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The asymmetric simple exclusion process (ASEP) on a one-dimensional lattice is 
a system of particles which jump at rates p and I - p (here p > 1/2) to adjacent 
empty sites on their right and left respectively. The system is described on suitable 
macroscopic spatial and temporal scales by the inviscid Burgers' equation; the 
latter has shock solutions with a discontinuous jump from left density p_ to right 
density p +, p_ < p +, which travel with velocity ( 2 p -  1 ) ( 1 - p  + -  p_). In the 
microscopic system we may track the shock position by introducing a second class 
particle, which is attracted to and travels with the shock. In this paper we obtain 
the time-invariant measure for this shock solution in the ASEP, as seen from such 
a particle. The mean density at lattice site n, measured from this particle, 
approaches p + at an exponential rate as n ~ + oo, with a characteristic length 
which becomes independent of p when p/( 1 - p)  > x / P +  ( 1 p _ )/p _ ( 1 - p + ). 
For a special value of the asymmetry, given by p / ( l  - p )  = p +(1 - p _ ) /  

p_ ( 1 -  p § ), the measure is Bernoulli, with density p_ on the left and p + on the 
right. In the weakly asymmetric limit, 2 p -  1 --, 0, the microscopic width of the 
shock diverges as ( 2 p -  1 )-~. The stationary measure is then essentially a super- 
position of Bernoulli measures, corresponding to a convolution of a density 
profile described by the viscous Burgers equation with a well-defined distribu- 
tion for the location of the second class particle. 

KEY WORDS: Asymmetric simple exclusion process; weakly asymmetric 
limit; shock profiles; second class particles, Burgers equation. 

Laboratoire de Physique Statistique, Ecole Normale Sup6rieure, 75005 Paris, France; e-mail: 
derrida@lps.ens.fr. 

2 Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France. Permanent 
address: Department of Mathematics, Rutgers University, New Brunswick, New Jersey, 
08903; e-mail: lebowitz@ math.rutgers.edu, speer@math.rutgers.edu. 

135 

0022-47 ! 5/97/1000-0 ! 35512.50/0 �9 1997 Plenum Publishing Corporation 



136 Derrida e t  al. 

1. INTRODUCTION 

The aim of this and our previous work, ~'2) with S. Janowsky, is the deter- 
mination of the underlying microscopic structure of a fluid in regions in 
which it has shocks on the macroscopic scale. We consider situations in 
which the system evolves macroscopically according to some deterministic 
autonomous equations, such as the Euler, Navier-Stokes, or Burgers' 
equations, t 3. 4.5) When the solutions of these equations are smooth, we can 
assume that on the microscopic level the system is (essentially) in a local 
equilibrium state, determined by the local macroscopic parameters 
obtained from the solutions. What is less clear, however, and is of par- 
ticular interest, is what happens when the macroscopic evolution is not 
smooth, as in the occurrence of shocks; these are described by regions of 
very large gradient in solutions of the Navier-Stokes or viscous Burgers' 
equations and by discontinuities in solutions of their zero viscosity limits, 
the Euler or inviscid Burgers' equations. It is first of all not clear in what 
sense the macroscopic equations are to be interpreted in such regions, since 
their derivation (heuristic or rigorous) is based on the assumption of slow 
variation in the system's properties on the microscopic scale. Beyond that, 
these equations do not describe the structure of the shocks on the 
microscopic scale. This is the problem we wish to address here. In par- 
ticular, do the statistical properties of the atoms or molecules change 
abruptly on the interparticle distance scale? Or do these properties change 
significantly only over much larger distances? (For a discussion of shock 
structure in gases based on the "mesoscopic" description provided by the 
Boltzmann equations, see ref. 7.) 

One model for which these questions have been answered, at least 
partially, is the asymmetric simple exclusion process (ASEP)  ~6'8) on the 
one-dimensional lattice 7/. In this model particles attempt at random times 
(distributed as independent Poisson processes of unit density at each site) 
to jump to an adjacent site, choosing the site on their right with some fixed 
probability p and that on their left with probability q = 1 -  p; the attempt 
succeeds if the target site is not already occupied. For any value of p the 
set of extremal translation invariant stationary states is the set of Bernoulli 
m e a s u r e s  v p ( O ~ p ~ l ) ;  t8) in the state vp, each lattice site is occupied 
independently with probability p and there is therefore a current 
( 2 p -  1 ) p( 1 - p ) .  The dynamics satisfies detailed balance with respect to v p 
if and only if the transitions are symmetric (p = 1/2). 

The macroscopic mass density u(y, t), which is an appropriately scaled 
continuum limit of the particle density in the microscopic model, is 
described t9-~2) by the inviscid Burgers' equation 

u t+(2p- -  1)[u(1--U)]y=O. (1.1) 
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It is well known ~5) that solutions of (1.1) can exhibit shocks. In the simplest 
example, u(y, t ) = p +  for y >  yo(t) and u(y, t )=p_ for y <  yo(t), where 
0 ~<p_ < p § ~< 1; the shock position yo(t) moves with the constant velocity 
(2p - 1 )( 1 - p + - p _ ), as is easily determined from conservation of mass. 
It is then natural to ask what this discontinuity of the field u means at the 
microscopic scale. 

At the microscopic level, a configuration of the ASEP at time t is fully 
specified by the occupation numbers z~(t), taking values 0 and 1, of all the 
sites on the lattice. To describe the profile of the shock, we must first locate 
the position of the shock in each configuration. This is a nontrivial 
problem, since we have to distinguish between the variations of density due 
to intrinsic fluctuations and those due to the presence of the shock. For- 
tunately there is, for this system, a simple way of defining the position of 
the shock at the microscopic level: the introduction of a single second class 
particle into the system. (Alternative and more general methods will be dis- 
cussed in ref. 13.) The second class particle acts like a hole with respect to 
the original, first class particles and like a particle with respect to holes, 
and thus its presence does not affect at all the dynamics of the first class 
particles. Specifically, during any infinitesimal time interval dt, exchanges 
occur on each bond as follows: 

1 0  --* O1 t 
2 0  --* 0 2  

1 2  ~ 2 1  

O1 --* 1 0  t 
0 2  ~ 2 0  

2 1  ~ 1 2  

with probability p dt, 

with probability q dt, 

(1.2) 

where a O, 1 or 2 on a site means that this site is occupied by a hole, 
a regular (first class) particle or the second class particle. 

It can be shown ttS) (see also refs. 16 and 17, and ref. 1 for a heuristic 
argument) that the velocity of the second class particle in a uniform 
environment of first class particles at density p is ( p - q ) ( 1 -  2p), so that 
far to the left of the shock the second class particle moves at a velocity 
(p - q)(1 - 2p _), faster than the shock velocity (p - q)( 1 - p _ - p +), 
whereas far to the right of the shock the second class particle has a velocity 
( p -  q ) ( 1 -  2p +), slower than that of the shock. Consequently, the second 
class particle is attracted to the shock and can serve as a marker for its 
position. It has in fact been proved t~5) that the second class particle moves 
with velocity ( p - q ) ( l - p - p + )  and t~8' 15) (see also refs. 14, 19-22) that 
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there is an invariant measure for the system viewed from this second class 
particle, in which the asymptotic densities are p • 

In the present paper we describe exactly this invariant measure. Our 
approach is an extension of a matrix method which has been used in a 
number of situations, ~24-35~ in which the weight of each configuration is 
written as the matrix element of a matrix product. As in ref. 1, there are 
three possibilities for each matrix in the product, D, A and E, depending 
on whether the corresponding site is occupied by a first class particle, 
occupied by a second class particle, or is empty. We show in Section 2 and 
Appendix A that when the matrices D, A and E satisfy certain algebraic 
rules, these matrix products furnish weights for the invariant measure we 
seek. In contrast to most previous cases in which this method was used, 
however, here we write probabilities of events in the invariant measure, 
using matrix products, d i rec t l y  in the  in f in i t e  s y s t e m .  This approach was 
used in ref. 34 to recover the results of ref. 1. 

The invariant measures are parametrized by the pair of densities p_ 
and p +. There is a special value of the asymmetry parameter p, given by 
p / (  1 - p )  = p + ( 1 - p _ ) /p  _ ( 1 - p + ), at which the measures are Bernoulli, 
with density p_ to the left of the second class particle and p + to its right. 
This is described in Section 3, where we also show that the algebraic rules 
given in Section 2 imply certain symmetry properties of the invariant 
measure. 

The full expression for the shock profile, as seen from the second class 
particle, is described in Section 4, and is derived in Section 5 by constructing 
an explicit representation of the algebra of Section 2. 

We study in Section 6 the asymptotic behavior of this profile at large 
distances from the second class particle, and show that it decays at an 
exponential rate to p_ or p +. The decay length is a function of the 
parameters p and p • which, however, becomes independent of the asym- 
metry p f o r p / ( 1 - p ) > ~ / p + ( 1 - p _ ) / p _ ( 1 - p + ) .  

Finally, in Section 7 we show that in the weak asymmetry regime, 
where p = ( 1 + e)/2 with 0 < e ,~ 1, the shock profile as seen from the second 
class particle can be understood as the convolution of the hyperbolic 
tangent profile predicted by the viscous Burgers equation, 

u, + [u(1 - U)]y= (1/2) uyy, (1.3) 

which is knowrl (36'37) to describe this regime (on a longer time scale than 
that on which (1.1) holds), with the density of the position of the second 
class particle in this tanh profile, given by the derivative of the profile. 

