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Abstract

We show how to define and calculate the ground state energy of a system of quantum particles
with J attractive interactions when the number of particles n is non-integer. The question is
relevant to obtain the probability distribution of the free energy of a directed polymer in a
random medium. When one expands the ground state energy in powers of the interaction, all the
coeflicients of the perturbation series are polynomials in n, allowing to define the perturbation
theory for non-integer n. We develop a procedure to calculate all the cumulants of the free
energy of the directed polymer and we give explicit, although complicated, expressions of the
first three cumulants. (© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider a system of n identical quantum particles on a ring of size L with ¢
attractive interactions. If we call x, (for 1 <a<n) the positions of the particles, the
Hamiltonian of this system is

1 o
Ho==3 =z =7 —xp), (1)

a<f
where y is the strength of the attractive (y>0) interactions. The main goal of the
present work is to define and to calculate the ground state energy Ey(n,L,7) of (1)
when 7 is not an integer (especially when » is small).
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This system of particles in one dimension with J interactions has a long history in
the theory of exactly soluble models [1-5]. It was first introduced to describe a Bose
gas by Lieb and Liniger who calculated by Bethe ansatz the ground state energy and
the excitations for repulsive interactions (that is for negative y) in the thermodynamic
limit (n and L go to infinity keeping n/L constant) [1].

The problem arose also in the theory of disordered systems: the calculation of the
free energy of a directed polymer in a random medium in 1 + 1 dimensions by the
replica method reduces [6—11] to finding the ground state energy of (1): If Z(x,t) is
the partition function of a directed polymer joining the points (0,0) and (x,¢) on a
cylinder with periodic boundary conditions (x + L = x)

0 col fds) Y
2(x,1)= 9y(s>exp<— | e [E (ﬁ—) +n()9)] | - 2)
(0,0) 0 S
where the random medium is characterised by a Gaussian white noise #(y,t)
(. On(y' 1)) =7(y — yHo(t — '), 3)
then the integer moments of Z(x,¢) are given for large ¢ by [12]
1 (Z"(x,1))
lim —In | —— | = —Ey(n, L 4
[l}r{.lot n{<Z(x,t)>” O(na 9’)))5 ( )

where () denotes the average over the random medium and Ey(n,L,7) is the ground
state energy of (1). The knowledge of Ey(n,L,)y) determines for large ¢ the whole
distribution of In Z(x,¢). For example, the variance of InZ(x,¢) is

g (°Z060) = (InZ(x, ) PEg(n.L,7)

t—o00 t on?

(%)

n=0

Of course, to obtain this variance or other characteristics of the distribution of
InZ(x,t), one should be able to define and to calculate the ground state energy of (1)
not only for integer n, but for any value of n [13—17]. Moreover, because of (3), the
interactions in (1) must be attractive (y=0); So in contrast to the Bose gas initially
studied [1], the interactions are attractive and the interesting limit is no longer the
thermodynamic limit » — oo but rather the limit » — 0.

For integer n and L = oo, the n particles form a bound state at energy [4,6]
,n(n? —1)

“or (6)
Using this formula for non-integer » helped to understand several properties [12] of the
distribution of In Z(¢) when L is infinite. There are, however, a number of difficulties
with (6) for non-integer 7, in particular a problem of convexity: d? In(Z")/dn* should
be positive for all n, and so (4,6) cannot be valid at least for negative n. We believe
that these difficulties are due to the exchange of limit # — oo and L — oo and this is
why we try in the present work to determine Eo(#n,L,y) for finite L.

The paper is organised as follows: in Section 2, we recall the Bethe ansatz equations
which give the ground state energy of (1) for an (integer) number #n of particles and

EO(na o0, V) =7
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we write the integral equation (13) which is a way of solving the coupled non-linear
equations of the Bethe ansatz. The main advantage of this integral equation is that both
the strength y of the interactions and the number n of particles appear as continuous
parameters. In Section 3, we solve (13) perturbatively in ¢ (where ¢ = yL/2) for
arbitrary n. We notice that the coefficients in the small ¢ expansion of Ey(n,L,y) are
all polynomials in n, thus allowing to define the expansion even for non-integer n. In
Section 4, we show how to generate a small n expansion of the solution of (13). We
give explicit expressions up to order 7° of E¢(n,L,7) and we notice that the coefficients
of the small n expansion have in general a zero radius of convergence in c.

