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Effect of Microscopic Noise on Front Propagation

E� ric Brunet1 and Bernard Derrida1

Received September 29, 2000

We study the effect of the noise due to microscopic fluctuations on the position
of a one dimensional front propagating from a stable to an unstable region in
the ``linearly marginal stability case.'' By simulating a very simple system for
which the effective number N of particles can be as large as N=10150, we
measure the N dependence of the diffusion constant DN of the front and the shift
of its velocity vN . Our results indicate that DNt(log N )&3. They also confirm
our recent claim that the shift of velocity scales like vmin&vN &K(log N )&2 and
indicate that the numerical value of K is very close to the analytical expression
Kapprox obtained in our previous work using a simple cut-off approximation.

KEY WORDS: Diffusion-reaction equation; wave-front; microscopic
stochastic systems.

1. INTRODUCTION

Fronts propagating from a stable region into an unstable region appear in
many different contexts in physics, chemistry or biology.(1�8) These fronts
are usually described at the macroscopic level by equations of the type of
the Fisher-KPP equation (KPP=Kolmogorov, Petrovsky, Piscounov):(1, 2)

�h
�t

=
�2h
�x2+h&h2 (1)

where 0�h(x, t)�1. This equation was first used to describe the spread of
an advantageous gene in a population; h(x, t) is then the space- and time-
dependent proportion of the population with the favorable gene.
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It is well known(9�11, 5) that a large class of equations describing the
propagation of a front into an unstable region and known as the ``linearly
marginal stability case''(12) or the ``pulled case''(5) have properties similar
to (1): these equations admit a continuous family of propagating front
solutions

h(x, t)=Fv(x&vt) (2)

for any velocity v larger than a minimal velocity vmin , and the front moves
with this minimal velocity vmin for steep enough initial conditions (that is,
when h(x, 0) decays fast enough as x � �). For Eq. (1), this minimal
velocity is vmin=2.

These noiseless equations usually represent a mean field description of
some microscopic reaction diffusion processes.(13) Many approaches have
been proposed to try to understand the corrections to this mean field
picture due to the stochastic aspect present at the microscopic level.

Some approaches add a multiplicative noise term to the equation in
a phenomenological way, (14�17) but the noise term introduced that way
represents an external noise and not the fluctuations of the underlying
microscopic model. Other approaches use a mesoscopic description(18�22)

(using Boltzmann or Langevin equations) or attack directly the micro-
scopic model, (23�27) but the effective numbers N of particles which can be
numerically achieved are usually too small to see the large N behavior in
the one dimensional case.

What has become clear, however, over the last fifteen years is that:

v In contrast to the macroscopic equations which admit a continuous
family of solutions, a single velocity is selected by the front in the micro-
scopic models for arbitrary initial conditions.(13, 28, 23, 24, 18, 19, 27)

v This velocity is smaller than vmin and tends slowly to vmin as N � �
(i.e., as one approaches the mean field limit).(13, 28, 23, 24, 29�33)

v The front has a fluctuating shape but its width does not broaden
with time.(27, 34)

v The position of the front diffuses with time(23, 24, 35, 34) with a diffusion
constant DN which decreases slowly with N.

Only recently, by considering simple enough one dimensional lattice
models, (29�33) it was possible to increase N (or the effective N ) enough to
see that the velocity of the front vN , for microscopic models, converges to
vmin from below with a correction proportional to 1�log2 N.

vN&vmin& &
K

log2 N
(3)
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A simple approximation (the cut-off approximation) developped in
ref. 29 predicts this logarithmic correction together with an analytic expres-
sion Kapprox for the multiplicative constant K in (3). (In the case of Eq. (1),
it gives Kapprox=?2.) This approximation is simply based on the idea that
the concentration h(x, t) is quantized at the microscopic level and varies by
steps of 1�N without any reference to the stochastic nature of the micro-
scopic model.