Throughout the paper, the shock will be characterized by the two 
asymptotic densities p_ to the left of the second class particle and p + to 
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the fight of the second class particle, which satisfy 0 ~< p_  < p + ~< 1, and by 
the hopping rates p to the fight and q = 1 - p  to the left, as in (1.2). We will 
often express our results in terms of p +, p _, p and q through the parameters 

q 
x = - ,  a = p + ( 1 - p _ ) ,  b = p _ ( 1 - p + ) .  (1.4) 

P 

2. THE A L G E B R A  FOR THE P A R T I A L L Y  A S Y M M E T R I C  
S H O C K  M E A S U R E  

In analogy with refs. 1 and 24 we write the probability of a configura- 
tion specified by the occupation numbers r~ (z~ = O, 1 ) of m consecutive sites 
to the left of the second class particle (which is located at the origin) and 
n consecutive sites to its fight as a matrix element of the form 

I{,0, } ( w  I [ z i D + ( 1 - - z , )  E l  A [ z j D + ( 1 - z : )  E l  Iv). (2.1) 
i----  - - m  

Here, as in ref. 1, a first class particle is represented by a matrix D, a hole 
by a matrix E, and the second class particle by a matrix A. For example, 
the probability of finding the configuration 101 to the left and 01100 to the 
fight of the second class particle, that is, of the configuration 

101201100, (2.2) 

is given by 

(w] D E D A E D Z E  z Iv) .  (2.3) 

In Appendix A we show, by an extension of the proof which was given 
in ref. 1, that if the matrices D, E and A and the vectors (wl and Iv) satisfy 
certain algebraic conditions then the weights (2.1) are nonnegative and 
define an invariant measure for the ASEP, as seen from a single second 
class particle, with dynamics specified by (1.2). The algebra is 

p D E - q E D  = (p  - q)[ (1 - p _ ) (  1 - p + ) D + p _ p  + E l ,  

p A E -  q E A  = (p  - q)( 1 - p _ )( 1 - p + ) A,  

p D A  - q A D  = (p  - q) p + p _ A,  

( O + E )  l v ) = l v ) ,  

(wl(D+E)=(wl, 

(wl A Iv) = 1. 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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At this stage the numbers p + and p_ which appear in (2.4)-(2.9) are 
arbitrary parameters satisfying 0 ~< p_ < p + ~< 1. However, we will show in 
Section 6 that they are in fact the two asymptotic densities which are 
reached as one moves away from the second class particle. 

As a consequence of (2.1) and of (2.4)-(2.9) the microscopic profile, 
defined here as the average occupation ( ~ , )  at position n, is given to the 
fight of the second class particle by 

<v. )  -- <wl a ( o  + g )  " - l  O Iv>, n>~l, (2.10) 

and to the left of the second class particle by 

('c_,,> = < w[ D(D + E)"- ' A Iv>, n~< --1. (2.11) 

In contrast to the approach to the shock problem taken in ref. 1, expres- 
sions like (2.10) and (2.11) are valid directly for the infinite system; thus 
here we avoid completely the difficulty of taking the infinite volume limit. 

By an argument similar to that of Sandow ~25) we may verify that 
(2.4)-(2.9) suffice to determine any matrix element containing precisely one 
factor of A. To do so we will show that any matrix element of a product 
of n + 1 operators can be reduced to a sum of matrix elements of products 
of n operators. Consider, for example, a matrix element of the form 
(wl DO,, Iv), where O, is a product of n operators which contains a 
single A. Then 

(w[ DO,, Iv) =xk+l(W[ O,,D Iv) + 1.o.t. 

= __ x k  + 1 ( WI O , , E  Iv) + l.o.t. 

= - x " + l ( w [  EO,, Iv) + l.o.t. 

= x" + 1 ( wl DO,, Iv) + 1.o.t. (2.12) 

Here 1.o.t. (lower order terms) denotes matrix elements of products of n 
matrices, x = q/p as in (1.4), and k is the number of factors of E in O,. To 
obtain (2.12) we have used first (2.4) and (2.6), then (2.7), then (2.4) and 
(2.5), and finally (2.8). Since x < 1, equation (2.12) can be solved for 
(w[ DO,, Iv). This reduction permits the calculation of matrix elements of 
arbitrary length. 

It is important to realize, however, that the algebraic rules do not 
allow us to calculate matrix elements of products of operators which con- 
tain either no operator A or more than one such operator. For example, 
(wl DE Iv) or even (wlv)  cannot be calculated from these rules alone. Of 
course, if one has a representation of the matrices D, A, and E and of the 



Shock Profiles for ASEP in 1D 141 

vectors (wl and Iv> which satisfies (2.4)-(2.9) then one can in principle 
calculate these other matrix elements. The values thus obtained depend on 
the representation and do not appear relevant for the problem we consider 
here. 

When n is small the reduction described above is easy to carry out and 
one can calculate directly the average occupation numbers of the sites 
closest to the second class particle, as well as other simple correlation func- 
tions. Thus for example 

<..CI > - -  
p+ +p_-- ( l - -x)p+p_ 

l + x  

<'g'_ 1 ) = 

<TI ~'2> = 

<T_ITI>  

x(p+ +p_) +( l - -x)  p+p_ 
Ii l + x  

p2+ +p+p_ +p2 

1 + x + x  2 

( - 1 - x + 2x 2) p + p _(p + + p_ ) + x( 1 - x) 2 (p + p_  )2 

+ (1 +X+X2)(1 +X) 

x(p2+ +p+p_ +p2__) + (I --x)2 P+P_(P+ +p_--p+p_) 

T_2T_I>  -~- 

1 + x + x  2 

+ p + p_ + pt )  
1 + x + x  2 

(2x-x2- -x  3) p+p_(p+ + p _ ) + ( 1 - - x )  2 ( p + p _ ) 2  

+ (1 + x + x 2 ) ( 1  + x )  " 

(2.13) 

In principle one could compute arbitrary correlation functions in this way, 
but the calculation quickly becomes impractical as the number of sites 
involved increases. We note that, in contrast with the totally asymmetric 
case x = 0, discussed in ref. 1, there are in general correlations between the 
left and the fight of the second class particle. The expressions in (2.13) are 
symmetric polynomial functions of p + and p _. The symmetry follows from 
(2.4)-(2.6), but we could not derive it by an elementary argument from the 
dynamics. 

Finally, we observe that if one has a representation of D, E, Iv>, and 
(wl which satisfies (2.4), (2.7), and (2.8) and for which (wl DE--ED Iv> 
is finite and nonzero, then one may satisfy (2.5)-(2.6) by defining 

A =c(DE-ED), (2.14) 
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where c is a constant fixed by the condition (2.9). The representation con- 
structed in Section 5 is obtained in this way. We must emphasize, however, 
that there are representations of interest in which (2.14) is not satisfied. 
One such representation is used in Section 3 below to study the system at 
a special value x* of x; note also that if one wished to use the algebra 
(2.4)-(2.9) when x = 1 then (2.4) would imply that D and E commute, so 
that (2.14) would be inconsistent with the normalization (2.9). More 
generally, (2.7) and (2.8) imply that (wl DE Iv)=(wl  ED Iv), so that 
(w[ D E - E D  Iv) can be nonzero only if (w[ DE Iv) and (w[ ED Iv) are 
infinite. Thus finite dimensional representations of the algebra cannot 
satisfy (2.14); the representation constructed in Section 5 is, as expected 
from this remark, infinite dimensional. 

3. ELEMENTARY CONSEQUENCES OF THE ALGEBRA 

We present here two simple consequences of the representation of the 
invariant measure described in Section 2. 

First we note that there is a special value x* of the ratio x = q/p for 
which the measure becomes a Bernoulli measure with density p + to the 
right of the second class particle and density p_ to the left of the second 
class particle: 

x ,  = P _ ( 1 -  p + ) ___.b (3.1) 
p+(1 - p _ )  a 

This can be seen by verifying that when x = x* the following formulas 
define a two-dimensional representation the algebra (2.4)-(2.9): 

D (O+ 0 ) ( l - p +  0 ) ( 0 1  ~ ) = , E =  , A =  ; 
p_ 0 l - p _  

( w l - ( 0 ,  1), Iv) -- (10). 

(3.2) 

It is also easy to check directly that this Bernoulli measure is stationary. 
When x = x* the profile on both sides of the second class particle is fiat 
((z~) = p + and ( r _ , )  = p_ for all n i> 1 ) and the occupation numbers at 
all sites are independent: 

( ' [ ' - - m " " "  "C--I'Cl " ' "  "~'n) = ( ' L ' - - m )  " ' "  ( ' C - - I ) ( ' C l )  "'" ("On) = p r o p + .  (3.3) 

The value (3.1) of x* plays the role of a disorder line in equilibrium statistical 
mechanics models. (39' 40) 
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Second, we obtain a number of identities satisfied by the invariant 
measure for all x, p _ ,  and p +. These will be derived under the assumption 
that A has the special form (2.14), but this is not a restriction on their 
validity, since we know that there exists at least one representation, 
constructed in Section 5, for which this is true. The simplest of these iden- 
tities is 

(r,,)--(,r,,+,) =(,wl A(D+E) "-t (DE-ED) Iv) 

= (wl (DE- ED)(D + E)"-' A Iv) 

= ( ~ _ . _ ~ ) - ( ~ _ . ) ,  (3.4) 

which implies that the shock profile has the symmetry 

(~.)  + ( r _ . )  = ( r . + , )  + (r_, ,_ , ) .  (3.5) 

From the known results (2.13) for the first sites it follows that the common 
value is 

<r.> +<r_,,> =?+  + ? _ .  (3.6) 

Note that the right hand side of (3.6) is consistent with the asymptotic 
values ( r , )  ~ p + and ( r _ , )  ~ p_  as n ~ c~. 

