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For the zero temperature Glauber dynamics ofdfstate Potts model, we calculate the exact distribution of
domain sizes by mapping the problem on an exactly soluble one-species coagulationAiodeb@). In the
long time limit, this distribution is universal and, from itsomplicated exact expression, we extract its
behavior in various regimes. Our results are tested in a simulation and compared to the predictions of a simple
approximation proposed recently. Considering the dynamics of domain walls as a reaction-diffusion model
A+A—A with probability (@—2)/(q—1) and A+A—¢ with probability 1/g—1), we calculate the pair
correlation function in the long time regimgs1063-651X96)12809-9

PACS numbdrs): 02.50-r, 05.40:+j, 05.50+q, 05.20-y

I. INTRODUCTION that whenever two particles sit on the same bond, they in-

. . . stantaneously react according to
When a ferromagnetic system is quenched from the high Y 9

temperature phase to a temperature below its Curie tempera-
ture, one observes a pattern of growing domains. Inthe long | A with probability (q—2)/(q—1) 1
time limit, when the typical size of domains becomes much ¢ with probability 1(q—1).
larger than the lattice spacinigr the correlation lengihbut ) ]
is still small compared to the system size, the domains aYve will see that several of our results can be reinterpreted as
different times form dstatistically self similar structurésee ~ Properties of this 1D reaction-diffusion problem. _
[1] and references thergirFor a nonconserved order param- . Ar\]n efgy way to l;mplemer:jt tlh_e Z€ro temﬁerat(;lre_ dynamics
eter, it is well established that the size of the domains growg the 1D g-state Potts model Is to say that, during every
with time t like t¥2 Much less is known about the distribu- 'Mfinitesimal time intervallt, each spir§(t) is updated ac-
. o cording to
tion of domain sizes.

The purpose of the present paper is to give the exact dis-

tribution of domain sizes in the case of the one-dimensional Si(t) with probability 1—2dt
(1D) g-state Potts model evolving according to zero tem- S(t+dt)=4 S—1(t) with probability dt
perature Glauber dynami¢g] (in 1D, the low temperature S.4(t) with probability dt.

phase reduces only to zero temperatubes [ 3,4] the average

domain size grows with time like'/? the distribution of ~This shows the close analogy with random walk problems
domain sizes can only be determined up to a change of scalgl1]. As in [7,8,13, this analogy will be the basis of our
and we will rescale the lengtk of the domains so that, for calculation.

the distributiong(x;q), the average domain size is unity ~ The paper is organized as follows. In Sec. Il, we recall
(fxg(x;q)dx=1). So far, this distribution has been calcu- several properties of random walks which are used in the
lated only forq= [5,6] because it is related to the probabil- following sections and the relation between random walks

ity that two walkers do not meet up to timeOur goal, here, and the zero tempgrature Glauber dynamics of a spin chain.
is to extend this result to arbitragy>1 In Sec. lll, we obtain, using several relations derived8h

Our approach is a generalization of a calculation donéhe. probability Q(N) that, at timet, N given consecutive

. ! . spins are parallel, and we show how the distribution of do-
regently[?,S] to obta!n the fragnon of permanent spifi., main sizes follows from the knowledge of tiEN). In Sec.
Spins which never ﬂlp up to time. We ca!culate the prob- IV, we give more explicit expressions in various limits, and
?b"'ty Q(N) that_N given consecutive spins are parallel alin Sec. V we compare our predictions with the results of
timet, and explain hovvg(x;_q) can b_e extracted fror@(N)_. simulations. In Sec. VI, we calculate the pair correlation for
As for the number of persistent spins, the full expression otne reaction diffusion modélL).
Q(N) is rather complicated, but it can be used to write ex-
plicit formulas in various limits.

It has been known for a long time that the zero tempera-
ture Glauber dynamics of the 1D Potts model is fully equiva-
lent to a single-species reaction-diffusion mol@gb,6,9,1Q. Let us first recall some properties of random walks in one
If one represents each domain wall by a partitleand if the  dimension. Several of these properties are well kngimn
initial spin configuration is random with no correlation, it is particular they can be obtained by representing the walkers
easy to show that the particlésdiffuse along the line, and as free fermion$13—15), but we spend some time discuss-

II. PROPERTIES OF RANDOM WALKS
IN ONE DIMENSION AND THE q=« CASE
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ing them because they are essential to an understanding Below, we will use the fact thd8] the probability that, up to
the following sections. These properties will include thetimet, no pair meets amongn2walkers starting at positions
probability ¢; ; that two walkers starting at positions<x; X1=<X,="---Xy,, IS given by the Pfaffian of ther2x2n ma-
do not meet up to timg, and the probabilitg ", 5 thatno  trix ¢; ;
pair meets up to timé between 2 walkers starting at posi-
tions X, <X, <+ **Xpp.