2. The Bethe ansatz equations

The Bethe ansatz [18] consists in looking in the region 0<x; < --- <x,<L for a

ground state wave function ¥(xi,...,x,) of the form
W1, ) = 3 ApdsrrttasL (7)
P
where the sum in (7) runs over all the permutations P of {1,...,n}. The value of ¥

in other regions can be deduced from (7) by symmetries. One can show [3-5] that (7)
is an eigenstate of (1) at energy

EnLn=-1 Y &, ®)
1<a<n
if the {g,} are solutions of the n coupled equations
H s —qpt+c¢ 9)
b T O
where
yL
c=5. (10)

(A derivation of (9) can be found in Ref. [3]. Note that ik; and ¢ in Ref. [3] become
here, respectively, (2/L)q; and —7; the ¢ in Ref. [3] and our ¢ defined in (10) are thus
different.) Moreover, for y # 0, all the g, are distinct.

There are a priori many solutions of (9). We look for the ground state, that is
the solution {g,} for which (8) is minimal. When ¢ = 0, the problem reduces to n
non-interacting particles {g,} = {0} (we have periodic boundary conditions). Because
the ground state solution is not degenerate, the solution {g,} of (9) must have the
symmetry {¢,} = {—q.}, depend continuously on ¢, and vanish as ¢ — 0.

Let us introduce the following function of {g,}:

1 cuz— u—
B(u) = —e VY T p(g et (11)

qx
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where the parameters p(q,) are defined by

q(x - B + C
o= ] L2 (12)
qp7#qs 9=~ 4p

The function B(u) is a rather complicated (but convenient to use) symmetric function
of the ground state solution {g,} of (9). As shown in Appendix A, it satisfies the
integral equation

B(1 +u)—B(l —u)= nc/ e =2B(1 — »)B(1 +u — v)dv, (13)
0
and the following two conditions:
B(1)=1, (14)
B(u)=B(—u). (15)
Moreover, the energy (8) can be deduced from B(u) by
2 [n3c?  nc?
Ey(n,L,y)=— |— — —nB"(1 1
L) =13 | T+ Ty 5 —nB(1) (16)

The derivation of (13)—(16) is given in Appendix A. How these relations lead to
small ¢ or small n expansions is explained in Sections 3 and 4.

3. Expansion in powers of ¢

One could try to solve Eq. (9) perturbatively in ¢ but the approach turns out to be
quickly complicated [19]. Instead we are going to see that the integral equation (13)
is very convenient to obtain Ey(n,L,y) for small c.

It is known [5] (and easy to check from (9)) that the g, scale like /c for small c.
Therefore, each coefficient B;(u) of the small ¢ expansion of B(u) defined by (11) is
a polynomial in u.

B(u) = Bo(u) + cBi(u) + *By(u) + - - - . (17)
Moreover, conditions (14) and (15) impose that all the B;(u) are even, that By(1) =1
and B;(1) =0 for any i>1.

At zeroth order in ¢, we find, using (13):

Bo(1 +u) — Bo(1 —u)=0. (18)

Thus, Bo(u) and By(1 4 u) are both even functions of u. As By(u) is a polynomial and
By(1) =1, the only solution is

Bo(u)=1. (19)
We put this back into (13) and get at first order in ¢
Bi(l1+u)—Bi(l —u)=nu. (20)
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Again, using the fact that Bi(u) is an even polynomial such that Bj(1) =0, the only
possible solution is

Bl(u)zg(uz—l). 1)
It is easy to see from (13) that at any order in ¢, we have to solve
Bi(1 +u) — Bi(1 —u) = “some polynomial odd in «”, (22)

and that there is a unique even polynomial solution satisfying B;(1) = 0. One can
generate as many B;(u) as needed to obtain B(u) up to any desired order in c.

en(—1 4 u? An(l +2n)(—1 +u?)?
B(u)=1+ ( ) e X ) +0(). (23)
4 96

Relation (16) then gives the energy. Up to the fourth order in ¢, we find
L’ c n n? n
—Eo(n,L,y)=—-n(n—1)( = + =+ —¢ - b))
7 BolmLyy) = —n(n )<2+ PRTI (1512 1260)6 * )

(24)

4. Solution for small n

It is clear from Section 3 that if we stop the small ¢ expansion of B(u) at a given
order, B(u) and Ey(n,L,y) are polynomials in n. This allows to define the small ¢
expansion of B(u) or of Ey(n,L,y) for an arbitrary value of ».

Moreover, we can write a small n expansion of B(u) by collecting all the terms
proportional to 7% in the small ¢ expansion of B(u) and calling the series obtained
by (u). Then,

B(u) =1+ nby(u) + n*by(u) + - - - . (25)

Conditions (14) and (15) impose that by (u) = by(—u) and by(1) =0 for all k>1.