One can obtain in the same manner identities involving higher correla- 
tions. For  example, from (2.14) one has 

(, wl A(D + E)"' (DE- ED)(D + E) m' D Iv) 

= < wl (DE-- ED)(D + E)"' A(D + E) m' D Iv), 

( w[ A(D + E)"' D(D + E)"' ( D E -  ED) Iv) 

-- ( w[ ( D E -  ED)(D -4.- E) n' O(O q- E) m' a [~>, 

( w[ ,,4(0 -Jr E) n' ,4(9 -Jr- E) m' ( D E -  ED) [v) 

= ( wl D(D + e)"' (DE- ED)(D + E) m" .,4 IV), (3.7) 

and by choosing n ' =  n -  1 and m ' =  m -  1 one obtains symmetry relations 
involving pair correlation functions 

(rnrn+m) --(rnrn+m+l) --" ( r  n_m_lr_m) --(Y n_mY m), (3.8) 

(~_.rm) --(T_.~. .+~) = (~--.--m--,~--m--,) --(~--.--m--,~--m), 

822/89/1-2-10 
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which, through linear combinations, lead to the fact that ('Cn'Cn+m)+ 
(~_,,~,,,) + (r_,_, , , r_m) does not depend on n or m and therefore is 
given from (2.13) by 

(TnTn+m) "Jr" (T Tin) + (v  v ) =pZ + p + p  + p ~  (3.9) - - n  - - n  - - m  - - m  + - -  �9 

Note that this common value is again consistent with the asymptotic den- 
sities p + and the independence of the occupation numbers ~ +_., ~ + m  as 
n, m ~ oo (see Remark 6.1). 

4. THE EXPRESSION FOR THE DENSITY PROFILE 

Here we present an expression for the profile ( r , ) ,  based on an 
explicit representation of the algebra (2.4)-(2.9) which will be constructed 
in Section 5. The formula for the profile to the right of the second class 
particle is 

oO 

( r , ) = p + +  ~ P ,_ , (k )  Fk, for n>t l ,  (4.1) 
k - -  - - o o  

where the P,,(k) are defined by the recursion 

Po(k) = ~k. 0, 

P.+ l(k) = a P . ( k -  1) + (1 - a - b )  P.(k) + bP,,(k + 1), 

(4.2) 

(4.3) 

and Fk is given by 

1 
Fk = ~ - b  (azfk +2 - a ( a  + b) fk +, + b(a + b) fk-~ - bZfk-2), (4.4) 

with 

X k 

fk =k  1 - -x  k' for k 4=0. (4.5) 

fo can be defined arbitrarily because its contribution to (4.1) cancels out: 
indeed, it is easy to check that (4.2) and (4.3) imply that akP,,(-k)  = 
bkP.(k) for all k, so that the coefficient of fo in (4.1) is always zero. (We 
will introduce below a particular value of fo which is convenient in inter- 
mediate computations.) The profile to the left of the second class particle 
- - ( r . )  for n <~ - 1 - - c a n  easily be obtained from the symmetry (3.6). 
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More complicated correlation functions have similar expressions, 
which can be derived in the same way or, in some cases, directly from (4.1) 
and the algebra. For example, from (2.4)-(2.9), one can show that 

(1 - x )  D z Iv) = [D(D + E ) - x ( D  + E) D - ( 1  -x ) (1  - p  + - p _ )  D 

- ( 1  - x)  p +p _ ] Iv) ,  (4.6) 

and this implies that 

(1 --  X ) (  TJn'Cn+ l )  = ( Tn)  --  X (  Tn+ l ) - (1 - x ) ( 1  - p + - p_ ) (  v,,) 

- ( 1 - x ) p + p _ ,  (4.7) 

which gives, using (4.1), 

(r,,r,,+t) =pZ+ + ~ P,,_,(k) Gk, (4.8) 
k= --oo 

where 

x 
Gk=(p+ + p _ ) F k +  l_x[ (a+b)Fk- -aFk+~- -bFk_~] .  (4.9) 

R e m a r k  4.1. The quantity P,,(k) given by (4.2) and (4.3) can be 
interpreted as the probability of finding a biased random walker on site k 
at time n, given that it was at the origin at time 0. We did not find a simple 
physical interpretation for the presence of this random walk in the expres- 
sion (4.1) for the profile but we believe that understanding the origin of this 
biased random walk would give a better insight in the whole problem of 
the description of a shock as seen from a second class particle. 

5. REPRESENTATION OF THE ALGEBRA 

We now describe the explicit representation of the algebra (2.4)-(2.9) 
used to derive the formulas of Section 4 for the profile and to study the 
weak asymmetric limit in Section 7. The operators D, E, and A will act on 
an infinite dimensional vector space with basis { In) In---0, + 1, + 2,...}. Let 
us define the left shift operator L, the two diagonal operators S and T, and 
a vector Iv) and dual vector (wl by 

L l n ) = l n - 1 ) ,  (5.1) 

T In) -- xn(1 + X") -1 In), (5.2) 
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S In> = [x"(1 q"xn)-l--xn-l(1 "[-xn--l) - I  ] In), 

o0  o o  

I v ) =  ~ In), ( w [ =  ~ (n[. 

(5.3) 

(5.4) 

These are easily seen to satisfy the following relations: 

p L T -  qTL = (p - q) TLT, 
(5.5) 

p T L - ~ - q L - ~ T = ( p - q )  TL-IT;  

( p - q )  T ( a L - b L  -~) T = p a L T - q a T L - p b T L  -~ +qbL-~T; (5.6) 

T L - L T =  - L S ,  L - I T  - TL -~ = - S L - ~ ;  (5.7) 

L Iv) = Iv>, (wl L =  (wl. (5.8) 

Next we define the operators of our representation: 

D=.p_p+ + a L - ( v ~  L -  v ~  ) T ( ~  + ~-b L- ' ) ,  

E = ( 1 -  p _ ) ( 1 -  p + ) + bL - I + ( x/ra L - x/"b ) T( ~/~ + ~-b L - ~ ), 

A = - ( a - b )  -2 (DE-ED) .  

(5.9) 

(5.10) 

(5.11) 

Then the formula (2.4) for p D E - q E D  follows immediately from (5.6), 
and as noted in Section 2 the relations (2.5)-(2.6) for p A E - q E A  and 
p D A - q A D  are automatically satisfied by (5.11). Moreover 

D + E = a L + ( 1 - a - b )  I + b L  -~, (5.12) 

so that (D+E)Iv>=lv> and ( w l ( D + E ) = ( w [ .  Finally, (5.7) implies 
that 

A =  - ( a - b ) - 2  (~/~ L - x / ~ ) ( a L S - b S L - ' ) ( ~ / / ~  + x//b L - ' ) ,  (5.13) 

and from (w[ S Iv) = - 1 it follows that (w[ A Iv) = 1. 
Note that, as expected from the remark following (2.14), the matrix 

elements (w[v) ,  (w iDE  Iv) and (w[ED[v)  are all infinite. In this 
representation the presence of a factor A in a matrix product--or  more 
specifically, that of S (see (5.13)), a diagonal matrix whose diagonal 
elements S:j decrease exponentially fast to 0 as j ~  _+oo~renders the 
(w[.  Iv) matrix element of that product finite. 

We now turn to the evaluation of ( % ) .  First we observe that, for 
k > 0 ,  
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N x j -  k x j  

~ 1 + x  j - k  1 + x  j j = - - N  (x, 
2=_N 1 X k I ~ X  j x k ~  = - 1 +X 2-k 

N x j  X k ( j  ~ x j  

- y'  l+x--------3+ j N 1 - - x k  1 + x  j 
--- - = N - - k + l  j - - - -N- - k  1 +'.X j " 

(5.14) 

From (5.14) we have, for k > 0 ,  

N 

<wl S Z k Z l v > -  lim 
N--,. oo . j = - - N  

X j  -- k x j  -- 1 -- k ~ x j  

; l + x j - k  l + x j - l - k  l + x j 

= l im ~ 1 + x j 1 + x j N.-.m 1 - - X  k j - - N - - k + l  j f - - N - - k  

x~+' ( N~_ XJ -N-, XJ )] 
1 - 7  u 1+  x 2 s 1 + x  j j--- k j - - - - N - - k - - I  

- f k +  ~ - f k ,  (5.15) 

with fk  = kxk/( 1 -  X k) as in (4.5). From the easily verified identity 

(wl S L J T I v )  + (w[ S L - J - ' T I  v) = --1, (5.16) 

it then follows that (5.15) also holds for k < -  1, with fk again given by 
(4.5). Now let us define f o = f l - ( W l  S T I r ) ;  then (5.15) holds for k = 0  
and also k = - - 1  (using (5.16) again), and thus for all k. It is in fact not 
necessary to evaluate fo, by the remark following (4.5). 

Using (5.9), (5.13), and (5.15) we have, for all k, 

(w[ ALkD Iv) 

= p _ p + . + a + ( a - b )  -~ (wl ( a L S - b S L  -~) L k ( a L - b L  - ' )  T l v )  

=p+ + ( a - b )  -~ (w[ S ( a : L - a b - a b L  -1 + b : L - : )  L k T [ v )  

= p +  + ( a - b )  -~ (aEfa:+:-a(a+b)  fk+~ + b ( a + b )  f k_  ~ -- bEf~_:). 