Consider a random walker on a 1D lattice which hops, (™ -
during each infinitesimal time interval to its right with prob- C12... -1~ 50p ; €(T)Co(1)0(2)-Cotzn-v atzn
ability dt, to its left with probabilitydt (and of course re- (7)
mains at the same position with probability-2dt). The
probability p;(y,x) of finding the walker at positiog at time
t, given that it was initially(at time Q at positionx, evolves
according to

where the sum runs over all the permutationsf the indices
{1,2,...,1}, e(o) is the signature of the permutatien and
the matrixc; ; is antisymmetrized,

Cij=—¢Cj;<0 wheni>j.

d
dt Pe(Y.X) =Py +1X)+ Py = 1.X) = 2pe(y.X) There are several ways of derivir(§) and (7), for ex-
ample by considering the walkers as free fermions
=Py, X+ 1)+ p(y.x=1)=2py(y.x), (2)  [13,14,15,80r by using the method of images. One can also
simply write equations similar t¢4) which govern the evo-
and the solution is lution of these probabilities, and check th& and (7) do
satisfy these equations with the right boundary conditions
1 whenc; ; is the solution of4). (Note that the above relations
e _ —2(1—cosA)t would not be valid in dimensions higher than 1: it is only in
Py, X) = 2 f_ Wde cosx—y)be - @ 1D that whenever 1 and 2 do not meet, it implies that 1 and
3 do not meet because of the order of the walkers along the

Consider now two walkers on this 1D lattice starting at po-line.)

sitionsx; andx; with x;<X; . The probabilityC,(x; ,X;) =¢; ; Apart the probabilities that the walkers never meet, the
that these two walkers never meet up to timevolves ac- knowledge of the matrix; ; allows one to calculate all the
cording to meeting probabilities between coalescing random walkers

[8]. For example, when four walkers start at positions
X1 <Xp;<X3<<X4, One finds for the probability},, 3, that

d , , , ) walkers 1 and 2 coalesce, walkers 3 and 4 coalesce, but
gt CtxX)=CiX+1X) +Ci(x=1x) + Cy(x,x"+1) walkers 2 and 3 do not coalesce before titme
+Ci(X,x" = 1) —4Cy(x,X"), (4)
12347~ C1 3+ Co gt 0(1?%,3,4_ C12—Cy3—Caya, 8

with the boundary conditions th&;(x,x)=0 at any timet
and thatCy(x,x")=1 if x<x'. It is easy to check that the
expression

and for the probabilityy, 53 7+ 1 5 3 4 that walkers 1 and 2
and walkers 3 and 4 do not megtithout saying whether
walkers 2 and 3 meet or not

e .
¢ =Cy(x ,x))= L[ do sing sin(x; —x;) 6 e~ 4(1—codt Y1034t 1257 Crat Cout €254 Cra—Coa. (9
A (Y 1—cos¥

5 In the long time limit, all the above expressiof®, (7),
(8), and (9) remain valid, withc; ; replaced by the asymp-
satisfies(4). It is remarkabld 8] that the probabilities of all ~ totic expression of5),
the meeting events dfl coalescing random walkers starting

at positionsx;<x,=<---<Xxy can be expressed in terms of
the matrixc; ;. For example, for three walkers starting at ¢ i =Cy(x; ,x;) =T L (10)
positions x;<x,<Xs, the probability that none of them ! ! J8t
meets any of the other two up to timhés given by
2 (2 _.
C19+Cog—Cp 3. f(z)= AL e "du. (13)

For four walkers starting at; <X,<X;<X,, the probability
that no pair meets up to tinteis given by A. Relation between random walks and the dynamics

of the spin chain

@ As in [12,7,8, we are going to use the close analogy
C1234=C1,£347C14C23C1,C24- (6)  petween the problem of coalescing random walkers and the
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properties of a spin chain evolving according to zero tem-and the distributiorg(x;) of domain size$6] (normalized
perature dynamics: assume that we want to calculate, for such that the average size is 1
Potts chain with no correlation in the initial condition, the
probability that spins at positior; <x,<---<xy are equal () =
at time t. One can consideN coalescing random walkers g(x;)=(1) P _ 7 xe Xl (18)
starting at positiong; <x,<---<xy, and if P(m,t) denotes Z py(1")
the probability that, at time, there arem walkers left in the X !
system, one hal</,8]
This expression had been obtained up to a factdd .
For similar reasons, it is easy to see that, dere, the

Probabilitf Sy, (1) =S, (1) = -+~ S (D} probability thatS, (t) =S, (1) # S, () =S, (1) is given by

N
1
=&, PO gmT (12 ProbabilinfS,,(1)=S,,(t)# Sy (1) =S (0} = iz
19
This expression can be understood by noticing that initially.

the spins are random, and that the probability tmaspins This can be used to obtapy(l,,1,), the densily of domains
have the same color in the initial condition is jusg®7*. of lengthl, followed by a domain of length, (because for

g=«°, whenever two spins have a certain color, all the spins
between them have the same calor

B. Caseq=%
In the limit g—oo only the first term of the sum contrib- " _ _
utes, and one finds that Probability Sy, (t) = S, (1) # S, +1(1) = S, (D)}
- = l1,15).
IDrObabllIt){s’(l(t)= sz(t) - 'S’(N(t)}= 1- Ct(xllxN)- I1>X22—X1 |2>X4E—X2—l p2( ! 2)
(A3 (20)

This expression can easily be understood:ffero, all spins  and consequently(8)—(11), the (normalized distribution
in the initial configuration are different; inl(t)ZSxN(t)v 0,(x,y;) of neighboring domain sizes is given by

this means that the two walkers startingxatand x,, have

met before timet and, therefore, at time, all the spins (Y%, (1hy)

located betweerx; andxy are equal. This can be used to g (x y:00)=([)2 PPy ™ (x+y)[e CHyHmia
calculate the distribution of domain sizes in tipe>o limit: Zppa(l’) 2

if p4(1) is the density of domains of length one has _ef(x+y)2w/4]_ (21)

Probability S, (1)=S, (t)=---S, (1)} This means that the lengths of consecutive domains in the
. 2 N limit g—« are correlated. In particular, If, andl, are the

lengths of two consecutive domains, one has
= X (I=xytxy)pu(). (14
I=xXNy—Xq
i (l112) T * _ 3
This leads to 7= | dx| dy g(xy;@)xy=—#1. (22
" o Jo m

_ _ _ _ Remark 1The knowledge of the distribution of domain sizes
P1(D)=2C(01) = C(0]+1) = C(0I —1), (19 and of all the correlations between consecutive domain sizes
for q=o gives the distribution of domain sizes for arbitrary
g. If 14,l,,...l,,... are the lengths of consecutive domains
wheng=«, one can obtain the lengthof a typical domain

and, in the long time limit

" 1 o 1 6 for finite q by
P1 8t \/5 .

r th probability \—

For gq=o0, this allows one to calculate the average domain by with probability q
size at timet, L+l g-1

[=¢ - with probability —— (23

PERPEER qfl
Ip4(l with probabilit .

