q D 2@c1,31c2,42c2,32c1,4

1c1,2,3,4
~2! #.

In the long time regime, using~10! and~11! for x150, x251,
x35r , andx45r11, this becomes

Probability$S0~ t !ÞS1~ t !%.H8~0!,

Probability$S0~ t !ÞS1~ t ! and Sr~ t !ÞSr11~ t !%

.S q21

q D 2@2H9~r !1H9~r !H~r !

2„H8~r !…21„H8~0!…2#,

where

H~r !5
2

Ap
E
0

r /A8t
e2u2du.

If these expressions are interpreted in terms of domain
walls ~i.e., of particles in the reaction-diffusion model!, one
obtains that the densityr of particles and the probability
r2~0,r ! of finding a pair of particles at 0 and atr are given by

r.
q21

q
H8~0!5

q21

q

1

A2pt
,

r2~0,r !.S q21

q D 2@2H9~r !1H9~r !H~r !

2„H8~r !…21„H8~0!…2#.

By eliminating the timet between these two equations,
one finds that, in the long time limit, the probability of find-
ing a particle at 0 andr is given by

r2~0,r !5r2F12e22z212ze2z2E
z

`

e2u2duG ~59!

and

z5
q

q21

Ap

2
rr .

We see in particular that the correlations decay like a Gauss-
ian instead of the ‘‘usual’’ exponential.

Remark:It has already been noted@22–26# that several
properties of reaction-diffusion models can be calculated ex-
actly, by writing closed equations for the probability that an

interval of lengthl is empty ~or two intervals are empty!.
This method~which is rather close in spirit to our approach,
as it essentially considers that walkers which do not meet in
one dimension are free fermions! could also be used to re-
cover ~59!.

VII. CONCLUSION

The long time regime of domain growth phenomena is in
many respects analogous to what happens near a critical
point in a second order phase transition: this regime is char-
acterized both by universal exponents and by universal scal-
ing functions. In the present paper, we have determined the
distribution of domain sizes in this regime, for theq-state
Potts model in one dimension. This distribution is universal,
in the sense that, at least, it would remain the same for short
ranged correlations in the initial condition.

The exact expression we found is rather complicated@39–
42#, but it can be simplified in several limits~Sec. IV!. Our
exact results are different from~although rather close to! the
predictions of a simple approximation proposed recently
@16#. However, with sufficient numerical effort, we think that
the simulations of Sec. V indicate the validity of our results
against those@~28! and ~29!# of that approximation.

The present work has a lot in common with@8#, where the
exponent characteristic of the persistent spins has been cal-
culated exactly for the same system. Here we are concerned
with space properties, whereas@8# was devoted to time prop-
erties. The existence of nontrivial exponents for the number
of persistent spins@27–31# in d.1 certainly has its counter-
part in terms of distribution of domain sizes. However, in
d.1, size is one among many ways of characterizing a do-
main ~its volume, its perimeter, its shape@32#, its number of
neighboring domains, etc.!. It would be interesting to know
whether the probability distributions of all these characteris-
tics of domains are universal ind.1. Another open question
for systems ind.1 is how to define the domains in the
presence of thermal noise~i.e., at nonzero temperature!, and
how to distinguish them from thermal fluctuations. When the
typical size of domains is much larger than the equilibrium
correlation length, it seems intuitively easy to make this dis-
tinction, but, to our knowledge, a clean way of measuring the
size of domains~in presence of noise! has not yet been pro-
posed.
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APPENDIX: ANALYTIC CONTINUATIONS

In this appendix we show how to continue analytically
expressions~49! and~51! of A(q) andB(q) obtained in the
largex expansion forq,2 to the rangeq.2. It is easier to
start with the expressions coming from~45!–~47!; that is,

A~q!5
21

4p E
2`

`

dk ln@112mã~k!# ~A1!
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B~q!22 lnA~q!5 1
2 lnq~22q!1

1

8p2 E
0

`

y dy

3U E
2`

`

dk eiky ln@112mã~k!#U2,
~A2!

whereã(k) is given by@Eq. ~48!#

ã~k!522 expH 2k2~q21!2

pq2 J . ~A3!

As q→2, that ism→1
4, the integrands in~A1! and ~A2! be-

come singular atk50: two complex zeros in the complex
plane of the variablek approachk50 asq→2, and the ex-
change of these two zeros is at the origin of the analytic
continuation.

A generic example:To make an analytic continuation of
~A1! and ~A2! simpler to understand, we first treat a case
where expression~A3! for ã(k) would be replaced by

ã~k!5
22

11Q~k!
~A4!

where Q(k) is a real polynomial of degree 2n with
@Q(k);k2 as k→0, and such thatQ(k)11 andQ(k)11
24m have both only complex zeros#. One can therefore write

112mã~k!512
4m

11Q~k!
5)

j51

n
~zj2k!~zj*2k!

~yj2k!~yj*2k!
, ~A5!

whereyj are then zeros of 11Q(k) with positive imaginary
parts, andzj are then zeros of 124m1Q(k) with positive
imaginary parts. One can rewrite~A1! and ~A2! as

A~q!5
1

4p E
2`

`

dk
2mkã8~k!