(5.17) 

The formula (5.12) for D + E yields by induction 

(D + E)  ~ = Y~ e . ( k )  L ~ (5.18) 
k 
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for n>_.0, where the P.(k) are defined by (4.2) and (4.3). Thus for n~> 1, 

('c.) = ( w[ A(D + E) n- I D Iv> 

= ~. P,,_~(k)(w[ ALkD Iv) 
k - -  - - o o  

1 oo 

= p + - t - ~  Z P.-  l(k) 
a - b  k=--oo 

X (a2fk+2--a(a + b) fk+~ + b(a + b) f k - ~ -  bEfk- z), (5.19) 

and this completes the derivation of the formula (4.1) for ( z , ) .  
From the expression (4.1) it is possible to evaluate various 

asymptotics of the profile. The two main limits that one might wish to con- 
sider are the limit n - .  oo describing the tail of the profile, discussed in the 
following section (where we also comment briefly on the p + h p_  limit), 
and the limit of a weak asymmetry, x--. 1, discussed in Section 7. 

6. SPATIAL A S Y M P T O T I C S  OF THE DENSITY PROFILE 

We now discuss the behavior of the profile ( r , )  at large n, basing our 
discussion on (4.1). Because a > b, the biased random walker governed by 
(4.3) goes to + oo as n--. c~, with distribution P,,(k) concentrated around 
k '~n (a -b ) .  Moreover, Fk approaches 0 as k approaches c~, decaying 
exponentially (as kxk), so that the sum in (4.1) vanishes in the n-* ov limit 
and thus the asymptotic density on the right is p § i.e., 

( r . )  ~ p +  as n--, oo. (6.1) 

From the symmetry (3.6), the asymptotic density at the left is p _ .  
To obtain the approach of ( r , )  to its n--, ov limit, we need to 

estimate how the sum on the fight hand side of (4.1) vanishes. As observed 
above, Fk decays exponentially as k ~ oo, and it is easy to check that it 
approaches the constant value - ( a - b )  as k ~ - o o .  Because of this 
behavior there are two cases to consider: the sum is dominated either by 
large values of k or by values of k close to 0, depending on the value of x. 

Case I: x > ( b / a ) l / Z  

We first explore the consequences of assuming that the sum in (4.1) is 
dominated by large values of k. If this is so, one can use the approximation 

f k ~- kxk, (6.2) 
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and then the identity 

xkP.(k) = 1 -  a -  b + ax + (6.3) 
k= --oo 

This leads to 

(r , , )  - -p+ - - (n- -  1) 
(ax-b) /x)2  ( a x - a - b  + b/X) 1 - a - b  + ax + b )  "-2 

2a2x 2 -- (a + b) ax - (a + b) b/x - + b2/x 2 

a - b  

x 1 - a - b + a x +  . (6.4) 

The values of k which dominate the sum (6.3) are k ~ n(ax - b/x)~( 1 - a - 
b + ax + b/x), so that the assumption that large values of k dominate the 
sum in (4.1) would be inconsistent if x2< b/a. Conversely, when x=> b/a, 
(6.4) gives the asymptotic behavior of <r,>. 

Case I1: x< (b /a ) l /Z  

Since Fk is constant for k ~ - oo and P,(k) increases with k for k < 0, 
it is clear that the sum over k must be dominated by values of k near k = 0 
(i.e. which do not scale with n). It is convenient to use the following expres- 
sion for the solution P,,(k) of (4.3): 

Pn(k)= ~ ( 2 ) ( 1 - -  
m=O 

a - b ) " - " ( (  m m  + k)/2) b(m-k)/2a(m+k)/2 (6.5) 

For large m and for k of order 1, one can write 

m 
( ( m + k ) / 2 )  '~'2m ~ ( 1 - - ~ m )  ' 

((m + k ) / 2 )  =0 '  

for m + k even, 

for m + k  odd. 

(6.6) 
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Then 

( "On)  - -  P + '~  2 m = 0  m m 1/2 

x Z 1 -  Fk 
k - "  - -oo  

1 ,, I n -  1 ( 1 - a - b )  n - m - 1  2m(ab) m/2 2m3/2 (6.7) 
2 m-O m 

Here we have used the fact that Z k ~ - o o  (a/b)  k/2 F k = O  (see (4.4) and (4.5)) 
and set 

E i~2 k/2 4 ~ ( X / ~ _  /~)2 kEx k k/2. (6.8) 
Fk = 1 -- x k 

k= - o~ a - b k= -oo 

The extra factor of 1/2 in (6.7) comes from the fact that we have replaced 
a sum in which m and k have the same parity by a sum over all m and k. 
Finally, using the fact that 5'.,, (,7,) xn-my mm-~ '~ (X + y)n+a (ny)-~, since 
this sum is dominated by values of m near n y / ( x  + y) ,  (6.7) becomes 

Z 1 
('r,,)--p+ ' ~ 8 ~ ( a b ) 3 / 4 n 3 / 2 [ 1 - - ( x / ~ - x / ~ ) 2 ]  "+'/2. (6.9) 

By pairing the + k terms in (6.8) we see that if x < x* = b/a then Z > 0 
and asymptotically ( r n )  > P § while if x > x*, asymptotically ( r , )  < p +. 
Numerical computat ion indicates that ( ~ : , ) - p  + has the same sign for all 
n and is in fact monotonically decreasing for x < x *  and monotonically 
increasing for x > x*. Note also that Z vanishes for x = x*, as expected 
from the special nature of the measure at this value of x (see Section 3). 

When x = 0, (6.8) becomes 

4ab 
(6.10) 

leading to 

,.., (ab) 1/4 I 
( r . )  - p + - 2 ~ (x/~ - x/~) 2 n3/2 [1 - ( x / ~  - %/~)2] n + 1/2. (6.11) 

This agrees with (6.26) of ref. 1 (and with (7.6) of that paper after the 
correction of a misprint: the exponent 2 i - 1  should be 2i + 1). 
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~ Wealdy asymmetr ic  l imit  

= = (b/=)~/2 

P + = P -  \ 
I 

==bla 
Bernoull i  

measure  

II b 

e t f i e  m o d e l  

0 b/a 1 

Fig. 1. A phase diagram for the asymptotics of the shock in the ASEP. For n~>l,  
(~:,,)~-p++Cn~'exp-xn, with x=-log(1-a-b+ax+b/x)and y = l  in region I and 
x = - l o g ( 1 -  ( x / ~ - x / ~ )  2) and 7 = - 3 / 2  in region II, and with C < 0  in regions I and I I ,  
and C >  0 in region lib. 

The various asymptotics for the profile derived here are summarized in 
Fig. 1. Figure 2 shows the profile for some typical parameter values. 

By a modification of the above calculation one may also find the 
asymptotics when p § = p _ .  The result is independent of x and is that 
given in ref. 1" ( r , )  ~ p + ~/p(  1 - p) /~n when n ~> 1, where p = p + = p _.  

0.9 

0.6 

,++,,+*,+,+,++§247247247247247 
e 

-20 -I0 

xx  s ~ t t t ~  t ++++++++++++;+;:I~ 

0.3 

' ' i r 
10 20 n 

Fig. 2. Profile < r ,>  for p _  = 0.3, p + = 0.6" x = 0.0( �9 ); x = x* = 0.2857( x ); x = 0.6( + ). The 
dashed line is at height ( p _  + p § )/2. 
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R e m a r k  6.1. Using the explicit representation of the algebra 
developed in Section 5 it can be verified that the measure is asymptotically 
Bernoulli as n-+ _ oo, i.e., that if /~ is any operator product containing j 
factors of D and k factors of E then 

lim ( w[ A ( D  + E)"  1" Iv) = p J+ ( 1 - p + )k, 
n --'* O0 

(6.12) 

with a similar limit at - o o .  The approach is exponentially fast, with the 
same decay rate as for the profile, that is, ( 1 - a - b  + a x  + b/x)"  when 
x >  (b/a)  1/2 and [ 1 -- (%/~-- N/~)2)] n when x < (b/a) 1/2. More generally, ifA 
is a product of D's, E's and precisely one A, then (w[ A(D + E)"  F Iv) -+ 

�9 )k (W[ A Iv )pJ+(1- -p+  as n-~ oo, with the same rate of approach (and 
again a similar limit at - oo ) .  

7. THE WEAKLY A S Y M M E T R I C  LIMIT 

In this section we study the limiting behavior of the model as the 
asymmetry e = p - q  becomes small, with p • fixed. In this case the profile 
(3" )  becomes very broad and as e ~ 0 depends only on the scaled variable 
y = ne. To verify this, note that for e small and k large it follows from 

x = q/p = 1 - 2e + O(e 2) (7.1) 

that 

xk+P 
f k + p = ( k + P )  l _ x k + P  

X k X k X k 
, ~ ~  

~- k l x ;  + p l - x k 2pke ( l _ xk) 2' (7.2) 

so that 

I xk xk 1 
F k ~ _ ( a - b )  l_x--------;-2ke ( l_xk) - ' - -  5 . (7.3) 

Now for large n the probability P,,(k) is concentrated around k = n ( a - b ) ;  
if we introduce the variable y = ne, use the approximation (7.3), and set 
k = ( a -  b) y/e we obtain 

2e_4ay 
('On> ~' p + "+" 2 l _ e _ 4 ~ y  

8 e  - 4 ; t y  ] 

- 2), (1 - - - e - - - ~ y ) E J  

i 2ay ] ---P + +2 p - + 2 r 2 ~ y -  sin~-- ~ ~y_] , (7.4) 
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where 2 = ( a -  b)/2 = (p + - p _  )/2. It is easy to see that the terms neglected 
in (7.4) are O(e) when y is of order 1. Note that the asymptotic behavior 
of (7.4) agrees with the x ~ 1 limit of (6.4). 