I_Zpl() & 1 \ p Y

<>°°_ _fl(o)_ wt ( 7)

This is because one way of performing the dynamics at finite
[ g is first to make the system evolve with all spins different in
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the initial condition(as in the casg=), and then suppress
the domain walls with probability @/ This is due to the fact
that, for finiteq, two initial values are identical with prob-
ability 1/g.

A consequence of23) is that, in the long time limit, the
average length for finitg is given by(17)

_ 9 Qg
<I>q_q—1<|>°°_q—1 2mt . (29
It is clear also from(23) that the calculation of any other
moment(I") of the length would require the knowledge of
all the correlations between the.
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lation functions(valid at an arbitrary timewhen the initial
condition is random with no correlatiofi.e., each spin ini-
tially takes one of the possible colors with equal probabil-
ity). These exact expressions involve the probabiliG&%
given by (5)—(7). One can show in particular that the prob-
ability that N spins located at positions;<x,=<---Xy are
identical at timet is given by

ProlS, (t)=---S (1)}
N—-1
= 1‘#21 Cii+1T Mzgj Ci(,zi)+1,j,j+1

Remark 2:If these correlations between successive do-

main sizes forg=c were absent, the calculation of the nor-
malized distribution g(x;q) for arbitrary q would be
straightforward: neglecting the correlations (@3) would
give, for the generating function @f(x;q),

(g—1)[5dx g(x;°)e**dx
q—Jdx g(x;°)edx
(25

f dx g(x;q)e* @@ Dgx=
0

Then using expressiofil8), one would find(by analyzing
the limit a— —o)

7 q 7 (39—1)q°
9 D=5 471X 22 (q-1)° ¥

7 (159°-69+1)g°

;
+ 960 Q=17 +0(x") (26)
and (by analyzing the pole i)
g(x;q)=exd —A(q)x+B(q)] for large x, (27
whereA(q) is the root of
[ B Gt }_
) fo dx xex;{ 7 a A(g)|=q, (28
andB(q) is given by
B(q)—In| — 9 TAW@ ] (29
V= grr2(a-DAW@? )

For g=2, this is precisely the prediction recently given in
[16], based on the assumption that the intervals,,... are
uncorrelated. We have already s¢é2l) and(22)] that this

assumption is not valid. Our goal in the following sections is

to obtain the true distributiog(x;q) where these correla-

—u® >

C-(??)‘Fl--+lkk+l
i ek bR

+ee A MC1,N_M22i C(lﬁ),i-%—l,N
+:“3i2<j Cg.:,)’i),i+1,j,j+1,N_”'}1 (30
where
A=q-—1, (31)
q-1
= . 32
k=g (32

[Note that as long aBl is finite, (30) is the sum of a finite
number of terms and is therefore a polynomial in the variable
]

The proof of(30) is exactly the same as the one given in
[7]: one shows tha30) is equivalent to(12) for N coalesc-
ing random walkers starting at positioRg<Xx,=<---Xxy by
considering all possible coalescing events betweenNhe
walkers. The weighty,, in (30) of an event where at time
the N walkers have merged intm walkers is given by

(m—=2)(m—3)
2!

2

an=1-(m-1L)u+ M

(m—=3)(m—4)(m—5)
B 3!

,u,g...—h(,u—(m—3),u,2

(m—4)(m—5)

o1 (33

o)

tions have been taken into account. We will see that the

exact expression af(x;q) differs from (26), (28), and(29).

lll. ARBITRARY CORRELATION FUNCTIONS

Our solution for the distribution of size of domains is

which is justa,,= 1/q™ ! [see(31) and(32)]. This therefore
proves thai30) is equivalent to(12).

In [8], several ways of rewriting30) were given. In par-
ticular it was shown that30) can be rewritten as the square

based on our ability to write exact expressions for all corre+oot of a determinant
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100
010
00
Prob {S, (t)=---S ()} =

0 1 0

-1 0 1 0

0 -1 0 1

+u

1

0

-\x 0

By choosingN consecutive sites for; <x,=<---Xy, expres-
sions (30) and (34) give the probabilityQ(N) that N con-
secutive spins are parallel and the dengityl) of domains
of lengthl follows from a relation similar tq14),

Q(N)=|§N (1=N+1)py(1).

Long time regime

In the long time limit,c; ; varies slowly with the positions
x; and x; of the sites, and becomes a continuous functio
c(x;,X;) of these two positions. Moreover, for largg all
the sums in the expressid80) become integrals. As if8],
one can show that in this continuum limi80) or (34) can be
rewritten as

Q(N)=[v1—uCT(N,N)— A= u€(N,N) Jexd 3tr InM],
(39

where this timec(x,y) = f[(y—x)/+/8t] as in(10) and(11);
the matrixM is defined by

d
M(X,y)=6(X—Yy)+2u ax c(x,y),

and the quantities appearing (85) are given by

N
J dx;...
0

N d
X J;) dx, ax C(Xq,X2)...