112mã~k!

5
1

4p E
2`

`

dk
4mkQ8~k!

@11Q~k!#@124m1Q~k!#
, ~A6!

B~q!22 lnA~q!

5 1
2 lnq~22q!1

1

8p2 E
0

` dy

y

3U E
2`

`

dk eiky
4mQ8~k!

@11Q~k!#@124m1Q~k!#U
2

, ~A7!

and find, using the theorem of residues,

A~q!5
i

2 (
j51

n

zj2yj ~A8!

and

B~q!22 lnA~q!

5
1

2
lnq~22q!1

1

2 (
j51

n

(
j 851

n

lnH S iy j 8* 2 izj

iy j 8
* 2 iy j

D
3S izj 8* 2 iy j

izj 8
* 2 izj

D J . ~A9!

Expressions~A8! and~A9! are valid forq,2. To obtain their
analytic continuationA(q),B(q) to the rangeq.2, we have
essentially to exchange the role ofz1 andz1* , the two zeros
of 124m1Q(k), which go throughk50 whenq52. So, for
q.2,

A~q!5
i

2
~z1*2z1!1

i

2 (
j51

n

zj2yj ~A10!

and

B~q!22 ln A~q!5F12 lnq~q22!2 i
p

2 G
1F12 lnU iz1*2 iz1

iz12 iz1*
U1 i

p

2 G
1
1

2 (
j51

n

lnH S iy j*2 iz1*

iy j*2 iz1
D S iz12 iy j

iz1*2 iy j
D J

1
1

2 (
j52

N

lnH S izj*2 iz1
izj*2 iz1*

D S iz1*2 izj
iz12 izj

D J
1
1

2 (
j51

n

(
j 851

n

lnH S iy j 8* 2 izj

iy j 8
* 2 iy j

D
3S izj 8* 2 iy j

izj 8
* 2 izj

D J ~A11!

where we have added an infinitesimal imaginary part toq to
define the analytic continuation ln(iz12iz1* ) and lnq(22q).

Using the fact that

)
j51

n

~z12yj !~z12yj* !511Q~z1!54m,

and that

)
j52

n

~z12zj !~z12zj* !5
Q8~z1!

z12z1*
,

~A11! becomes
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B~q!22ln A~q!5 1
2 lnq~q22!1 ln4m2 lnuQ8~z1!u

1 lnuz12z1* u

2(
j51

n

ln$~z1*2yj !~z12yj* !%

1(
j52

N

ln$~z12zj* !~z1*2zj !%

1
1

2 (
j51

n

(
j 851

n

lnH S iy j 8* 2 izj

iy j 8
* 2 iy j

D
3S izj 8* 2 iy j

izj 8
* 2 izj

D J . ~A12!

This can be further transformed using the identity

1

2p i E2`

`

dkS 1

k2z1
2

1

k2z1*
D lnS ~k2zj !~k2zj* !

~k2yj !~k2yj* !
D

5 lnS ~z12zj* !~z1*2zj !

~z12yj* !~z1*2yj !
D ,

to become

B~q!22 ln A~q!5 1
2 lnq~q22!1 ln4m2 lnuQ8~z1!u

2 lnuz12z1* u1
1

2p i

3E
2`

`

dkS 1

k2z1
2

1

k2z1*
D

3 lnS 12
4m

11Q~k!D
1
1

2 (
j51

n

(
j 851

n

lnH S iy j 8* 2 izj

iy j 8
* 2 iy j

D
3S izj 8* 2 iy j

izj 8
* 2 izj

D J . ~A13!

Finally, using the identity

2m ã8~z1!5
4mQ8~z1!

@11Q~z1!#
2 5

Q8~z1!

4m
,

one finds, forq.2,

B~q!22 ln A~q!5 1
2 lnq~q22!2 lnu2m ã8~z1!u

2 lnuz12z1* u1
1

2p i

3E
2`

`

dkS 1

k2z1
2

1

k2z1*
D

3 ln@112m ã~k!#1
1

8p2 E
0

`

y dyU
3E

2`

`

dk eiky ln@112m ã~k!#U2.
~A14!

This expression together with@Eq. ~A10!#

A~q!5
i

2
~z1*2z1!2

1

4p E
2`

`

dk ln@112m ã~k!#

~A15!

give, for the generic example~A3!, the analytic continuation
A(q),B(q) of A(q) andB(q) to the rangeq.2.

Although ~A14! and ~A15! were derived forã(k) of the
form ~A3!, they should remain valid for a broader class of
functions, probably as long asã(k) is such that only a pair of
zeros of 112mã(k) exchange asq crosses 2.

We believe that~A14! and ~A15! remain valid forã(k)
given by ~48!, so that

z15 i
qAp

q21
A2 ln4m,

A~q!5
qAp

q21
A2 ln4m1

1

4

q

q21 (
n51

`
~4m!n

n3/2
, ~A16!

B~q!22 lnA~q!5 1
2 lnq~q22!2 ln42 ln~2 ln4m!

1
1

4p (
n52

`
~4m!n

n (
p51

n21
1

Ap~n2p!

22(
n51

`
1

nAp
E

A2n ln4m

`

dv e2v2.

~A17!
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