This scaling form for the profile can be understood in terms of the 
viscous Burgers equation for a hydrodynamic density variable u(y, s): 

us + [u(1 - U)]y= (1/2) uyy. (7.5) 

It is shown in refs. 36, 37 (see also ref. 38) that the weakly asymmetric 
macroscopic limit of the.ASEP, in scaled variables y = ne as above and s, 
related to the microscopic time t by s =e2t, is indeed (7.5). For example, 
if the initial state of the particle system with parameter e is a product 
measure with density Uo(en) at site n, then the observed density u(y, s) at 
position e-~y and time e-2s is the solution of (7.5) with initial condition 
u(y, O) = uo(y). Equation (7.5) is diffusive and does not exhibit discontinuous 
shocks; instead of the jump in density from p _ to p + we now have a smooth 
profile u(y, s) = p(y  - vs), traveling with velocity v = 1 - p + - p _ ,  with 

p( y) = (p_ + p + )/2 + 2 tanh 22y, (7.6) 

and 2 = ( p + - p _ ) / 2 .  Thus the shock width on the microscopic scale 
diverges in this limit as e-~. 

We can now interpret (7.4), after putting y = en, as the shock profile 
seen from a second class particle which does not have a fixed location 
relative to the tanh profile; instead, its position is distributed in such a way 
that it sees all densities between p_ and p + with equal probability. Then 
the probability of finding the second class particle between y and y + dy is 
dp( y) = Q(y) dy, where 

1 
Q(y) = ~ p ' ( y ) =  2 cosh -2 22y, (7.7) 

P+ --P_ 

and the limit bf the one particle density function will be 

foo 
lim < rEd-'y J> = P(Y + z) Q(z) dz 
e - - - ,  0 - - o o  

P + + P -  
+ 2 coth 2y - sinh2 22yJ '  (7.8) 

in agreement with (7.4); here LzJ denotes the greatest integer k satisfying 
k<.z. 
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Remark 7.1. In ref. 18 the shock is viewed, not from the position 
of a second class particle, but from a location defined in a rather less direct 
manner. With that definition the profile seen in the weakly asymmetric 
limit is p(y), not the convolution (7.8). 

There are various possible direct justifications for the density (7.7). 
A heuristic argument may be based on a comparison of two systems" in one 
of these the second class particle is treated as a first class particle and in the 
other as a hole. In the latter case the shock position, however determined, 
is effectively translated a macroscopic distance e/(p + -  p_) relative to its 
position in the former. Thus the density of the second class particle is 
(p (y+e / (p+-p_) ) -p (y ) ) / e=p ' (y ) / (p+-p_) .  A rigorous version of 
this argument is given in ref. 15. 

The above picture is confirmed if we compute other aspects of the 
e ~ 0 limiting.behavior of the entire invariant measure. Consider first the 
distribution of occupation numbers at a finite number of sites with both 
microscopic and macroscopic spacing. To give a concrete example we 
consider 

(wl A(D + E)", DED(D -I- E)"2-", EEDD Iv) (7.9) 

where n I =Lyl/eJ and nz--Ly2/e_J for some macroscopic positions yl ,  y2 
with 0 < y~ < Y2; this is the probability that of three specific sites at Y l the 
first and third are occupied and the second empty, and that the first two 
of four sites at Y2 are empty and the second two occupied. Then 

lim ( wl A(D + E)", DED(D + E)"2-", EEDD Iv) 
8 - - . * 0  

f 
o g  

= p(y~ +z)2(1--p(y, +z))p(y2+z)2(1--p(y~ +z))  2 Q(z) dz. 
~ 0 0  

(7.10) 

We may think of the fight hand side of (7.10) as arising from a distribution 
of particles in which sites at macroscopic positions y are occupied with prob- 
ability p(y) and all occupation numbers are independent; this distribution is 
viewed from a random position z (the position of the second class particle) 
distributed according to Q(z) dz. Equation (7.10)~in fact, its generalization 
to an arbitrary number of sites~will be proved in Appendix B; in particular, 
this furnishes an alternate derivation of the special case (7.4) of one site. 

We can also show that, in a certain sense, the typical configuration in 
the e ~ 0 limit has on the macroscopic scale the shape of the tanh profile 
(7.6). To do so we introduce a coarse graining on an intermediate scale e -~, 
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where 0 <f l  < 1" for each macroscopic position y we define a random 
variable B,(y), the empirical density in a block of size e -p at y, by 

L~-BJ 
B,(y)=e ~ ~ ZLe/~j+ ~. (7.11) 

k = l  

Now consider, for very small e, a configuration of the system which after 
coarse graining looks like the tanh profile (7.6) on the macroscopic scale. 
The second class particle will be located at some macroscopic position z 
relative to the center of this tanh profile and hence will see locally a density 
p(z); thus B~(O)~_p(z) and B~(0) determines the position z by z ~  
p-l(B~(0)). At position y relative to the second class particle the density 
will be p(z + y), and we are led to expect a strong correlation between the 
empirical densities at positions 0 and y relative to the second class particle, 
given by 

B,(y) ~_ p(y + p-'(B~(O))). (7.12) 

We show in Appendix B that (7.12) holds with arbitrary accuracy, and 
with probability arbitrarily close to one, for sufficiently small e, that is, that 
for any r /> 0, 

lim P r o b [ B , ( y ) - p ( y  + p- '(B~(0)))  > r/] = 0  (7.13) 
e ---* 0 

(convergence in probability). Equation (7.13) essentially says that, with 
probability one, the coarse grained densities in the e ~ 0 limit lie on some 
translate of the profile p(x). 

8. C O N C L U D I N G  R E M A R K S  

We have found a family of stationary measures for the ASEP as seen 
from a second class particle, parametrized by two numbers p_  and p +, 
with 0~<p_ < p +  ~< 1, which correspond to densities of the asymptotic 
Bernoulli measures at -t-oo. The results, which hold for all p > 1/2, 
generalize those of ref. 1, in which such measures were obtained for the 
fully asymmetric case p = 1. Our derivation, in contrast to that of previous 
works, is carried out directly in the infinite system. 

For a certain value of the asymmetry, x = x*, we found a two dimen- 
sional representation of the algebra (see (3.1) and (3.2)). In fact, it can be 
shown that a 2r dimensional representation exists when x r =  X*, r = 1, 2, .... 
Finite dimensional representations of other ASEP algebras have been 
found in refs. 29 and 43. 
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In the weak asymmetry limit p ~ 1/2, the measure can be understood 
in terms of the solutions of the macroscopic viscous Burgers equation. 
Several recent works have studied the gap of the evolution operator or 
generator,(41, 4 2 )  as well as the diffusion constant, (33) on a ring of size L, in 
the double limit p ~ 1/2, L ~ o0. A simple scaling form was found for the 
diffusion constant; it would be nice to see whether a scaling form in either 
problem could also be derived from a macroscopic equation. 

The microscopic shock profile derived in this work contains both 
intrinsic features of the shock and the fluctuations of the position of the 
second class particle. One can imagine many other ways of locating the 
shock; (13) with an alternate definition, the expression for the profile would 
certainly be different. However, one expects that there exist intrinsic 
properties of the shock which are independent of the definition of its loca- 
tion. One class of such properties would be the values of sums of expecta- 
tions of all translates of quantities whose expectation values vanish in the 
asymptotic Bernoulli measures with densities p + and p_ ,  e.g., 

oo 

~_, ((-t ,--P--)-t ,+,,(-t ,+,,+m--P+))" (8.1) 
i =  - - o 0  

We have evaluated explicitly such sums for the totally asymmetric case 
p =  1, using the invariant measure as seen from the second class particle, 
and will report on this work in a later publication. (~3) From this point of 
view, identities such as (3.4) reflect the fact that the second class particle 
can be considered, in the sum, as either a first class particle or a hole. 

APPENDIX A. VERIFICATION THAT THE ALGEBRA YIELDS 
AN INVARIANT MEASURE 

In this appendix we show that if the operators D, E, and A and the 
vectors Iv) and (w[ satisfy the algebra (2.4)-(2.9) then the formula (2.1) 
yields an invariant measure for the ASEP as seen from a second class par- 
ticle. We begin by writing down the conditions which must be verified. The 
algebra allows us to calculate directly the probability of finding configura- 
tions r_m,..., -t_~ to the left, and -t l,.-., -t, to the right, of the second class 
particle, where the -ti are thought of as elements of the set { 0, 1 }. For con- 
venience in describing the dynamics and consistency with the notation of 
(1.2) we will write this local configuration as -t = ('t_m,..., -t-~, -tO, -t~,'", -t,); 
in this notation the symbol -to always takes the value -to- 2 and represents 
the presence of a second class particle at the origin. 
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Suppose then that for each such z we have defined a weight W(~:). 
Then these weights define an invariant probability measure for the ASEP 
if they satisfy (i) normalization conditions: 

W(~o) = 1, 

W('C-m,. . . ,  "C-l, To, "el,..., "Cn) = ~ W('~-m, . . . ,  "(--1' TO' "C I ,'", Tn, (7) ( A 1 )  
o. -- o. 1 

= E  
o'=0, 1 

W(o', T_m,...  , T _ l ,  TO, TI,... , Tn); 

(ii) positivity 

W(z_m,..., ~_~, ~o, ~t,..., ~,)>t0; (A.2) 

and (iii) for each configuration r a condition corresponding to the station- 
arity of the probability of r. To write down these stationarity conditions we 
will use the following notation: if T = (r_=,..., z~) is a system configuration 
and - m  ~< i ~< n - 1 then z~' ~+ ~ denotes the configuration obtained from 
by a particle jump across the bond between sites i and i + 1; if i, i + 1 4:0 
this is an interchange of r~ and r,.+~, but if either i = 0 or i + 1 = 0 it is a 
shift of the configuration relative to the second-class particle: 

f T l ,  

"r l = 12 ,  

Tj+I~ 

( T - I ~  

~ f t ' ~  12, 
j - - I ~  

f Ti+ 1, 

' , 

if j = - l ,  

if j = 0 ,  

if - m -  1 ~ j ~ < - 2  or 1 <~j<~n- 1; 

if j = l ,  

if j = 0 ,  

if - m + l ~ < j ~ < - I  or 2<~j<<.n+l; 

if j= i ,  

if j = i +  1, when i, i +  1 :/:0. 

if j # i ,  i+ 1. 