[

trInM=—2

n=1

(—2u)"
n

dx (36

C(Xn 1Xl)

and
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0
0
1
0 Y 1/2
0
0 Ci,j
(34)
1
-1 0
[
. N
C(N,N)Ef0 dy c(N,y)M~Y(y,N)
* N N
=> (—2,0”] dxl...f dx,c(N,X;)
n=1 0 0
d d
Xd_x c(xl,xz)...d—xc(xn,N). (37

If one normalizes all the distances on the lattice to make
nthe average domain size become 1, one definkyg

N= 2t —qﬁ X, (39)

1

and the distribution of domain sizegx;q) is then given by

QN) = fjdy(y—x)g(y;q»

so that, in the long time limit, one ends up with

f:dy(y—x)g(y;q) =[V1—pAL(X) =NV — pA(x)]et2™),

(39)
where
- zZ VA
Al<z>=n§1 (—sz‘fodxl...fodxmz,xl)
d d
><d—x Y(X1,X2)... ax Y(Xn,2) (40
and
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* (—2u)" (2 7 d IV. EXPANSIONS FOR THE DISTRIBUTION
f dxl...f dX, == v(X1,X5)... OF DOMAIN SIZES
n=1 n 0 0 dx

The exact expressiof89) for g(x;q) requires the calcu-

1

AD)=—5 2
d lation of A; and A,, which we did not succeed in doing
d

Xgx Y Xn X0, (41) explicitly for generalq and x. However, it can be used to
expand to arbitrary orders in various limits: smalllargex,
and largeq.

where
A. Small x
2 [(VEy-x092a-1) The smallx expansion is straightforward. One just needs
v(X,y)=F(y—x)= \/—_ J e Ydu (42  to expandy(x,y) in (42) in powers ofy—X,
a
3
q T [ q
XY)=F(y—=X)=—— (y=X)— — | —| (y—x)*
and y(Xy)=F(y—x) q_l(y ) 12(q_1) (y—x)
2 5

d q  [=mly=x%? R ) (y— )8

—_ - — | =] (y—X)°...,

dx Y(X!y) q_l eX[{ 4(q_1)2 160 q—l

and to replacey by its expansion in(39), (40), and (41).

Differentiating(39) twice with respect tx leads to the exact
expression ofj(x;q).

T q 77_2 q3 5 71_2 3

T R N e T TR T ICE T P ICR T IR

= g%3+23%y) , q®

MATHEMATICA performs this to high order, and we found, for
g(x;q) up to orderx®?,

3 5 3 5 4

= 9 . 7 9 . 7 Jq

7

7 g%(11+29) ° qt

9 11

T 26880 (q-1)°
8 q'%(429+547q)

12288(q—1)° "
b q*%64— 64q+ 3157q°)

_ 10_
483840 (q—1)° X 245760(q— 1)L~

12 13 14
170311680 (q-1)2 1857 945 600 q-15 X+ 0(x). (43
|
This expression is clearly different from the one obtained %
(26) in the uncorrelated approximatidi6]. Note that only Q(N)=f dy(y—x)g(y;q)
the first term in both expansions is identical. X
=exf —A(Q)x+B(q)—2InA(¢)]. (49

B. Large x

For domains much larger than the average size, we expediherefore, we need the largebehavior ofA,(x) andA,(x)
that, for finiteq, g(x;q) decays exponentially: given by (40) and (41). It turns out that(as in[8]) the pref-
actor y1— uA;(X) —AvV— uA;(X) vanishes ax—, when
g(x;q)=exd —A(q)x+B(q)]. q>2 but has a nonzero finite limit whep<2. One has there-
fore to examine these two cases separately.
f (i) For g<2, the prefactofwhich has been calculated in
equation(35) of [8]) has the following limit:

(44)

This can be understood by recalling that a large domain o
sizeL at finite q is created23) by combiningn domains at
q=o with n typically L/{l)4-... The probability of this is
exponentially small im. If the domains ag=%« were not
correlated, the constanfyq) andB(qg) would be given by
(28) and (29). The existence of correlations between the
lengths of domaing22) alters the coefficients of the decay,
but not the exponential decay itself.

The largex behavior ofg(x;q) is directly connected39)
to the largeN behavior ofQ(N),

for x—oo.
(46)

V1= pAL(X) = A= A (X)—a(2—q)

To evaluate the large behavior ofA,(x), one can use well
known results on Toeplitz determinant$8—20, namely,
that for an even functiom(u) which decays as— *o,



o (=2p)"
n

X X
fdul...f du,a(u;—u,)...a(u,—uyq)
0 0

1

X “ ~
=5 J_w In[1+2A(k)]dk

o 1 o0 . 2
+f udug f e kU In[1+ 2,3 (K)]dK] |

(47

where

E(k)zfm kua(u)du.

When this is used in the case 8§(x) given by (41) and
(42), one finds that

~ —wuzqz
a(u)=-— q-1 ex 4(q—1)2

and
- —k*(q—1)?
a(k)=—-2ex T . (48

This leads to the following expressions in terms of
p=(q—1)/9*

1 (4u)"
AO=7g S r (@9
B(q)—2InA(q)=7 Ina(2—q)
1 (4,u i
4 =2 = m
(50)

which can be rewritten in order to make each term have a

finite limit in the previous expression whep-2,

1
4

(4u)"
n

Ing— q—q_rJr

wE

p=1

>

n=2

B(a)—21InA(q)=

(51)

1
Jpin-p) |

In (49) and(51), the series are convergent for all valuegjof

[since @—1)/g’>=u=<3], and so these expressions can be

used to calculate numericalB(qg) andB(q). In Sec. V, we
will compare the values predicted 1%9) and (51) to those
[(28) and (29)] of the approximation where the domains are
uncorrelated.