Simulations indicate(29, 30) that the cut-off approximation gives the
right order of magnitude for K but it is still not established(33) whether
K=Kapprox or not.

The main goal of the present paper is to give numerical evidence that
the diffusion constant DN has also a logarithmic decay for large N

DN&
K $

log: N
(4)

with :=3\0.1. We have at present no analytical theory to predict K $ or :.
Moreover, our numerical simulations confirm the recent results of

Pechenik and Levine(33) on a different model, namely that the true value K
in (3) is very close and possibly equal to the prediction Kapprox of the cut-
off approximation.

Our paper is organized as follows: in Section 2, we define our micro-
scopic model which is a variant of the model we considered in our previous
work(29) and we summarize the analytical results published there. In
Section 3, using effective values of N as large as 10150, we present our new
results for the velocity vN and the diffusion constant DN . Finally, in
Section 4 we introduce a simplified version of the model, where the noise
is limited to a single site at the tip of the front. The large N behavior of
this simplified model cannot be distinguished numerically from the large N
behavior of the microscopic model of Sections 2 and 3.

2. THE MICROSCOPIC STOCHASTIC MODEL

2.1. Definition of the Model

The model we study here is a close variant of the one we studied in
ref. 29: we consider a system of N particles moving on a line. Both the time
t and the positions X1(t),..., XN(t) of the particles are integers.

Given the positions [Xk(t)] of the N particles at time t, their new
positions at time t+1 are determined in the following way: for each k
between 1 and N, we choose two particles i and i $ at random among the
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N particles. Each Xk(t+1) is then given by the position of the rightmost
of these two particles at time t, plus some noise :k(t+1)

Xk(t+1)=max[Xi (t), Xi $(t)]+:k(t+1) (5)

At each time step, the particles i and i $ are chosen independently at ran-
dom (so i and i $ depend both on k and on t), and the noise :k(t+1) is also
chosen at random according to

:k(t+1)={0
1

with probability 1& p
with probability p

(6)

This model was considered in the context of the mean-field theory of
directed polymers in a random medium:(36) the quantity &Xk(t) was then
the groundstate energy of a directed polymer of length t ending at site k in
a randomly connected lattice. One can also think of (5) as a simple model
for the evolution of the fitness Xk(t) of an individual in a population with
sexual reproduction: for each individual k at generation t+1, we choose
at random two parents from the previous generation t, and the fitness of
the new individual is given by the fitness of its best parent plus a random
contribution :k(t+1) due to mutations.

The N particles evolving according to (5) form a bound state. This can
be understood intuitively by a simple argument which shows that it is very
unlikely to find the particles grouped in more than a single cluster. Assume
that, at time t, the N particles form two clusters far apart, with N* particles
in the leftmost cluster and N(1&*) particles in the rightmost one. If N is
large enough, at time t+1, the most probable number of particles will be
N*2 in the leftmost cluster and N(1&*2) in the rightmost cluster. There-
fore, with high probability, the leftmost cluster will loose particles at each
time step until it disappears completely.

The N particles therefore form a single cluster and one can interpret
the motion of this cluster as a front. Let h(x, t) be the fraction of particles
strictly at the right of x:

h(x, t)=
1
N

:
Xk(t)>x

1 (7)

Obviously, h(x, t) is a decreasing function with h(&�, t)=1 and
h(+�, t)=0. Given h(x, t), i.e., given the positions of the N particles at
time t, the mean value of h(x, t+1) is the probability that Xk(t+1)>x for
any given particle k. Using (5), we find easily

(h(x, t+1) | [h(x, t)]) =1& p[1&h(x&1, t)]2&(1& p)[1&h(x, t)]2

(8)
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2.2. The Deterministic Equation

When N is very large, the law of large numbers tells us that h(x, t+1)
&(h(x, t+1)) . Thus, the evolution of h(x, t) for the stochastic model (5)
reduces to the deterministic equation

h(x, t+1)=1& p[1&h(x&1, t)]2&(1& p)[1&h(x, t)]2 (9)