(A.3) 

Now during some time interval dt there is, for each pair of adjacent sites 
i, i + 1 with r g # r g +l ,  some probability of exit from the configuration z by 
an interchange r ~ rt, ~+ l, and some probability of entrance into r by an 
interchange r~,~+l~ r: if zgrg+l has the form 10, 12, or 20 then the exit 
probability is p dt and the entrance probability qdt, while if r~z~+~ has the 
form 01, 21, or 02 then these probabilities are reversed (see (1.2)). 
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Moreover, there are probabilities for exit from and entrance to r due to 
exchanges across the ends of 3, between sites - m  and - m - - 1  or n and 
n + 1; if n = 0  or m = O, these exchanges involve the second class particle. 
Combining these effects we find the equation 

n--I n--I 
~ "  0 = Y:' [ -pW(3) + q W ( 3  i" i+ ,)1 + [ -qW(3) + pW(3 ' ' +  1)] 

i= --m i= --m 

-~" X l ( 3 _ m ) [  --q W(03) + p W( (03) - m -  1.--m)] 

+ XO(3_m)[ -pW(lr )  + qW((13) - m -  "--m) ] 

+ z,(r . ) [  -pw(ro)  + q w((ro) ","+ ')] 

+ Zo('r,,) [ - q W(31) + p W((31 )"' "+ ' ) ] ,  (A.4) 

where the singly (respectively doubly) primed sum is over indices i for 
whick 3~3/+1 is 10, 12 or 20 (respectively 01, 21 or 02), and the indicator 
functions X~ and Xo are defined by 

1, if 0"=1 or 

X~(a)= O, if a = O ,  

1, if a = O  or 
Xo(a)= O, if a = l .  

0"- -2 ,  

0"-"2,  

(A.5) 

Equation (A.4) demands special attention if all the 3i other than ro are 
the same, say r~= 1, i ~:0. Then exchanges involving the second class 
particle will not always change the local configuration. For example, if 

= (1, 1, 1, 2, 1, 1) then after the exchange r--, r ~ ~ = (1, 1, 1, 1, 2, 1) the 
local configuration is still T if there was originally a particle on site 3 (the 
third site to the right of the origin). Thus (A.4), which includes a term 
-qW(-c) from this exchange, should be corrected by a term + q W ( r l ) .  But 
(A.4) also contains a term + q W ( r -  ~' o) from the exchange r -  ~' o = ( 1, 1, 
2, 1, 1, 1 ) ~  r; in this case the local configuration was already r if there 
was before the exchange a particle at site - 3 .  Thus (A.4) should also be cor- 
rected by a term -qW(( lr)  -~' o). Since r l  = ( l r )  -~' o, these two corrections 
cancel. Said otherwise, (A.4) counts the transition (1, 1, 1, 2, 1, 1, 1 ) +  (1, 1, 
1, 1, 2, 1, 1), which does not  change r, twice, with opposite signs. The argu- 
ment is easily seen to be quite general and to apply also to leftward jumps 
of the second class particle and to the case z i = O, i :~ O. We conclude that 
(A.4) is correct in all cases. 
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We will now show that the weights defined by (2.1), 

Wo('C_m, .... ~" _ 1 , ~ 'o ,  '[' 1 , . . . ,  ~ 'n)  

--1 

= ( w [  I-I [ r , D + ( 1 - r , ) E ] A  f i  [ r j D + ( 1 - r j ) E ] I v ) ,  
i =  - - m  j - - -1  

(A.6) 

satisfy (A.1), (A.2), and (A.4) and hence provide an invariant measure for 
the ASEP. (A.1) follows immediately from (2.7)-(2.9). We will verify (A.2) 
by induction on m + n, the total number of D and E operators in the 
product. Since (wl A Iv) = 1 by (2.9) the case m + n = 0 is immediate. For 
general m + n it suffices to show that 

(wl EmAD " Iv) >10, (A.7) 

since by repeated use of the relations (2.4)-(2.6) we may express the matrix 
element of any product with m operators E and n operators D as 
xk(wl  E " A D "  Iv), for some k, plus a linear combination, with positive 
coefficients, of matrix elements of products with a smaller number of D or 
E operators. 

To verify (A.7) we define new opera tors / )  and ~r by D = p +p_  + / )  
and E = ( 1 - p + )( 1 - p_ ) + ~' and show, again by induction, that 

(W I j~mA1.)n IV) > 0 ,  ( A . 8 )  

from which (A.7) (with strict inequality) follows immediately. The 
operators / )  and ~r satisfy 

1)E#- xE~D = ( 1 - x) ab, I)A - xA1) = O, AE~- xE#A = O, 

(/) + ~ ' ) I v ) = ( a + b ) I v ) ,  (wl ( / 5 + ~ ) =  (wl (a+b) ,  

and hence also /)kL~-- xkE#l) k = ab( 1 - x k ) / ) k -  1 and 1)E~ k - xkE#kl) = 
a b ( 1 -  x k) E~k-J for any k i> 1. Then an argument as in (2.12) leads to the 
recursions 

( wl ~ + 1A Iv) = 
1 

1 __X,,+ : [ ( a+b) (1 - -xm+l ) (W[  E#mA Iv) 

- ab( 1 -- x m ) (  W[ j~,m - -  1 a IU) ] ,  (A.9) 

(w[ E~"A1) "+' Iv) -(a-+-b)<wl E~"AI.)" Iv>-x"+'<wl E~'+IAlJ" Iv> 

- ab( 1 - x " ) ( w l  ~ " A 1 ) " -  1 Iv ) ;  (A.10) 

822/89/1-2-11 
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similar recursions hold with rn and n interchanged, hence (wl E~mAI~ n I v )  --- 

(,wl ~"A15  m Iv) .  From (A.9) it follows by induction on m that 

a m + l - b  m+l 1 - x  
( w[ ~"A Iv) = (A.11) 

a - b 1 - x ' '+1 '  

and then from (A.IO) and (A.11), by induction on n, that for n ~< m, 

am+n+ 1 --2k __bm+n+ 1-2k 
( w l  ~mAl~n I v )  = (ab)  k 

k=0 a - b  

( 1 - x )  l--I)'=k + 1 ( 1 - x j )  
x l--Ij_"2o k ( 1 - x  m + l + j )  (A.12) 

(the identity (a + b)(a j - b j) = (a j + 1 _ b j + ~ ) + ab(a  j -  l _ b j -  l ) is needed in 
checking (A. 11 ) and (A. 12)). The expression (A. 12) is dearly positive, so 
that (A.8) holds. 

Finally, we must verify (A.4). To do so, we partition the matrix 
product in (A.6) into blocks of consecutive identical matr ices~that  is, 
blocks of D's or E's, together with one block consisting of a single A. When 
the form (A.6) is substituted into the stationarity condition (A.4), each 
resulting term arises from a possible exchange at some block b o u n d a r y ~  
between blocks or at the end or beginning of the product~and contains a 
corresponding factor + ( p D E -  q E D ) ,  +_ ( p A E -  q E A ) ,  or _+ ( p D A  -- q A D ) .  

These factors may be simplified with the fundamental relations (2.4)-(2.6), 
which we will use in several forms: 

p D E -  q E D  = ( p  - q)( eD  + d E  ) 

= ( p - q ) ( ( d - e )  E + e ( D  + E ) )  

= (p-q) ( (e -d)  O + d ( D  + E ) ) ,  

p A E -  q E A  = ( p  - q) eA,  

pOA - q A D  = ( p  - q) dA. 

(A.13) 

Here d = p + p _  and e =  ( 1 - p _ ) ( 1 - p + ) .  
The net effect of this simplification on each possible block boundary 

is summarized in Table I. The last column shows that each block of D's 
gives rise to two terms, one from each boundary of the block, in which one 
of the factors of D is replaced by the constant d; these terms have opposite 
signs and hence cancel. Two similarly cancelling terms arise from each 
block of E's. Finally, the left and right ends of the product give rise to 
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Boundary Contribution to (A.4) 

Table ! 