Remark 1:The radius of convergence of the sums which
appear in(49) and (51) is u=31. So asu—1, that isq—2,
these expressions could become singular. /As; when
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g>2, (49) and (51) can be computed for both fay<2 and
g>2. However, it is easy to see that these expressions as a
function of q are not analytic afg=2 (for example, it is
possible to show that d{dq)/(q—1/q)A(q)— J7/4 as
g—2, so thatA(q) given by (49) has a cusp atj=2). We
will argue below, that fog>2, expression§49) and(51) are
no longer valid as they are, but should be replaced by their
analytic continuation from the range<2.

Remark 2: A priorj in the Potts model is an integer and
so the cas@<2 is of little interest. However, Fortuin and
Kasteleyn[21] showed a long time ago that noninteger val-
ues ofg have physical realizations as cluster models. Here it
is very easy to check that, if one considers the zero tempera-
ture dynamics of an Ising chain where the spins are initially
uncorrelated, but a nonzero magnetizationthe distribution
of the sizes of domains of spins is exactly the same as for
the g-state Potts model when

2

= 1m

In particular,g— corresponds to an initial condition where
the + spins are very rare, wheregs-1 corresponds to very
few — spins. Som can take any value betweenl and 1,
and g can vary continuously between 1 and Also, for
g>2, the reaction diffusion moddll) makes sense for a
nonintegery.

(i) For g>2, the largex behavior ofA,(x) is exactly the
same as fog<2. However the prefactor i(B9) vanishes as
x—o, The evaluation of this prefactor for large is not
simple. A similar calculation was done 8], and the result
for g>2 turned out to be simply the analytic continuation of
the result obtained fog<2. Here we assume that this prop-
erty remains true fog(x;q) (in the smallx expansion, at
least, one can easily check that all the coefficients can be
analytically continued at|=2), and thatA(q) andB(q) in
the rangeq>2 are given by the analytic continuation
A(q),B(q) of their expression$49) and(51) for q<2.

In the Appendix, we give a way of deriving the following
expressions oA(q) andB(q):

—— qim 19 <& (4p)"
Al ):q—w\/T"rMJqu_—lnzl —,—nél“z , (52
B(q)—2In A(g)=2 Ing(g—2) — In4—In(— In4u)
1 Gt
N N )
—22 \/_f_n n4’udv e,
(53

C. Large g expansion

In the largeq limit, u, A and y(x,y) can be expanded in
powers of 1¢ [see(31), (32), and(42)]. This leads to
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z dvy(x,2)
A(2)= —M72(0,Z)+4M27(0.Z)J dx ¥(0x) —5 \
0 X (=%
1
+ O( _) , 1.60
q3
A(2) X o 1 ) 150 |
Z2)=——+ ,
2( q 7

and to

X 1
Q(N):l—f du e ™y =
0 q

X 2
—Xx 1—f du e ™74
0

* —wu2/4 — x4
+2| due ™M"—xe ™
0

X y 1
—ZJ dyJ dz e‘”’4{22+(x‘y)21} +0 7), (54)
0 0 q
which, using(39), becomes
g(x.q): z Xefxzw/4+ 1 _ ’77_2 X387X27T/4_ z X2e7X21T/4
' 2 q 4 2

T e Xeml | ™ XJXdze—[(x—z)2+zz]w/4
2 2 0

+0

1
?) . (55

For the moments of distributiog(x;q), this gives

M= 2 nF n 1 ! - nr n 1
(x)—\/—; >t +a (n+1) >t
_il" E+1
p 2
2 & (n\ [p+1| [n—p+2 1
2B ol
(56)

and, in particular,

1+--|+0

o=

2
az .
Remark:Because 0f23), all the results to order @/can

be recovered from the knowled@€l8) and(21)] of g(x;=)
andg,(x,x";*), and it is easy to check that

(x;9) 1+1 (1 1) 1+1
X;q)= — - = —|X;°
g(x;q q q 9 q
1 [[1+1alx 1 1
+—f dz || 1+ —|x—2z,z;%|; +O —2)
g Jo q q

140 -

1'30040 10.0 20.0 30.0

)

FIG. 1. The second momet?) vs(l)., for q=2, 3, and 5 for a
system of 18 spins. The plain lines indicate the values predicted by
the improved approximatio(68), and the dashed lines those of the
independent approximatiai®?).

is equivalent tg55). It is straightforward in principle to gen-
erate higher order terms indl/but the expressions become
quite complicated.

V. SIMULATIONS

In order to check the validity of our results against the
predictions of the independent interval approximatj@s,
we made a simulation. Because @3), the distribution of
domain sizes for all values af can be extracted from a
single simulation done aj=<«. One starts with a random
initial condition atq=< (this is done by choosing initially
each spin with a different value: for example, spiis given
color i) and let the system coarsen according to zero tem-
perature Glauber dynamics. Once the systeng-ate has
evolved for a certain time, one obtains a system for an arbi-
trary value(integer or nonintegerof q by removing each
domain wall with probability 1d.

The easiest properties one can measure are the moments
of the distribution of domain sizes. Our ddfar a system of
10° sping for the second momenix?) of the distribution
g(x;q) of domain sizes fog=2, 3, and 5 are shown in Fig.

1 as a function of the average sidg.. of the domains for
g=o. For Glauber dynamics, this averagb.. increases
with time like t¥2. The largeK(1)., is, the closer we are from
the asymptotic regime. However, as the simulation is done
for a finite system, the results become noisy if one waits too
long, simply because the number of domains is too small to
allow good statistics.

