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The organization of many systems in physics and in biology appears random and
non-self-averaging even at a macroscopic level. In statistical physics, phase space
of spin glasses is a random energy landscape which can be decomposed into val-
leys, the weights of which remain sample dependent even in the thermodynamic
limit. Similarly, in biology, the genetic distances between the individuals of a same
population allow to decompose this population into families whose relative sizes
fluctuate in time. The goal of this talk® is to show that non-self-averaging effects
are present in a large variety of systems and that similar quantities can be used to
describe qualitatively and quantitatively these fluctuations.

%talk given at the ICTP conference on ”Non-linear cooperative phenomena in
biological systems”, in Trieste (August 1997)

1 Introduction

Replica theory predicts the existence of non-self-averaging effects in the low
temperature of spin glasses 1*23. This means that for mean field spin glasses,
phase space can be decomposed into valleys (or pure states), the weights of
which remain sample dependent even in the thermodynamic limit (i.e. when
the system size becomes infinite). For spin glasses, the weight W, of a valley
« is in principle the probability, at thermal equilibrium, of finding the system
in this valley. Unfortunately, a precise definition of the W, is rather difficult,
because, due to thermal fluctuations, the notion of valley in a random land-
scape is rather vague. There exists, however, a precise and simple prescription
(see (7) below) to calculate the moments of the W,

Y= (Wa) 1)

where in (1) the sum runs over all the pure states a. The fact that these
moments Y, have non-trivial probability distributions, even in the thermody-
namic limit, appears as a signature of the presence of non-self-averaging effects
in the spin glass phase. The whole probability distribution of the Y, was first
calculated for mean field spin glasses*® by using the replica approach?:3:6 and
the results can be confirmed by a direct calculation for simple enough spin
glass models like the random energy model 2.
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One can define quantities similar to the Y}, in many systems other than spin
glasses. Each time a structure looks random and fluctuates with the sample
considered, one can try to define the weights W, of the components which
compose the structure and study the statistical properties of the Y, defined
by (1). We will see below that the W, can be the relative sizes of the basins
of attraction for the evolution of some complex system or the relative sizes of
families in some simple model of an evolving population.

2 Mean field spin glasses

The most studied example of a mean field spin glass is the Sherrington Kirk-
patrick model #® for which the replica approach was initially designed 2:3.
The Sherrington Kirkpatrick model describes a system of N Ising spins
S; = 1 which interact with random long-range interactions. The system has
2N possible spin configurations and the energy E, of a configuration a = {S¢}
is given by
E,=— Y JySiSy. (2)

1<i<j<N

In the Sherrington Kirkpatrick model, for each pair ij of spins, there is a
random interaction J;; chosen according to

o) = ) L e (— W=D 7 J) . )

2 2

A given sample corresponds to a random choice of the interactions {J;;} and
the partition function of each sample is given by

2((7) = iexp (- %) )

where T is the temperature.

One difficulty with spin glasses as well as with many other strongly disor-
dered systems is that the landscape is both random and rugged. The simplest
way to deal with such a landscape is to compare the properties of several copies
(or replica) of the system evolving in the same landscape.

To do so one defines for any pair of configurations {S?} and {S?} their
overlap?

1 XN
Gab = stfsf ()

i=1
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At thermal equilibrium, for a given realization of the interactions {J;;}, the
distribution P(q) of the overlap ¢ is given by

Ji;(S889 + St
P@) =5 3 3 ba—aw) exp |- B EIE) |

{52} {s?} i

The replica theory predicts® that P(q) fluctuates even in the thermodynamic

limit, meaning that
(P(a)) # (P(a))*

where (.) denotes an average over the set of interactions {J;;}.

Overlaps give also a simple prescription to define the moments Y}, of the
weights W, of the valleys. By choosing a reference value @) of the overlap, one
can define two configurations a and b to be in the same valley (one should say
Q-valley) if their overlap gop > @. (This definition is, strictly speaking, not
transitive in the sense that it is possible to find 3 configurations a, b, ¢ such
that gup > @, gae > Q but g < @ . It is believed however, as a prediction
of the replica approach 23, that the probability of such events vanishes in the
thermodynamic limit.)