Simplified contribution 

161 

DE 
ED 
DA 
AD 
AE 
EA 

(w[ D 
( w l f  
(wl A 
DIo) 
E l y )  
Air> 

( w[ .. . ( - p D E  + qED) . . . Iv) 
(w[ ..-( + p D E - q E D ) . . .  Iv) 
( w[ ... ( --pDA + qAD) .. . Iv) 
(w[ ..-(+pDA-qAD) ... Iv) 
( w[ ... ( - p A E  + qEA) . .. Iv) 
(w[ ...( + p A E - q E A ) . . .  Iv) 
(w[( + p O E - q E O ) . . .  Iv) 
( w[ (-pDE.4. qED)... Iv) 

( wl ( - pDA -4- qAD + p A E -  qEA ). . .  Iv) 
( wl .. . (-pDE + qED)lv) 
(w[--.(+pDE-qED)Iv) 

(w I ...(+pDA-qAD-pAE+qEA)Iv) 

( p -q ) (w[  . . . ( - e D - d E ) . . .  iv) 
( p -  q)( wl . . . ( +eD + dE). . .  Iv) 

( p - q ) ( w l  . . . ( - d A ) . . .  lv) 
( p - q ) ( w l  .. .( +dh) . . .  lv> 
( p - q ) ( w l  . . . ( - e A ) . . .  Iv) 
( p - q ) ( w l  ...( +eA). . .  Iv> 

( p - q ) ( w l ( ( e - d )  O +d) . . .  Iv) 
( p - q ) ( w l ( ( e - d )  E - e ) . . .  Iv) 

( p - q ) ( w l ( ( e - d )  A) . . .  Iv> 
( p -q ) (w[  . . . ( ( d - e )  D - d ) I v >  
(p -q ) (w[  . . . ( ( d - e ) E + e )  Iv) 

( p - q ) ( w l  . . . ( ( d - e )  A)Iv> 

additional terms in which the original amplitude is multiplied by ( e - d )  

and ( d - e ) ,  respectively; the cancellation of these terms completes the 
verification of (A.4) for the weights (A.6). 

A P P E N D I X  B. THE I N V A R I A N T  M E A S U R E  IN THE W E A K L Y  
A S Y M  M E T R I C  L I M I T  

In this appendix we verify the picture given in Section 7 of the weakly 
asymmetric limit of the invariant measure: for e = p - q  very small, the 
measure is approximately a convolution of a Bernoulli measure having 
density profile p(y) with the density Q ( y )  of the position of the second 
class particle in this profile. Here y = e n ,  so that p ( y )  and Q ( y )  (see (7.6) 
and (7.7)) vary on the macroscopic scale. 

We begin by describing the key steps in the argument. The probability 
of occupation numbers a~, a2,..., am at specified sites n~ <n  2 < ... < n  m is 
given by 

(wl ( a ~ D + ( 1 - a ~ ) E ) ( D + E ) " 2 - " ' - ~ ( a 2 D + ( 1 - a z ) E )  

•  - '  (amDq. - (1 - -Crm)  g )  Iv ) .  

(B.1) 

We want to compute an approximation to (B.1) that is correct in the e ~ 0 
limit. First, each factor ( D + E ) "  in the product has matrix elements 
(D  + E ) ~ = P , , ( i - j ) ;  since P, , (k)  is the probability distribution of a biased 
random walker and is concentrated near k = n ( a - b ) ,  we approximate 
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(D+E) ',-~ 0 ---(D+E)~.~_J~_zL,t~_o) j. Next, we approximate each single 
factor of D, E, or A in the product by a diagonal matrix, obtained from 
equations (5.9), (5.10), and (5.13) by making first the approximation 
L = L - 1  = I and then a simple numerical approximation: 

Do--- p + - 2 2  1 +x j t~iJ'~'P Oij, 

( Eo.= 1 - p + + 2 2 1 . . + x  j Jo--- 1 - p  Ju, 

A~j = -So.Ju~- ~--j Q Ju" 

(B.3) 

(B.4) 

With these approximations the inner product (B.1) becomes 

oo m [  ) ( (e(j_~2nk))) ] ( e j )  e E l"I trkp k,(e(J22+nk) + (1 -- ak) 1 -- p a .~ -~ 
j - --  - - oo  k-:-" 1 

(B.5) 

But this is just a Riemann sum for the integral 

ffoo m Q(z) dz I-I [akp(yk + Z) +(1--ak)(1--p(yk + Z))], 
- - o o  k = l  

(B.6) 

where yk=enk. Since the integrand vanishes exponentially fast at -+_~ 
there is no difficulty with convergence of the Riemann sums. Moreover, we 
will sketch below a proof that the sum of the errors made in the 
approximations leading to (B.5)--that is, the difference between (B.1) and 
(B.5)--vanishes as e ~ 0, uniformly in the choices of n k and ak. Thus we 
conclude: if the n k are chosen to depend on e in such a way that 
lim~_, o enk = Yk then 

lim Prob{ r.k = ak [k = 1,..., m}  
e - - * 0  

foo m 
= Q(z)dz I-I [akp(yk+Z)+(1--ak)(1--p(yk+z))]. 

- - o o  k - - - 1  

(B.7) 

Equation (B.7) gives the e ~ 0  limiting behavior of the profile, 
Eq. (7.8), and the similar behavior (7.10) in the example discussed in 
Section 7 for the distribution of the occupation numbers of several sites. In 
general, (B.7) describes the limiting behavior of the distribution of occupation 
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numbers at a finite number of sites with both microscopic and macroscopic 
spacing, since we do not assume that the positions Yk are distinct. 

We now discuss the coarse grained random variables B~(y), the 
empirical densities on an e -p scale, where 0 <f l  < 1 (see (7.11)). We want 
to show that for a typical configuration in the e ~ 0 limit these variables lie 
on the hyperbolic tangent profile p(y) ,  after a configuration-dependent 
translation. Due to this random translation, however, the B~ variables 
fluctuate even in the e ~ 0 limit; to obtain a sharp statement, we show 
that there are no fluctuations in a function of several of these variables, 
g(B) = g(B,(yl) , . . . ,  B,(yK)), when g is independent of translations of the y 
variables (see (B.10) below). One example of this technique is (7.12). 
To show the absence of fluctuations in g(B) we want to show that 
( I g ( B ) - ( g ( B ) ) l )  =0;  the idea then is to use (B.7) to compute expecta- 
tions of functions of the B~(y). 

Specifically, suppose that g(~ , . . . ,~K)  is a function defined for 
0 ~< ~k ~< 1 and that y~,..., Yr are any real numbers. We will show that 

f 
o o  

lim ( g( B,(  y , ) .... , B,( Y K) ) ) = g( P( Y l + z ),..., p( y r + z ) ) Q( z ) dz. 
e. .--* O moo 

(B.8) 

We verify (B.8) first for g a monomial, then a polynomial, then continuous, 
and finally for g bounded and continuous on ( p _ ,  p +)r ,  the case needed 
in applications. If g is a monomial, say of degree N, then we may substitute 
the definition (7.11) of B~ into g and expand, so that (g(B~(yt) , . . . ,  
B , ( y K ) ) )  becomes a sum of L.e-'a_] N t e r m s  e - N f l ( H T _ .  1 '~m ) "  There are at 

, , 

most (2 N) e - t N -  ~)p such terms in which not all the rmj are distract, so that 
their contribution can be ignored, and from (B.7) the remaining terms give 
precisely the right hand side of (B.8). Thus (B.8) holds if g is a polynomial 
and hence, by a uniform approximation argument, if g is continuous on 
[0, 1 ]K. If we apply the latter result, for K =  1, to a continuous function 
h~(~) satisfying 0 ~< h~(~) ~< 1, h~(~) = 1 for p_  + 2J ~< ~ ~< p + - 2J, and 
hr(~) = 0 for ~ ~ p _ + J and ~ i> p § - J we have 

Prob{p_  +J<~B~(y)  <~p+ - J }  

f 
o o  

>i <h,~(B~(y))) ~--.o ' h,~(p(y + z)) Q(z) dz, 
mOO 

(B.9) 

so that Prob{ p _ + ,~ ~ B~(y) ~< p + - J} ~ 1 as J, e ~ 0. Using this result, 
we may extend (B.8) to any function g which is bounded and is continuous 
on (p_ ,  p +)K. TO do so, we restrict g to (p_  + J, p + - j ) K  and then apply 

8 2 2 / 8 9 / 1 - 2 - 1 2  
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(B.8) to a continuous extension of this restriction satisfying the same 
bound as g, obtaining (B.8) for g with error which vanishes as 8 ~ 0. 

Now consider a function g as above, bounded and continuous on 
(p_ ,  p+) r ,  such that for some y~,..., YK, g( P( Y l ),..., P(Yr)) is translation 
invariant: for any z, 

g(P(Yl),..., P(YK))= g(P(Yl + z),..., P(YK+ Z)). (B.IO) 

Then 

lim (Ig(B~(y,),..., B,(yK))-- g(P(Yl),..., P(Yr))I) 
t~--* O 

=foo 
.I-o o 

Ig(P(Yt + z),..., P(YK+ z ) ) -  g(p(y,),..., P(YK))I Q(z) dz 

=0, (B.11) 

so that lim~ _. o g(B~( y ~),..., B,( y K) ) = g( P( Y t ),'", P( Y K) ) in probability. 
From (B.11) we obtain the result described at the end of Section 7: if 

for any y we define g(~ ,  ~ 2 ) = ~ 2 - p ( y + p - = ( ~ ) )  and then apply (B.11) 
to g(B,(O), B,(y)), we obtain (7.13). Note that g is bounded but is not 
continuous at ~ = ~ 2 - - P -  or ~ =~2---P +" 

We finally sketch the argument that the errors made in the approxima- 
tions leading to (B.5) are uniformly small. Control of errors introduced by 
the approximation (D + E)~. --- 8~-j.C,(~-b)J is straightforward, and details 
will be omitted. To discuss (B.2)-(B.4), we simplify the notation by sup- 
posing that n I > 0. Let us write D t~ for the diagonal approximation to D 
introduced in (B.2), and D (") = uD + ( 1 - u) D (~ for 0 ~< u ~< 1, with similar 
notation for E and A. We must then estimate 

i~ d ), - l  D(,) E(,)) -~u(WlA(")(O+E ' (trl + ( 1 - - a l )  - . . Iv)  du 

m 1 

= ~ fo (w] A ( " ) . . . ( a , [ D - D  (~ + ( 1 - o ' j ) [ E - E ( ~  .-- Iv) du 
j = l  

1 

+f0 (wl [ A - A ( O ) ] ( D + E )  " ' - '  ... Iv) du. (B.12) 

On the right hand side of (B.12) we regard (w] and Iv) as elements (of 
norm 1) of ~o~ =t,~(~,), and note that D, E, D (~ E (~ and D + E  are 
bounded operators on f '~, of norm at most 1, and that A and A (~ are 
bounded operators from goo to t'~(7/). Now consider one term from the sum 
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over j in (B.12), for which the matrix product will contain a factor of either 
D -  D (~ or E - E  t~ Each of these may be written as the sum of two terms, 
corresponding to the two approximations made in (B.2) or (B.3). The first 
of these terms contains a factor L - / ,  which we carry to the fight until it 
reaches, and annihilates, Iv); L - I  commutes with D + E and its com- 
mutator with D ~u~ or E I") has foo operator norm which is O(e). The second 
error term also has go~ operator norm which is O(e). The contribution to 
(B.12) containing A - A  ~"~ is treated similarly, and we derive an overall 
bound for (B.12) which is a constant multiple of m2e. 