These numerical results can be compared to the approxi-
mation where the correlations are neglect2d),

+ (57)

q-14
<X2>independen't_‘T P

QN

We see in Fig. 1 that our numerical data seem stable and
accurate enough to show a clear discrepancy from the ap-
proximation. Unfortunately, our exact expressi¢d) is
complicated, and we were unable to obtain closed expres-
sions of the moments for the whole rangeqgoHowever, we
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TABLE I. The exact values oAA(q) and B(g) obtained from

04| 1 (49 and(51) for q<2, and(52) and(53) for g>2, are compared to
those coming from the independent domain approximati@as
and(29).
o
% Approximate Approximate
< o2l % X q ExactA(q) ExactB(q) A(a) B(a)
= %O Independent approximation
i sl x°° | 1.2 1.0769 0.153 1.0675 0.133
= o , 15 1.1748 0.344 1.1532 0.299
B el 1 2.0 1.3062 0.597 1.2685 0.517
J; x 3.0 1.4998 0.963 1.4370 0.832
s % 1 50 17537 1.439 1.6630 1.239
10 , , ( . 10.0 2.1066 2.101 1.9777 1.809
00 10 20 80 40 50 100.0  3.2273 4.369 3.0065 3.804

FIG. 2. The logarithm of thémeasureylintegrated distribution  to be valid, so that the range where the agreement is the best
h(x;q) divided by its predicted asymptotic formA(q)x—B(q)  js 1<x<3.5. In that range, the independent interval approxi-
+InA(q) +Inh(x;q) for a system of X1CP spins after 1000 updat- mation presents a nonvanishing slope, indicating t28k is
ings per spin. When the exact expressionsA¢d) andB(q) are ot correct. Moreover, if one considers that the datathe

used(circles, the agreement is very satisfactory in the rang&1 jnqenendent cagdlatten forx>3.5 (where the data start to
<3.5, wherex is large enough but the data are not yet too Noisy, y e noisy, the fact that the limit in Fig. 2 is below zero

whereas, when one také¢q) andB(q) of the independent domain indicates that predictiof29) for B(q) is not correct.

‘;2 ?é%ﬂ?ﬁ;gﬁ:iﬁs T;LZ'; no range where the data are con- In Table I, the exact values @&&(q) and B(q) obtained
9 ' from (49) and(51) for q<2 and from(52) and(53) for q>2

could test our conviction that correlations between the do-:re fngmpZ:i%?(tzos;g%sde(zcg)m\l/r\}g zg?t:; 'ggﬁopjnﬁ%?fﬁc:roen;?'ns
mains aig=o have an effect. If in the calculation ¢t2), we PP : ’ 9 '

neglect the correlations between all pairs of domains exceﬁpey are very close.

for nearest neighbor domaitig2), we find an improved es- We.trled' also 'to see whether one could d|§t|ngU|sh by
timate numerical simulations our exact results from the independent

interval approximation for smalk, but we found that this
q-1/3 was even more difficult than in the largelimit.
— (__ 1), (58) As we did not obtain a closed form for the distribution
q m g(x;q), we used Padapproximants based on the expansion

, ) (43) to draw the shapes @(x;q) shown in Fig. 3. We see
which, although not exact, seems to be in much better agregp ¢ asq—1, the shape becomes an exponential.

ment with the results of the simulations.
As we could not calculate the moments frai39), we
tried to test our results by measuring the exponential tail of V1. REACTION-DIFFUSION MODEL

the distributiong(x;q). It is always difficult to measure @ The relation between the spin dynamics and the reaction-
probability distribution numerically, because one has to usgjiffysion model (1) can be used to calculate all kinds of

bins: if they are too narrow, the data are noisy, and if theysroperties of the reaction-diffusion model. For the zero tem-
are too broad, all the details of the distribution are smooth-

ened out. To avoid this difficulty, we measured the integrated
distributionh(x;q),

q—14
<X2>improved:_ ;

2
+=+2
q q

q=1.2

h(x;q)= fg(y;qmy

and we compared it to our predictidqad4) for the tail [(49)

and (51)] for q<2 and[(52) and (53)] for g>2. We also
compared the results of our simulations to the prediction of
the independent domains approximatit®8) and (29). In

Fig. 2, we plot the logarithm of the integrated distribution
divided by its predicted form[A(q)x—B(q)+InA(q)]

+In h(x;q) versusx for q=>5 for a system of two millions
spins, after 1000 updatings per spin. We see that the agree-
ment is very good whe(b2) and(53) are used, whereas, for
(28) and (29), there is a small but visible discrepancy. Of
course, for arx that is too large, our data are too noisy, and FIG. 3. The shapes of the distributia(x;q) of the interval
for anx that is too small, the asymptotic form has no reasonengths obtained from a Padaalysis of expansiof43).
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perature Glauber dynamics of the Potts chain, it results froninterval of lengthl is empty (or two intervals are empjy

the analogy to random walk$Sec. 1) that

q—1
Prob{sxlu)#sxz(t)}:(T)cl,z

and that{ Eq. (9)] for x; <X, <X3<X,:

Probability S, (t) # S, (t) and S, (t)# Sy, (1)}

q-1)?
a0 [C13TCo4=Co3—Cia

2
+c%34.

In the long time regime, usin@.0) and(11) for x;=0, x,=1,
X3=r, andx,=r+1, this becomes

Probability{ So(t) # S; (1) }=H'(0),
Probability{ Sy(t) # S;(t) and S,(t)#S, . 1(1)}

q-1\°
Z(T [—H"(r)+H"(r)H(r)

—(H'(r)?+H'(0))],

where

H(r) 2 f”\m v’y
ry=— e u.
Jm Jo

This method(which is rather close in spirit to our approach,
as it essentially considers that walkers which do not meet in
one dimension are free fermionsould also be used to re-
cover(59).