This allows one to define Y =Y, by

|, P =3 07" = v; ™)

The left hand side of (7) is, by definition, the probability that, at equilibrium,
two configurations belong to the same Q-valley. On the other hand, as (W,)?
is the probability of finding two configurations in valley «, it is clear that
Ya =3 (Wa)” is also the probability of finding two configurations in the same
valley. Thus the definitions (6,7) can in principle be used to calculate Y = Y5
for any system size and any realization of the interactions {J;;}.

The replica theory predicts2? that in the thermodynamic limit, Y remains
a fluctuating quantity distributed according to a distribution II(Y) which be-
longs to a one parameter family indexed by the first moment (Y")

(Y):/OIH(Y) Y dYy

The parameter (Y) is in general a complicated function of the temperature and
of the details of the model, but once (Y') is known, it determines the whole
distribution II(Y"). For example 23

() +2(v)?

(2 = L
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Figure 1: Distribution II(Y') for the spin glass problem when (Y) =

Ll

Y)Y+ 7(Y)2 +5(Y)3

(v?) = 15

9)

The shape of II(Y) predicted by the replica approach %2 is shown in figure
1 when (Y) = 2/3. In fact the moments of all the Y, defined by (1) can also
be calculated from the replica approach, once (Y') is known 28. For example

(Y3) = (10)

(Ya) = (11)

and so on.

It has not been possible so far to verify directly the validity of all these
predictions (8-11) obtained from the replica approach except in the case of the
random energy models "-#10 for which they turn out to be correct.
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3 Random boolean networks and random map models

In 1986, with Henrik Flyvbjerg, we tried to see whether non-self-averaging
effects similar to those predicted of spin glasses could be present in other
systems 1.

We considered the problem of random boolean networks which was intro-
duced by Kauffman in the context of cell differenciation 2. The Kauffman
model describes a system of N binary spins (o; = 0 or 1) evolving according to
a deterministic rule. The time evolution is determined by N boolean functions
fi of K variables and by K input sites ji(4),j2(%)...jk (i) for each site 7 (K is
a parameter of the model).

In the Kauffman model, for each site 4, the input sites ji (%), j2(4)...jr (¢)
and the boolean functions f; are choosen at random (each input site is ran-
domly chosen among the N sites and each boolean function is randomly chosen
among the 22* boolean functions of K variables). Then the time evolution of
the spins o; is given by

oi(t +1) = fi (0j,(5)(t) -0 () (1))

Since the system is deterministic (as the functions f; and the input sites
j1(4),J2(4)..jk (i) do not change with time), the evolution of any configuration
ends up by being periodic. One can then define the size 2, of an attractor
a as the number of initial conditions which converge to this attractor and the
weight W, of the attractor as the fraction of phase space belonging to the
basin of the attractor a Q

Wy = 2—]3

Once the W, are defined, one can calculate their moments Y}, using (1).
Clearly the W, and the Y, depend on the particular random realization of
the functions f; and of the input sites ji (i), j2(¢)..ji (). Thus they fluctuate.
In ! we observed numerically that even for large systems, the distribution
of the Y}, remains broad. When we tried to measure the moments of the Y,
they even seemed to satisfy the same relations (8-11) as spin glasses. So far,
it has not been possible however to develop a theory (similar to the replica
theory of spin glasses) allowing to calculate the distribution of the Y. Only,
in some limit (when the number of inputs K — 00) of the Kauffman model,
the problem becomes a random map model ¥ making possible the calculation
of the distribution of all the Y,. For a random map model, one finds!'? for the
first two moments of Y = Y,

M=z 5 0=

- (12)
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Figure 2: Distribution II(Y’) for the random map model.

and for the Y, with p > 2

<Y3>=1§5 ; (Y4)=£ (13)

These results do not satisfy the relations (8-11) predicted by the replica ap-
proach for spin glasses. The random map model being a special case (K = oo)
of the Kauffmann model, the relations (8-11) have therefore no reason to be
valid for other values of K in the Kauffman model.

In fact the difference can be seen clearly by comparing the distributions
II(Y) of the random map model (figure 2) and of the mean field spin glass
(figure 1 with the same first moment (Y) = 2/3).

For K # o (and K # 1), the moments Y, have so far been only deter-
mined by numerical simulations. Finding an analytic approach to determine
the distribution of these Y, for general K in the Kauffman model remains a
challenging theoretical problem.