We are now going to describe a procedure which leads to a recursion on the by(u)
and allows to write them not only as power series in ¢ but as explicit functions of ¢
and u. If we insert (25) into (13), we get at first order in n

by(1 +u) — by(1 —u):c/ e w2 4y (26)
0

It can be checked that a solution of (26) compatible with the conditions b, (u)=5b(—u)
and b1(1)=0 is

+oo  cosh(Auy/c/2) — cosh (Ay/c/2)
bi(u) = dJ. —H 27
(@) ﬁ/o o e @7)
There are, however, other solutions to the difference equation (26): one could add to
(27) an arbitrary function F(u,c) even and periodic in u of period 2 and vanishing at
u=1. If we require that each term in the small ¢ expansion of b;(u) is polynomial
in u (as justified in Section 3), we see that all the terms of the small ¢ expansion
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of F(u,c) must be identically zero. For example F(u,c) = exp(—c~"*)(cos(mu) + 1)
is an acceptable function. This already shows that b;(«) given by (27) has indeed for
small ¢ expansion the series obtained by collecting all the terms proportional to n in
the small ¢ expansion of Section 3.

If the solution b;(u) (27) had a non-zero radius of convergence in ¢, it would be
natural to choose the only () which is analytic near ¢ = 0 by taking F(u,c) =0.
Unfortunately, this is not the case: by making the change of variable 4> =y, expression
(27) appears as the Borel sum of a divergent series [20].

We found no conclusive reasons why (27) is the solution of (26) we should select.
However, one can notice that, when » is an integer, B(u) is analytic in u and goes
to zero when u — =ioco (see (11)). Here, the b;(u) given by (27) grows like In|u
when u — Fioco. Adding a non-zero periodic F(u,c) would either lead to an exponential
growth in the imaginary direction or introduce singularities in u. So (27) is the solution
of (26), analytic in the whole u plane, which has the slowest growth in the imaginary
direction.

The same difficulty of selecting the right solution appears at each order in the ex-
pansion in powers of n. We are now going to explain the procedure we have used to
select one solution. If we insert (25) into (13), we have to solve at any order k£ in the
small n expansion

bi(1 +u) = be(1 — u) = ¢p(u) (28)

where ¢(u) is a function odd in u which can be calculated from the previous orders

k=1 .y
Pr(u)=cy / e 2,1 — )by (1 +u—v)d. (29)
i=0 /0

(For consistency, we use bg(u) = 1.) It can be checked that a solution to (28) is

[T cosh(Auy/c/2) — cosh(A4/c/2)
biu) = /0 dz sinh (2+/c/2)

ar(4), (30)

where a;(A) is given by

1 [t . lu iu
ak(l): E/O du sin (2) (i)k (\/E) . (31)

Indeed, the verification is a simple matter of algebra, and we convinced ourselves
that by(u)~In*|u| and ¢y (u) ~In*'|u|/u as u — +ioco, and that a; (1)~ In*~'|2| for
A — 0 and ay(1)~exp(—A*(k + 1)/4k) for /. — oo, so that all the integrals in (30),
(31) converge.

As for bi(u), one could add to the bi(u) given by (30,31) an arbitrary function
Fi(u,c), even and periodic in u of period 2 to obtain the general solution of (28).
However, to be consistent with the small ¢ expansion of Section 3, the small ¢ expan-
sion of F(u,c) should be identically zero. Moreover, if we want the solution of (28)
to be analytic in the whole u plane and not to grow too fast when u — +ioo, we must
take Fi(u,c)=0.
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Expression (27) for b;(u) is in fact a particular case of the procedure (30,31); when
applied to (26), it gives indeed a;(1) = \/cexp(—4%/2).
At second order in the small n expansion, we find for 4 > 0

) P _ +00 —(An/2) _
-y _2p2cosh(Aw/2) -2 / —(p) € 2
@) =ce Vo e ey TS M e
(32)

The expressions of b3(u) or az(u) would be much longer to write.
Using relation (16) and expressions (27) and (32) of b1(u) and a»(u), we can give
an expression of the energy Eq(n,L,7) up to the order n’:

L2 2 3/2 +o00 12 2
S Eo(n,L,y)=n <§ + C) e i PR P

12 4 Jo tanh (1+/c/2) 6
+°° 2242 A 2cosh(Ap/2) —2
_B3 [l At S et
" / tanh(l\f/2) l/ due™ tanh (u+/c/2)
2 € =2y _ 9 }
-F//1 due™# —tanh(,u\f/Z) . (33)

As explained in the introduction, this small n expansion of Ey(n,L,y) gives the cumu-
lants of the free energy in the directed polymer problem. Of course, if we expand (33)
in powers of ¢, we recover (24).

5. Conclusion

In this work, we have developed a method allowing to calculate perturbatively the
ground state energy of (1) for a non-integer number n of particles. We first generated
for integer n a perturbation series in powers of the interaction c¢. Each term of this
series is polynomial in n, allowing to define a small ¢ expansion of the energy for
non-integer n. This series, at least for small n, has a zero radius of convergence, in
contrast to integer n for which the radius of convergence of the perturbation theory is
non-zero [21]. (For n = 2, the closest singularities of E¢(2,L,7) in the c¢ plane lie at
c~330+1i4.12.)