VIl. CONCLUSION

The long time regime of domain growth phenomena is in
many respects analogous to what happens near a critical
point in a second order phase transition: this regime is char-
acterized both by universal exponents and by universal scal-
ing functions. In the present paper, we have determined the
distribution of domain sizes in this regime, for tlgestate
Potts model in one dimension. This distribution is universal,
in the sense that, at least, it would remain the same for short
ranged correlations in the initial condition.

The exact expression we found is rather complicd88d-

42], but it can be simplified in several limi{Sec. I\). Our
exact results are different frofalthough rather close tdhe
predictions of a simple approximation proposed recently
[16]. However, with sufficient numerical effort, we think that
the simulations of Sec. V indicate the validity of our results
against thos¢(28) and (29)] of that approximation.

The present work has a lot in common wji8i, where the
exponent characteristic of the persistent spins has been cal-
culated exactly for the same system. Here we are concerned
with space properties, wherel@ was devoted to time prop-
erties. The existence of nontrivial exponents for the number
of persistent spinR27—-31] in d>1 certainly has its counter-
part in terms of distribution of domain sizes. However, in

If these expressions are interpreted in terms of domail>1, size is one among many ways of characterizing a do-

walls (i.e., of particles in the reaction-diffusion moglebne

obtains that the density of particles and the probability

p-(0,r) of finding a pair of particles at 0 and mtare given by

q—1
~—H'(0)=
=3 (0)

2t

qg-1 1
q

2
pz(o,r):(qT) [—H"(r)+H"(r)H(r)

—(H'(r)*+(H'(0))’].

By eliminating the timet between these two equations,
one finds that, in the long time limit, the probability of find-

ing a particle at 0 and is given by

o

1-e 2+ 2ze—22f e vdu| (59

z

p2(01)=p?

and

q
7= —

q—1 pr.

NEl

We see in particular that the correlations decay like a Gaus

ian instead of the “usual” exponential.

Remark:It has already been notd@2-2§ that several
properties of reaction-diffusion models can be calculated ex-
actly, by writing closed equations for the probability that an

S_

main (its volume, its perimeter, its shap@?2], its number of
neighboring domains, efc.It would be interesting to know
whether the probability distributions of all these characteris-
tics of domains are universal oi>1. Another open question
for systems ind>1 is how to define the domains in the
presence of thermal noigee., at nonzero temperatyreand
how to distinguish them from thermal fluctuations. When the
typical size of domains is much larger than the equilibrium
correlation length, it seems intuitively easy to make this dis-
tinction, but, to our knowledge, a clean way of measuring the
size of domaingin presence of noigehas not yet been pro-
posed.
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APPENDIX: ANALYTIC CONTINUATIONS

In this appendix we show how to continue analytically
expression$49) and(51) of A(g) andB(q) obtained in the
large x expansion folg<2 to the rangey>2. It is easier to
start with the expressions coming fro@#bs)—(47); that is,

A(q)=:1—71 f:dk IN[1+243(K)] (A1)
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1 o)
Wjoydy

B(q)—2InA(q)=7 Ing(2—q)+

2

X fw dk &% In[1+243E(K)]
(A2)
wherea(k) is given by[Eq. (48)]
CL2(~_ 2
E(k):—Zex;{%]. (A3)

As q—2, that isu—, the integrands ifA1) and (A2) be-
come singular ak=0: two complex zeros in the complex
plane of the variablék approachk=0 asq—2, and the ex-

change of these two zeros is at the origin of the analytic

continuation.

A generic exampleTo make an analytic continuation of
(A1) and (A2) simpler to understand, we first treat a case
where expressiofA3) for a(k) would be replaced by

1+Q(k)

where Q(k) is a real polynomial of degree n2 with
[Q(k)~k® as k—0, and such thaQ(k)+1 and Q(k)+1
—4u have both only complex zerpOne can therefore write

a(k)= (Ad)

1—"[ —k)(z} —k)
=1 (y —k)
wherey; are then zeros of -Q(k) with positive imaginary
parts, andz; are then zeros of :-4u+Q(k) with positive
imaginary parts. One can rewrid1) and(A2) as

1+2uak)=1- (A5)

1+Q(k

1 (=  2uka'(k)
AQ)= 42 f_mdk1+2,[5(k)
1 4ukQ' (k)
_EJxdk[1+Q(k)][1—4u+Q(k)]’ (A6)
B(a) -2 InA(q)
. 1 © dy
=3 |nQ(2—Q)+WL v
- 4uQ' (k) 2
ky
|| awe [1+QWI1-4urQo] © A7
and find, using the theorem of residues,
i n
A@)=5 2,27, (A8)

and
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B(a)—2InA(q)

Lo
ij,
Lk
iy

=

Inq(z q>+22 E 5,

=

iz
ExpressiongA8) and(A9) are valid forq<2. To obtain their

,—iz]-

(A9)
j

analytic continuatiorA(q),B(q) to the rangeg>2, we have
essentially to exchange the role nfandz} , the two zeros
of 1-4u+Q(k), which go throughk=0 wheng=2. So, for

>2,

— i -
A)=7 (Z-z)t5 2 27y (ALD)

and

B(q)—2In A(q)=

1I 5 o
2 ng(gq— )_IE

1I izi—izy| . w

+|= +i=

2" izy—iz} '2

+£é n iy*—izy | [ izg—iy;
2= iyj —izy ) \izy —iy;

