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We consider an open one dimensional lattice gas on sites i=1,..., N, with par-
ticles jumping independently with rate 1 to neighboring interior empty sites, the
simple symmetric exclusion process. The particle fluxes at the left and right
boundaries, corresponding to exchanges with reservoirs at different chemical
potentials, create a stationary nonequilibrium state (SNS) with a steady flux of
particles through the system. The mean density profile in this state, which is
linear, describes the typical behavior of a macroscopic system, i.e., this profile
occurs with probability 1 when NQ.. The probability of microscopic config-
urations corresponding to some other profile r(x), x=i/N, has the asymptotic
form exp[−NF({r})]; F is the large deviation functional. In contrast to equi-
librium systems, for which Feq({r}) is just the integral of the appropriately
normalized local free energy density, the F we find here for the nonequilibrium
system is a nonlocal function of r. This gives rise to the long range correlations
in the SNS predicted by fluctuating hydrodynamics and suggests similar non-
local behavior of F in general SNS, where the long range correlations have
been observed experimentally.

KEY WORDS: Large deviations; symmetric simple exclusion process; open
system; stationary nonequilibrium state.

1. INTRODUCTION

The extension of the central object of equilibrium statistical mechanics,
entropy or free energy, to stationary nonequilibrium systems in which there



is a transport of matter or energy has proved difficult. One knows from
various approximate theories like fluctuating hydrodynamics that such
systems exhibit long range correlations very different from those of equi-
librium systems. (1–3) These correlations extend over macroscopic distances,
as has been established rigorously in some models, and reflect the intrinsic
nonadditivity of such systems. They have been measured experimentally in
a fluid with a steady heat current. (2, 4) Their derivation from a well defined
macroscopic functional valid beyond local equilibrium (where there are no
such correlations) is clearly desirable. We report here what we believe is the
first exact derivation of such a functional for a nonequilibrium model
which is relatively simple but exhibits the realistic feature of macroscopi-
cally long range correlations.

Before describing our model and results, we review briefly the corre-
sponding results for equilibrium systems. (5–8) Let us ask for the probability
of finding an isolated macroscopic equilibrium system, having a given
number of particles and energy and contained in a given volume V, in a
specified macro state M, that is, of finding the microscopic configuration
X of the system in a certain region CM of its phase space. According to
the basic tenet of equilibrium statistical mechanics, embedded in the
Boltzmann–Gibbs–Einstein formalism, this probability is proportional to
exp[S(M)/kB], where the (Boltzmann) entropy S(M) of the macro state
M is defined by S(M)=kB log |CM |, with |CM | the phase space volume
of CM. (5–9)

When the system is not isolated but is part of a much larger system—
a situation idealized by considering the system to be in contact with an
infinite thermal reservoir at temperature T and chemical potential n—then
the entropy in the formula above is replaced by an appropriate free energy.
Consider in particular a lattice gas in a unit cube containing Ld sites with
spacing 1/L (similar formulas will hold for continuum systems), and
suppose that the macro state of interest is specified by a density profile
prescribing the density r(x) at each macroscopic position x in the cube.
Then the probability of finding the system in this macro state is given for
large L by

P({r(x)}) ’ exp[−LdFeq({r})], (1.1)

with

Feq({r})=F [fn(r(x))−fn(r̄)] dx. (1.2)
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The integration in (1.2) is over the unit cube, fn(r)=a(r)− nr, where a(r) is
the usual Helmholtz free energy density for a uniform equilibrium system
at density r, and the equilibrium density r̄=r̄(n) corresponding to the
chemical potential n is obtained by minimizing fn:

n=
“a(r)
“r
:
r=r̄(n)

. (1.3)

Note that −fn(r̄) is just the pressure in the grand canonical ensemble. We
have suppressed the dependence of f and Feq on the constant temperature T,
and assume for simplicity that neither r̄ nor r(x), for any x, lies in a phase
transition region at this temperature.

The challenge is to extend these results to nonequilibrium systems, in
particular, to systems which are maintained in a stationary nonequilibrium
state (SNS) with a steady flux of particles by contact with two boundary
reservoirs at different chemical potentials. We would like to generalize the
formula (1.2) for Feq({r}), obtaining a large deviation functional F({r})
such that the probability of observing a density profile r(x) is given by a
formula analogous to (1.1). The typical profile would then correspond to
the r which minimizes F. A similar analysis and an appropriate F would
certainly be useful for the study of pattern formation in more general SNS.
An interesting example is the Bénard system, in which the particle flux is
replaced by a heat flux maintained by reservoirs at different temperatures,
with the hotter reservoir below the system, and the typical patterns change
abruptly from uniform to rolls to hexagonal cells as the fluid is driven
away from equilibrium. (10) Open systems of this type have been discussed
extensively in the literature from both a microscopic and macroscopic point
of view; see refs. 11, 12, and references therein.