This equation, discrete in space and time, describes the propagation of a
front from a stable region (h=1) into a linearly unstable region (h=0).
When 0<p<0.5, the traveling-wave solutions decay exponentially in the
region where h(x, t)<<1:

h(x, t) B e&#(x&v(#) t) (10)

and one can relate the velocity v(#) of the front to the exponential decay
# of the solutions by using (10) into the linearized version of (9),

h(x, t+1)&2ph(x&1, t)+2(1& p) h(x, t) (11)

One finds

v(#)=
1
#

log[2pe#+2(1& p)] (12)

As for the Fisher-KPP equation (1), the front moves with the minimal
velocity vmin=min# v(#) for steep enough initial conditions.

2.3. The Cut-Off Approximation

When N is large but finite, h(x, t) is quantized and varies by steps of
1�N: in particular the smallest non-zero value it can take is 1�N. As the
speed of the front is determined by its tail, this cut-off has a strong
influence on the propagation of the front. We have studied the effect of this
cut-off in ref. 29 by modifying (9) in such a way that h(x, t+1) is set to
zero whenever the right hand side of (9) is smaller than 1�N. We have
shown that, due to this cut-off, the velocity vN of the front becomes smaller
than vmin and that the shift in velocity is logarithmic in N. We could
calculate analytically the leading correction:

vmin&vN&
Kapprox

log2 N
(13)
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with Kapprox given by

Kapprox=
?2#*2v"(#*)

2
(14)

where v(#) is given by (12) for our model and where #* is the value of #
for which vmin=v(#*). Expressions (13, 14) are independent of the precise
prescription used to introduce the cut-off.

3. NUMERICAL RESULTS

3.1. Implementation details

The main advantage of the model we consider here is that it allows to
simulate systems involving a very large number N of particles. This is due
to the fact that the N positions of the particles are integers and one can
simulate directly the number of particles (or equivalently h(x, t)) at each
site x. As the number of non-empty sites increases typically like log N, the
reduction in computer time is tremendous.(29)

Using this ``parallel'' algorithm and an implementation of the binomial
distribution found in the numerical recipes, (37) we could in ref. 29 simulate
systems with up to 1016 particles and measure the velocity vN accurately
enough to observe that the difference vmin&vN decays like 1�log2 N.
However, in order to distinguish between several possible logarithmic
decay laws for the diffusion constant DN and to check whether Kapprox is
possibly equal to K or not, we found it necessary to go beyond 1016 par-
ticles. Consequently, we present in this paper numerical results with N up
to 10150 particles.

For such large numbers, the generator of binomial random numbers
used in ref. 29 does not work. Instead of doing the hard work of designing
a new implementation adapted to these large numbers, we used an
approximation of the binomial distribution when the numbers involved
become larger than 107: we used Poisson deviates to approximate the two
tails of the binomial distribution and Gaussian deviates in the bulk. For
values of N up to 1014, we compared the results obtained with this
approximate distribution to results obtained with the exact binomial
distribution, and we could not see any difference between the two sets of
results.

Our simulations were done as follows: at time t=0, all the particles
are put on the same lattice site x=0, and we measure at each time step the
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position of the front by taking the average position of the particles. To
obtain the front velocity and the diffusion constant for each choice of the
parameters, we first let the system evolve for a certain number T of time-
steps to eliminate transient effects due to initial conditions. Then, we
measure by how much the front moves during the following 5T time-steps
and again during the next 50T time-steps. Averaged over a large number
of runs (more than 1000), these data allow us to estimate the average speed
vN and diffusion constant DN of the front for the two different time inter-
vals 5T and 50T. The fact that the results for vN and DN were the same for
the two time intervals was our way to check that the transient effects have
actually been suppressed and that the wandering of the front position is
indeed diffusive.