+1§ n iz} —izy | [iz] —iz
2= izj*—iz’l‘ izy—iz
12 iy* —iz;

> > In[(_ C—
2=z [ Vyg -y
iz —iy;

x| (A1)
iz), —iz;

where we have added an infinitesimal imaginary pad to
define the analytic continuation Ia{(—iz}) and Imy(2—q).
Using the fact that

Il @-yp@-yhH=1+Q)=4u,

and that

" Q'(zy)
H (21— 7)) (21— 7 )_Zl—zl’l"

(A11) becomes
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B(q)—2h A(q)=3 Inq(q—2)+Indu—In|Q’(zy)]

+1n|z,—Z¥|

_2 In{(z} —y)(z1—y])}

+j22 In{(z,—2)(zf —2))}

*%,il jél '”{(:xy/j ij)

(A12)

This can be further transformed using the identity

EN 1 1 (k—zj)(k—zj*))
_ n( (zl—zﬁ(z*{—zj))
(Zl_yr)(zf_yj') ’
to become

B(q)-2In A(q)=3

Ing(g—2) +Indu—In|Q"(zy)|

—In|z,— zl|+ —

xf dk ! !
_ k-2, k-2

Finally, using the identity

4uQ'(zy) Q'(zy)

P B)= QP 4
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one finds, forg>2,

B(q)—2In A(q)=2 Inq(q—2)—In|2x3’ (zy)]

—In|z,—Z} |+ 5— 5

xf i ———
e \k—2z3 k—2Zf

1 o
XIn[1+2ua(k)]+ 8.2 J;) y dy‘

o 2
xf dk €Y In[1+2p3(K)]

(A14)

This expression together wiflieg. (A10)]

— 1 (=
(A15)

give, for the generic exampl@3), the analytic continuation
A(q), B(q) of A(q) andB(q) to the rangeq>2.

Although (A14) and (A15) were derived fora(k) of the
form (A3), they should remain valid for a broader class of
functions, probably as long @fk) is such that only a pair of
zeros of #2ua(k) exchange ag crosses 2.

We believe thai(A14) and (A15) remain valid fora(k)
given by (48), so that

— qVm 194 < 4"
A(Q)—q_—l _In4M+ZT1nZ]_ —ng72— (A16)
B(q)—2InA(q)=3 Inq(q—2)—In4—In(—Indu)
18 p's 1
4mi=z N =1 p(n—p)
“ 2
-2 dv e V.
2 \/_ V=n ndp ve
(A17)

[1] A. J. Bray, Adv. Phys43, 357 (1994.

[2] R. J. Glauber, J. Mat. Phyd, 294 (1963.

[3] A. J. Bray, J. Phys. 23, L67 (1990.

[4] J. G. Amar and F. Family, Phys. Rev.44, 3258(1990.

[7] B. Derrida, V. Hakim, and V. Pasquier, Phys. Rev. L&8,
751(1995.

[8] B. Derrida, V. Hakim, and V. Pasquier, J. Stat. Phige. be
published.

[5] D. ben-Avraham, M. A. Burschka, and C. R. Doering, J. Stat. [9] Z. Racz, Phys. Rev. Letts5, 1707 (1985.

Phys.60, 695 (1990.
[6] B. Derrida, C. Godrehe, and |. Yekutieli, Phys. Rev. A4,
6241(1991).

[10] V. Privman, J. Stat. Phy$9, 629 (1992.
[11] T. M. Liggett, Interacting Particle System&Springer-Verlag,

New York, 1985.



54 DISTRIBUTION OF DOMAIN SIZES IN THE ZERD . .. 2525

[12] B. Derrida, J. Phys. 28, 1481(1995. [24] K. Krebs, M. P. Pfanmnniler, B. Wehefritz, and H. Hinrich-

[13] P. G. De Gennes, J. Chem. Phy¢8, 2257(1968. sen, J. Stat. Phy§8, 1429(1995.

[14] J. Villain and P. Bak, J. PhysgParig 42, 657 (1981). [25] D. ben-Avraham, Mod. Phys. Lett. 8 895(1995.

[15] M. E. Fisher, J. Stat. Phy84, 667 (1984. [26] M. A. Burschka and C. R. Doerin@inpublishegl

[16] P. A. Alemany and D. ben-Avraham, Phys. Lett.2Q6 18  [27] B. Derrida, A. J. Bray, and C. Godree, J. Phys. 27, L357
(1995. (1994.

[17] P. V. Elyutin, J. Phys. A7, 1867(1984. [28] P. L. Krapivsky, E. Ben-Naim, and S. Redner, Phys. Rev. E

[18] G. Szegp Commun. Sm. Math. Univ. Lund1952 228. 50, 2474(1994.

[19] M. Kac, Duke Math. J21, 501 (1954, [29] D. Stauffer, J. Phys. &7, 5029 (1994,

[20] B. M. McCoy and T. T. Wu,The Two-Dimensional Ising
Model (Harvard University Press, Cambridge, MA, 1978nd
references therein.

[21] F. C. Fortuin and P. W. Kasteleyn, Physicab& 536 (1972.

[22] C. R. Doering, Physica A88 386 (1992.

[23] M. A. Burschka, Europhys. Letl6, 537 (1991).

[30] E. Ben-Naim, L. Frachebourg, and P. L. Krapivsky, Phys. Rev.
E 53, 3078(1996.

[31] B. Derrida, P. M. C. de Oliveira, and D. Stauffer, Physica A
224, 604 (1996.

[32] A. D. Rutenberglunpublished