4 A simple model of evolution

A third example of systems for which the distribution II(Y") is non-trivial are
simple models of an evolving population. With Luca Peliti, we considered a
very simple model *® for the evolution of the genetic diversity of a population.
The size of the population remains fixed in time (M individuals) and each
individual a (with 1 < a < M) at time t has a genome of N binary genes:
SE(t) = £1,...5%(t) = £1. The rule of evolution of the population is that,
at each generation ¢t — t + 1, all the M individuals are replaced by M new
individuals and each individual a at time ¢ + 1 has its parent G(a) chosen
at random among the M individuals of the previous generation (i.e. in the
population at time ¢). Then the genes of a at time ¢ + 1 are idendical to those
of its parent G(a) except for mutations wich occur with a small probability

SH9(#)  with probability (1 + e~2#)/2

14
“SP) with probability (L—e )2

$u+n={

(the parameter y is small).

The model is a model of asexual reproduction in a flat fitness landscape.
Nevertheless, we will see that it leads to non-self-averaging effects similar to
those of spin glasses.

Clearly, the evolution rule gives rise to a random genealogical tree. The
random structure of this tree can be analysed by considering at each generation
the weights W, of the families: by choosing a time interval T of reference and
by saying that two individuals at time ¢ belong to the same family if they had
a common ancestor at time ¢ — 7', one can decompose the population, at time
t, into families and define the weight W, as the fraction of the total population
having the same ancestor at time ¢t — 7. Obviously, the weights W, depend on
the structure of the random genealogical tree produced by the evolution and
on the choice of the time interval T'.

It turns out that, in the limit of a very large population, the weights W,
and their moments Y,, defined by (1) fluctuate, if one chooses the right time
scale for T' (i.e. if T is of order M). If one defines 7 as

T
T=—

M

and if Y5 is the probability that 2 individuals belong to the same family, one
finds that for the first two moments of Y5 =Y

Yy=1—¢T" (15)
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Figure 3: Distribution II(Y") for the evolution model when (Y) =

Wl

15(Y)2 +10(Y)3 — 15(Y)* + 6(Y)® — (V)6

() = 15

(16)

One can also determine the 7-dependence of all the moments of the Y}, (Y}, is
the probability that p individuals belong to the same family). For example one
finds that

3(V)* - (v)°

(¥a) = =

(17)

15(Y)3 — 15(Y)* + 6(Y)° — (Y)®
5

(Ya) = (18)
where {.) denotes an average over the history (i.e. over time t). These relations
differ from (8-11) of spin glasses and from (12-13) of the random map model.
All the moments of the Y, can be calculated ''®> and the distribution II(Y")
for (Y) = 2/3 is shown in figure 3. The difference of shape with spin glasses
(figure 1) or the random map model (figure 2) is clearly visible.

As for spin glasses (5), one can define the overlap q,; between two indi-
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viduals a and b at time ¢ as

1 X
Qb = 7 Z 52155) (19)

=1

and consider at any time ¢ the distribution P(q) of overlaps

P@)= 55 D000~ aw) (20)

a=1 b=1

As in spin glasses, the distribution P(q) remains broad and non-self-averaging
15 ((P(q)) # (P(q))? ) even in the limit of a very large population (M — 00).

The calculation of the statistical properties of P(q) is simpler in the limit
of a very long genome (N — o00). In this limit, the matrix of overlaps evolves
according to 13

qab(t + 1) = e 40 4G(a)G(b) (t) if a#b (21)

with
Qaa(t + ]-) =1 (22)

All the fluctuations in the matrix ¢,; are due to the random choice (21,22) of
the ancestors G(a) at each generation.
One finds!® that for the evolution rule (21,22), the average of P(q) is given
by
(P(a)) = A (23)

where \ = (4uM)~1.

It is quite remarkable that a rule as simple for the evolution of the matrix
dab as (21,22) is sufficient to produce non-self-averaging effects similar to those
predicted for spin glasses by the replica theory, with a non-trivial II(Y") and a
broad and fluctuating P(q).