It is expected(30) that the relaxation time of the system scales like
log2 N, and we checked that choosing T=log2 N was sufficient to eliminate
transient effects. Because the number of sites we need to update at each
time-step grows like log N, the computer time needed to measure the speed
and the diffusion constant for one set of parameters increases as (log N )3.

To check the accuracy of the measurements, the velocities and diffu-
sion constants obtained from both time intervals (5T and 50T ) are
represented using the same symbols on all the plots in this paper. For the
velocity, the two symbols are usually so well superposed that only one can
be seen. For the diffusion constant, there are few cases where one can see
a very small shift, indicating that the diffusion constant DN is more difficult
to measure than the velocity vN .

3.2. Diffusion Constant

If y(t) is the position of the front at time t, the definition of DN we
used is

DN= lim
t � �

( y(t)2)&( y(t)) 2

t
(15)

Figure 1 presents the diffusion constant for two values of p on a graph
with a logarithmic scale on the vertical axis and a bi-logarithmic scale on
the horizontal axis. The symbols are nicely aligned, indicating that the
diffusion constant decays like a power-law in log N;

DN&
K $

log: N
(16)
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File: 822J 429008 . By:XX . Date:08:01:01 . Time:14:49 LOP8M. V8.B. Page 01:01
Codes: 1983 Signs: 1337 . Length: 44 pic 2 pts, 186 mm

Fig. 1. The diffusion constant DN of the stochastic model described in Section 2. The
symbols correspond to two sets of simulations for p=0.05 and p=0.25, and the straight line
represents a decay in 4�log3 N. The scale on the horizontal axis is in log(log N ).

The results are consistent with :=3, but we cannot exclude numerically
other values for :. (For instance, :=2.9 fits also quite nicely.) So even with
N=10150, we cannot achieve an accuracy better than 0.1 on the exponent :.

3.3. Correction to the Velocity

On Figs. 2 and 3 we have compared the actual velocity correction
vmin&vN to the prediction (13, 14) of the cut-off approximation developped
in ref. 29. The K�log2 N decay is nicely confirmed and, for very large N, the
data seem to agree with the value of K given by (14). Indeed, we have plot-
ted the difference Kapprox �log2 N&(vmin&vN) on the same figure, and we
see that this second-order correction decays faster (but not much faster)
than 1�log2 N.

Our data are therefore consistent with a correction to the velocity
equal to

vmin&vN=
Kapprox

log2 N
+O \ 1

log ; N + (17)

where Kapprox is given by (14) and where ; is between 2.5 and 3. In any
case, as observed in refs. 29, 31, and 33, the second term in the right hand
side of (17) is not much smaller (about 150 only) than the first one for
values of N of order 1015.
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File: 822J 429009 . By:XX . Date:08:01:01 . Time:14:49 LOP8M. V8.B. Page 01:01
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Fig. 2. For p=0.25, correction to the velocity in our stochastic model of Section 2
compared to the prediction of the cut-off approximation of ref. 29 (plain line). The difference
Kapprox �log2 N&(vmin&vN) seems to decay faster than 1�log2 N. The dashed line represents a
decay in 1�log2.5 N as a visual guide.

4. A SIMPLIFIED MODEL

For Fisher-KPP like equations, the velocity is determined by the tail
of the front. It is therefore reasonable to think that the main influence of
the noise is concentrated at the tip of the front, namely at the sites where
the occupation numbers are limited to a few particles. To test this idea, we
consider in this section an extremely simplified version of the stochastic
model of Section 2.