We believe that the fact that each term in the perturbation theory is polynomial in
n is generic and would be true for an arbitrary pair interaction and in any dimension.
As the link (4) to directed polymers is valid in any dimension, it would be useful and
interesting to try to recover our results by doing a direct perturbation theory of the
Hamiltonian instead of our Bethe ansatz approach (which is limited to 141 dimensions
and to a J potential) in order to see whether the calculations could be extended to
higher dimensions.

Our calculation of the ground state energy for non-integer » is based on the integral
equation (13) and conditions (14) and (15). When we tried to solve the problem for
small n, at each order we had to select a particular solution of a difference equation.
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We did not find a conclusive reason to justify the solution we selected, apart from
some analyticity properties and growth criterion in the complex plane of the variable
u. It would certainly be interesting to justify our choice (33) by calculating the second
and the third cumulants of In Z directly (and not only perturbatively to all orders in c¢).

In our small n expansion of Section 4, the terms become quickly very complicated.
There is, however, a regime, which corresponds to the large ¢ limit of recursion (28),
(30), (31) where one can handle the general term in the small » expansion [19].
This allows to calculate the whole distribution of In(Z(x,¢))/t when ¢ is very large
and (1/0)In(Z(x,t)/{Z(x,t))) of order 1/L. One can then recover [19] the same large
deviation function as found for the asymmetric exclusion process [22-26], as expected
since the directed polymer problem in 1+ 1 dimensions and the asymmetric exclusion
process are both representatives of the KPZ equation [27,12,28] in dimension 1. This
strengthens the conjecture that the solutions to the difference equations we selected in
Section 4 give indeed the right non-integer moments of the partition function.

From the point of view of the theory of disordered systems, our results give one
of the very few examples for which the distribution of Z can be calculated exactly.
In particular, they could provide a good test of the replica approach and of other
variational methods [7,9-11].

A simple and interesting phenomenon visible in the present work (which should be
generic of all kinds of disordered systems with Gaussian disorder) is that the weak
disorder expansion (here small ¢ expansion) of non-integer moments of the partition
function has a zero radius of convergence whereas integer moments have a non-zero
radius of convergence. This is already visible in the trivial example of a single Ising
spin ¢ = £1 in a random Gaussian field /4; the free energy at temperature 7 is
In (2 cosh(#/T)), and it is easy to check that all non-integer moments of the parti-
tion function have a zero radius of convergence in 1/7.

Acknowledgements

We thank Frangois David, Michel Gaudin, Vincent Pasquier, Leonid Pastur, Herbert
Spohn and André Voros for useful discussions.

Appendix A. Derivation of (13)-(16)

Let us first establish some useful properties of the numbers p(q,) defined by (12).
If the g, are the n roots of the polynomial P(X) defined as
Px) =[x - 4.). (A1)
qﬁ(
it is easy to see that the p(gq,) defined in (12) satisfy

PX A+, Z p(42)

PX) X—q (A-2)
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(The two sides have the same poles with the same residues and coincide at X — o0.)
Expanding the right-hand side of (A.2) for large X, we get

PX +¢) P(42) ' 1
=1 1+ = o|l— ). A3
P(X) te Z +X+X2 O\ x (A3)
On the other hand, using (8, A.1) and the symmetry {g,} ={—¢,} we have
LZ
P(X) = X"+ - Eo(n, L,)X"™? + O(X" ™), (A4)
so that
P(X +¢) (5 ) A(5) — cEo(n, L, y)L?)2 1
—— =1 — . A.
P(X) +¥ X -+ X2 X3 TO\ xa (A-5)
Comparing (A.3) and (A.5), we get the relations
> p(g)=n, (A.6)
4
n
> qup(gs) =c (2) : (A7)
qﬁ
n Eo(n,L,y)L?
> @o(q) = ( ) = L=y (A.8)
3 2
qd
Moreover, by letting X = +qp — ¢ in (A.2) we get for any g root of P(X)
1 p(qx) p(q2)
Z= = . (A9)
c qu—qurc ;qm+Qﬁ+C

9a

Lastly, using the symmetry {g,}={—¢,} and definition (12), the Bethe ansatz equations
(9) reduce to

e”p(—qs) —e *p(q,)=0. (A.10)

From definition (11) of B(u) and properties (A.6)—(A.10), it is straightforward to
establish (13)—(16): the integral equation (13) is a direct consequence of (11) and
(A.9). Properties (14), (15) follow from (11), (A.6) and (11), (A.10), respectively.
Lastly (16) is a consequence of (11) and (A.6)—(A.8).
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