Given our current limited understanding of such SNS, however, it is
necessary to start with the simplest systems; our results here are for the one
dimensional symmetric simple exclusion process (SSEP), (13–15) driven by
boundary reservoirs at distinct chemical potentials n0 and n1. We consider a
lattice of N sites, in which each site i is either empty (yi=0) or occupied by
a single particle (yi=1), so that each of the 2N possible configurations of
the system is characterized by N binary variables y1,..., yN. Each particle
independently attempts to jump to its right neighboring site, and to its left
neighboring site, in each case at rate 1 (so that there is no preferred direc-
tion). It succeeds if the target site is empty; otherwise nothing happens. At
the boundary sites, 1 and N, particles are added or removed: a particle is
added to site 1, when the site is empty, at rate a, and removed, when the
site is occupied, at rate c; similarly particles are added to site N at rate d
and removed at rate b. This corresponds to the system being in contact
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with infinite left and right reservoirs having fugacities z0=exp n0=a/c,
and z1=exp n1=d/b, see refs. 16 and 17. We therefore define

r0=
z0
1+z0

=
a

c+a
, r1=

z1
1+z1

=
d

b+d
, (1.4)

and think of these as the densities of the reservoirs. They will in fact be the
stationary densities at the left and right ends of the system when NQ.

(see (7.12) below).
We refer to z0 and z1 as fugacities because if we were to place our

system in contact with only the left (right) reservoir by limiting particle
input and output to just the left (right) side, i.e., by setting d=b=0
(a=c=0), then its stationary state would be one of equilibrium with
fugacity z0 (z1), with no net flux of particles. Of course if z0=z1=z
then the system would be in an equilibrium state whether in contact with
one or both reservoirs, i.e., in a product measure with uniform density
r=z/(1+z); this value follows from (1.3), since for this system

a(r)=r log r+(1−r) log(1−r). (1.5)

For the model considered here the typical profile r̄(x, t̃), on the
macroscopic spatial-temporal scale with variables (x, t̃) defined by iQ xN
and tQ t̃N2, is for NQ. governed by the diffusion equation (16–18)

“r̄(x, t̃)
“t̃

=
“
2r̄(x, t̃)
“x2

, r(0, t̃)=r0, r(1, t̃)=r1, (1.6)

which gives for the stationary state r̄(x)=r0+(r1−r0) x. Spohn (3) (see
also ref. 19) computed explicitly, for a+c=b+d=1, both the expected
density profile and the pair correlation in the stationary state, and showed
that the results agree, in the above scaling limit, with those obtained from
fluctuating hydrodynamics.

While higher order correlations can also be obtained in principle, the
difficulty of the computation increases rapidly with the desired order. The
complete measure on the microscopic configurations in the steady state
may, however, be computed through the so-called matrix method. (20–24)

From this measure we would like to determine the probability of seeing
an arbitrary macroscopic density profile r(x), x ¥ [0, 1]; by definition, this
is the sum of the probabilities of all microscopic configurations which are
consistent with r(x), e.g., all configurations y such that for any x0, x1
with 0 [ x0 < x1 [ 1, |

1
N;

x1N
i=x0N yi− >

x1
x0 r(x) dx| < dN, for some appropriate

choice of dN with dN Q 0 as NQ., e.g., dN=N−o, 0 < o < 1.
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The deviations of macroscopic systems from typical behavior, e.g.,
from the profile r̄(x, t̃) governed by the diffusion equation, is a central
issue of statistical mechanics. (5–8, 11, 12) The time dependent problem was first
studied by Onsager and Machlup, (25) who considered space-time fluctua-
tions for Hamiltonian systems in equilibrium (for which r̄ is constant). The
problem of observing a profile r(x, t̃) not necessarily close to r̄(x, t̃), the
so-called problem of large deviations, was later studied rigorously for the
SSEP on a torus by Kipnis, Olla, and Varadhan, (26) who found an exact
expression for the probability of observing such a profile (see also refs. 15
and 18). An important ingredient in their analysis was the fact that the
dynamics satisfied detailed balance with respect to any product measure
with constant density, and that such a product measure is in fact the
appropriate microscopic measure at each macroscopic position. This
corresponds for stochastic systems to reversibility of the microscopic
dynamics, which also plays an important role in the Onsager–Machlup
theory. There have been various attempts to extend these results to open
systems in which the dynamics no longer satisfy detailed balance with
respect to the stationary measure. (12, 27–29) Bertini et al. (28) have indeed suc-
ceeded in doing this for the so-called zero-range process with open bound-
aries, for which the microscopic stationary state is also a product measure.
The problem is more difficult for our system, where it is known (3) that the
stationary microscopic state contains long range correlations—correlations
expected to be generic for SNS (1, 30–32) and even measured experimentally in
some cases. (4) We shall see that this is reflected in a nonlocal structure for
F({r}). A preliminary version of our results was given in ref. 33, and more
recently Bertini et al. (29) succeeded in rederiving this result, and obtaining a
large deviation functional for space-time profiles, using a semi-macroscopic
method (which could be further checked, at least for small fluctuations, by
comparing its predictions with the direct calculation of the time dependent
correlations given in ref. 34).