Fig. 3. Same as Fig. 2 for p=0.05.
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At each time step, we define the position xtip(t) of the tip of the front
as the smallest x such that h(x, t)=0. Therefore, xtip(t) is defined by

h(xtip(t), t)=0,
(18)

h(xtip(t)&1, t)>0

Then, in this simplified model, h(x, t) evolves in the following way: for
all x<xtip(t), we calculate h(x, t+1) using the deterministic equation (9).
Only for x=xtip(t), we keep the stochastic rule of the model as defined in
Section 2, except that we take a Poisson distribution instead of a binomial
distribution. (Considering that N is very large and that h(xtip(t), t+1) is of
order 1�N, the binomial distribution reduces to the Poisson distribution.)
In other words, we take

h(xtip(t), t+1)=
m
N

(19)

where the number m of particles at the tip site is chosen according to a
Poisson distribution

Proba(m)=
(m) m

m!
e&(m) (20)

and where the average occupancy (m) is obtained from (8) by

(m) =N(h(xtip(t), t+1) | [h(x, t)])

=Np[2h(xtip(t)&1, t)&h(xtip(t)&1, t)2] (21)

In this simplified model, the evolution of the front is deterministic
everywhere except for a single site at the tip of the front. As a consequence
h(x, t) is only quantized for x=xtip and it takes continuous real values for
all x<xtip .

In this simplified model, there is a cut-off of order 1�N and we expect
that the shift of the velocity decays as 1�log2 N. As there is some random-
ness at the tip of the front, we also expect a diffusive behavior. To our
surprise, we find that both vN and DN coincide, for large enough N, with
what was obtained in the full model of Sections 2 and 3: As can be seen on
Figs. 4 and 5, not only this simplified model has a diffusion constant which
seems to decay as 1�log3 N, but we cannot distinguish for large N the data
from the simplified model from those of the original one. This is also true for
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File: 822J 429011 . By:XX . Date:08:01:01 . Time:14:50 LOP8M. V8.B. Page 01:01
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Fig. 4. For p=0.25, a comparaison of different quantities in the full stochastic model of
Section 2 and in the simplified model of Section 4. From top to bottom: the velocity correc-
tion vmin&vN , the difference Kapprox �log2 N&(vmin&vN) and the diffusion constant. The plain
line represents Kapprox �log2 N and the two dashed lines decay respectively like 2.5�log2.5 N and
4�log3 N.

the second order correction to the velocity (the difference between the
prediction (13, 14) given by the cut-off approximation and the actual value
of vmin&vN). It seems therefore that this simplified model with the noise
limited to a single site at the tip of the front captures the large N depen-
dence of vN and DN of the full model.

Fig. 5. Same as Fig. 4 for p=0.05.
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5. CONCLUSION

In this paper, we have studied numerically the velocity vN and the dif-
fusion constant DN of a microscopic system involving N particles, which
reduces in the limit N � � to a deterministic Fisher-like equation (9). Our
simulations of this model for N up to N=10150 give additional evidence
that, for large N, the velocity of such a front is given by the linear marginal
stability velocity vmin minus a logarithmic correction in K�log2 N (Eq. (3)).
Furthermore, our results indicate that the value of the constant K is very
close and might possibly be equal to the analytical expression Kapprox

obtained in our previous work(29) for the case of a deterministic front with
a cut-off 1�N.

A second result concerns the diffusion constant DN of the front. Our
data indicate that DN&K$�log: N, with :=3\0.1. A previous attempt(24)

to measure a diffusion constant in a similar situation gave a N &0.32 decay
of DN for an effective N up to 106. We believe that the asymptotic behavior
was not yet reached. In fact, a similar apparent power law can be observed
for the shift of velocity when N is moderately large, (21) although this shift
becomes logarithmic for larger values of N. It would, of course, be interest-
ing to confirm this logarithmic decay of DN for other models which exhibit
already the logarithmic shift of the velocity.(30, 32, 33)

Our third and last result concerns a very simplified model (Section 4)
where noise is only present at the tip of the front. To our surprise, the shift
of velocity vmin&vN and the diffusion constant DN seem to be the same for
large N as in the full model of Section 2. Therefore, our next efforts to
understand analytically (16) and (17) will first focus on this simplified
model.
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