5 Conclusion

This lecture was an attempt to show that very similar non-self-averaging effects
occur in a variety of systems (spin glasses, random networks of automata,
simple models of evolution). Similar non-self-averaging effects are present in
a large class of systems (sums of random variables, random walks ®, randomly
broken objects %17, asymmetric spin models !%19:20 genetics 2!). The simplest
quantities which exhibit non-self-averaging effects seem to be the Y defined
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by (1). It has been shown in a number of examples %317 that the probability
distributions of the Y} have singularities at some simple rational values. For
example II(Y) shown in figures 1,2 and 3 is singular ®!7 at all the values 1/n
with weaker and weaker singularities with increasing n. Higgs in2! shows that
a distribution similar to those of figures 1,2 and 3 is consistent with observed
histograms of homozygosity in Drosophila.

From the theoretical point of view, it would be interesting to develop the-
oretical tools to calculate the non-self-averaging properties of random boolean
networks (see section 2) or of more sophisticated models of evolution 2.

Acknowledgments

I would like to thank Daniel Bessis, Henrik Flyvbjerg and Luca Peliti with
whom most of the ideas discussed above were developped.

References

1. G. Parisi : The order parameter for spin glasses: a function on the
interval 0-1, J. Phys. A 48, 1101 (1980)

2. M. Mézard, G. Parisi, N. Sourlas, G. Toulouse and M. Virasoro : Replica
symmetry breaking and the nature of the spin glass phase, J. Physique
45, 843 (1984)

3. Mézard M, Parisi G, Virasoro M : Spin Glass Theory and Beyond (World
Scientific 1987)

4. D. Sherrington and S. Kirkpatrick : Solvable model of a spin glass, Phys.
Rev. Lett. 35, 1792 (1975)

5. S. Kirkpatrick and D. Sherrington : Infinite ranged models of spin glasses,
Phys. Rev. B 17, 4385 (1978)

6. B. Derrida and H. Flyvbjerg : Statistical properties of randomly broken
objects and of multivalley structures in disordered systems, J. Phys. A
20, 5273 (1987)

7. B. Derrida : Random energy model, an exactly solvable model of disor-
dered systems, Phys. Rev. B 24, 2613 (1981)

8. B. Derrida : Non-self-averaging effects in sums of random variables, spin
glasses, random maps and random walks, p 125 in On Three Levels:
Micro, Meso and Macroscopic Approaches in Physics eds M. Fannes et
al (Plenum Press 1994)

9. S.F. Edwards and P.W. Anderson : Theory of spin glasses, J. Phys. F
5, 965 (1975)

10



10

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. D. Ruelle : A mathematical reformulation of Derrida’s REM and GREM,
Comm. Math. Phys. 108, 225 (1987)

B. Derrida and H. Flyvbjerg : Multivalley structure in Kauffman’s model:
analogy with spin glasses, J. Phys. A 19, L1003 (1986)

S.A. Kauffman : The origin of order (Oxford University Press 1993)
B. Derrida and H. Flyvbjerg : The random map model, a disordered
model with deterministic dynamics, J Physique 48, 971 (1987)

H. Flyvbjerg and N.J. Kjaer : Exact Solution of Kauffman’s model with
connectivity one, J. Phys. A 21, 1695 (1988)

B. Derrida and L. Peliti : Evolution in a flat fitness landscape, Bull.
Math. Biol. 53, 355 (1990)

B. Derrida and D. Bessis : Statistical properties of valleys in the annealed
random map model, J. Phys. A 21, L509 (1988)

L. Frachebourg, I. Ispolatov and P.L. Krapivsky : Extremal properties
of random systems, Phys. Rev. E 52, R5727 (1995)

H. Gutfreund, J.D. Reger and A.P. Young : The nature of attractors in
an asymmetric spin glass with deterministic dynamics, J. Phys. A 21,
2775 (1988)

M. Schreckenberg : Attractors in the fully asymmetric SK-model, Z.
Phys. B 86, 453 (1992)

U. Batsolla and G. Parisi : Attractors in fully asymmetric neural net-
works, J. Phys. A 30, 5613 (1997)

P.G. Higgs : Frequency distributions in population genetics parallel those
in statistical physics, Phys. Rev. E 51, 95 (1995)

P.G. Higgs and B. Derrida : Genetic distance and species formation in
evolving populations, J. Mol. Evol. 35, 454 (1992)

11