ACKNOWLEDGMENTS 

We are grateful to Errico Presutti for helpful discussions. J. L. L. was 
supported in part by AFOSR Grant 92-J-0115 and NSF Grant D M R  95- 
23266. B. D. and J. L. L. thank DIMACS and its supporting agencies, the 
NSF under contract STC-91-19999 and the N.J. Commission on Science 
and Technology. J. L. L. and E. R. S thank the Institut des Hautes Etudes 
Scientifiques and the Ecole Normale Sup6rieure for hospitality. 

REFERENCES 

1. B. Derrida, S. A. Janowsky, J. L. Lebowitz, and E. R. Speer, Exact solution of the totally 
asymmetric simple exclusion process: shock profiles, J. Stat. Phys. 73:813-842 (1993). 

2. B. Derrida, S. A. Janowsky, J. L. Lebowitz, and E. R. Speer, Microscopic shock profiles: 
exact solution of a nonequilibrium system, Europhys. Lett. 22:651-656 (1993). 

3. H. Spohn, Large-Scale Dynamics of Interacting Particles, Texts and Monographs in 
Physics (Springer-Verlag, New York, 1991 ). See also references therein. 

4. A. De Masi and E. Presutti, Mathematical Methods for Hydrodynamic Limits, Lecture 
Notes in Mathematics 1501 (Springer-Verlag, New York, 1991). See also references 
therein. 

5. J. L. Lebowitz, E. Presutti, and H. Spohn, Microscopic models of hydrodynamic behavior, 
J. Stat. Phys. 51:841-862 (1988). 

6. F. Spitzer, Interaction of Markov processes, Advances in Math. 5:246-290 (1970). 
7. C. Cercignani, .Mathematical Methods in Kinetic Theory, 2nd ed. (Plenum Press, New 

York, 1990). 
8. T. M. Liggett, Interacting Particle Systems (Springer-Verlag, New York, 1985). See also 

references therein. 
9. H. Rost, Nonequilibrium behavior of many particleprocess: density profiles and local 

equilibria, Z. Wahrsch. Verw. Gebiete 58:41-53, (1981). 
10. E. D. Andjel and M. E. Vares, Hydrodynamical equations for attractive particle systems 

on Z, J. Stat. Phys. 47:265-288 (1987). 
11. A. Benassi and J. P. Fouque, "Hydrodynamic limit for the asymmetric simple exclusion 

process," Ann. Prob. 15:546-560 (1987). The proof in this reference is incomplete. 
12. F. Razakhanlou, Hydrodynamic limit for attractive particle systems on Z a, Commun. 

Math. Phys. 40:417-448 ( 1991 ). 



166 Derrida e t  al. 

13. B. Derrida, S. Goldstein, J. L. Lebowitz, and E. R. Speer, Intrinsic structure of shocks in 
the asymmetric simple exclusion process, in preparation. 

14. E. D. Andjel, M. Bramson, and T. M. Liggett, Shocks in the asymmetric exclusion 
process, Probab. Theory Relat. Fields 78:231-247 (1988). 

15. P. Ferrari, Shock fluctuations in asymmetric simple exclusion, Probab. Theory Relat. 
Fields 91:81-101 (1992). 

16. F. Razakhanlou, Microscopic structure of shocks in one conservation laws, Ann. Inst. 
Henri Poincar~: Analyse non linbaire 12:119-153 (1995). 

17. P. A. Ferrari and C. Kipnis, Second-class particles in the rarefaction fan, Ann. Inst. Henri 
Poincarb: Probabilitbs et Statistiques 31:143-154 (1995). 

18. P. Ferrari, C. Kipnis, and E. Saada, Microscopic structure of traveling waves in the asym- 
metric simple exclusion, Ann. Probab. 19".226-244 (1991 ). 

19. D. Wick, A dynamical phase transition in an infinite particle system, J. Stat. Phys. 
38:1015-1025 (1985). 

20. P. Ferrari, The simple exclusion process as seen from a tagged particle, Ann. Probab. 
14:1277-1290 (1986). 

21. A. De Masi, C. Kipnis, E. Presutti, and E. Saada, Microscopic structure at the shock in 
the asymmetric simple exclusion, Stoch. and Stoch. Rep. 27:151-165 (1989). 

22. C. Boldrighini, G. Cosimi, S. Frigio, and M. G. Nufies, Computer simulation of shock waves 
in the completely asymmetric simple exclusion process, J. Stat. Phys. 55:611-623 (1989). 

23. P. Ferrari and L. R. G. Fontes, Shock fluctuations in the asymmetric simple exclusion 
process, Probab. Theory Relat. Fields 99:305-319 (1994). 

24. B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, An exact solution of a 1D asym- 
metric exclusion model using a matrix formulation, J. Phys. A 26:1493-1517 (1993). 

25. S. Sandow, Partially asymmetric exclusion process with open boundaries, Phys. Reo. E 
50:2660-2667 (1994). 

26. E. R. Speer, The two species totally asymmetric exclusion process, in On Two Levels: 
Micro, Meso and Macroscopic Approaches in Physics, ed. M. Fannes, C. Maes, and 
A. Verbeure, (Plenum, New York, 1994). 

27. R. B. Stinchcombe and G. M. Schiitz, Operator algebra for stochastic dynamics and the 
Heisenberg chain, Europhys. Lett. 29:663-667 (1995). 

28. R. B. Stinchcombe and G. M. Schfitz, Application of operator algebras to stochastic 
dynamics and the Heisenberg chain, Phys. Rev. Lett. 75:140-143 (1995). 

29. F. H. L. Essler and V. Rittenberg, Representation of the quadratic algebra and partially 
asymmetric diffusion with open boundaries, J. Phys. A 29:.3375-3407 (1996). 

30. H. Hinrichsen, S. Sandow, and I. Peschel, On matrix product ground states for reaction- 
diffusion models, J. Phys. A 29:2643-2649 (1996). 

31. K. Mallick, Shocks in the asymmetric simple exclusion model with an impurity, J. Phys. 
A 29:.5375-5386 (1996). 

32. M. R. Evans, Bose-Einstein condensation in disordered exclusion models and relation to 
traffic flow, Europhys. Lett. 36:13-18 (1996). 

33. B. Derrida and K. Mallick, Exact diffusion constant for the one dimensional partially 
asymmetric exclusion model, J. Phys. A 30:1031-1046 (1997). 

34. B. Derrida and M. R. Evans, The asymmetric exclusion model: exact results through a 
matrix approach, in Nonequilibrium Statistical Mechanics in One Dimension, ed. V. Privman 
(Cambridge University Press, Cambridge, 1996). 

35. A. Honecker and I. Peschel, Matrix-product states for a one-dimensional lattice gas with 
parallel dynamics, preprint 1996. 

36. A. De Masi, E. Presutti, and E. ScacciateUi, The weakly asymmetric simple exclusion 
process, Ann. Inst. Henri Poincarb: Probabilit~s et Statistiques 25:1-38 (1989). 



Shock Profiles for ASEP in 1D 167 

37. C. Kipnis, S. Olla, and S. R. S. Varadhan, Hydrodynamics and large deviation for simple 
exclusion processes, Commun. Pure App. Math. 42:115-137 (1989). 

38. J. L. Lebowitz, E. Orlandi, and E. Presutti, Convergence of stochastic cellular automaton 
to Burgers' equation: fluctuations and stability, Physica D 33:165-188 (1988). 

39. J. Stephenson, Ising model spin correlations on the triangular lattice. IV. Anisotropic 
ferromagnetic and antiferromagnetic lattices, J. Math. Phys. 11:420-431 (1970). 

40. P. Ruj~n: Cellular automata and statistical mechanics models, J. Stat. Phys. 49:139-222 
(1987). 

41. D. Kim, Bethe Ansatz solution for crossover scaling functions of the asymmetric XXZ 
chain and the Kardar-Parisi-Zhang growth model, Phys. Rev. E 52:3512-3524 (1995). 

42. J. Neergard and M. den Nijs, Crossover scaling functions in one dimensional growth 
models, Phys. Rev. Lett. 74:730-733 (1995). 

43. K. Mallick and S. Sandow, Finite dimensional representations of the quadratic algebra: 
applications to the exclusion process, J. Phys. A 30:4513--4526 (1997). 