2. SUMMARY OF RESULTS

In the present paper we give the exact asymptotic formula for the
probability PN({r(x}) of seeing a density profile r(x), 0 [ r(x) [ 1, in the
one dimensional open system with SSEP internal dynamics. (The exact
sense in which we establish this formula is sketched later in this section.)
Let r0 and r1 be defined as in (1.4); we will assume for definiteness that
r0 > r1 (results for the case r0 < r1 then follow from the right-left symme-
try or the particle-hole symmetry, and for the case r0=r1 by taking the
limit r0 Q r1).
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Our main result is then:

lim
NQ.

log PN({r(x})
N

— −F({r}), (2.1)

where

F({r})=F
1

0
dx 3r(x) log 1 r(x)

F(x)
2+(1−r(x)) log 1 1−r(x)

1−F(x)
2

+log 1 FŒ(x)
r1−r0
24 . (2.2)

The auxiliary function F(x) in (2.2) is given as a function of the density
profile r(x) by the monotone solution of the nonlinear differential equation

r(x)=F(x)+
F(x)(1−F(x)) Fœ(x)

FŒ(x)2
, (2.3)

with the boundary conditions

F(0)=r0, F(1)=r1 . (2.4)

We will show in Section 5 that such a solution exists and is (at least when
r0 < 1 and r1 > 0) unique.

We now summarize some consequences of (2.2)–(2.4).

(a) Let us denote the right hand side of (2.2), considered as a func-
tional of two independent functions r(x) and F(x), by G:

G({r}, {F}))=F
1

0
dx 3r(x) log 1 r(x)

F(x)
2+(1−r(x)) log 1 1−r(x)

1−F(x)
2

+log 1 FŒ(x)
r1−r0
24 . (2.5)

If one looks for a monotone function F, satisfying the constraint (2.4), for
which G({r}, {F}) is an extremum, one obtains (2.3) as the corresponding
Euler–Lagrange equation:

dG({r}, {F})
dF(x)

=0. (2.6)
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We will show in Section 5 that the unique monotone solution of (2.3) (or
equivalently of (2.6)) is in fact a maximizer of (2.5):

F({r})=sup
F

G({r}, {F}). (2.7)

We will also show that F is a convex function of {r}. (More precisely, our
derivations will be for the case 1 > r0 > r1 > 0, but we expect the conclu-
sions to hold in general, that is, for 1 \ r0 > r1 \ 0 and by symmetry for
1 \ r1 > r0 \ 0.)

(b) From (2.6) one sees at once that for F the solution of (2.3), (2.4),

dF({r})
dr(x)

=
dG({r}, {F})
dr(x)

=log 5r(x)
F(x)

·
1−F(x)
1−r(x)
6 , (2.8)

and this together with (2.3) implies that the minimum of F({r}) occurs for
r(x)=F(x)=r̄(x), where

r̄(x)=r0(1−x)+r1x. (2.9)

Moreover, from (2.2) and (2.3) one has F({r̄})=0, confirming that the
most likely profile r̄(x) is obtained with probability one in the limit
NQ.. Any other profile will have F({r}) > 0 and thus, for large N,
exponentially small probability. The profile may be discontinuous, or may
fail to satisfy the boundary conditions r(0)=r0 or r(1)=r1, and still
satisfy F({r}) <.. When r0=0 or r1=1 there are some profiles for
which F=+.; their probability is super-exponentially small in N. For
examples, see (d) below and Section 8.

(c) It is natural to contrast the SNS under consideration here with
a local equilibrium Gibbs measure for the same system—a lattice gas with
only hard core exclusion—with no reservoirs at the boundaries but with a
spatially varying chemical potential n(x) (26, 15) which is adjusted to maintain
the same optimal profile r̄(x). For this system the large deviation func-
tional (free energy) is obtained directly from (1.2), with fn(r)=r log r+
(1−r) log(1−r)− nr:

Feq({r})=F
1

0

3r(x) log
r(x)
r̄(x)
+[1−r(x)] log

(1−r(x))
(1− r̄(x))
4 dx. (2.10)

In general the two expressions (2.2) and (2.10) are different, and from (2.7),

F({r})=sup
F

G({r}, {F}) \ G({r}, {r̄})=Feq({r}). (2.11)
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F({r}) and Feq({r}) agree only for r(x)=r̄(x) or in the limiting case
r0=r1, in which the system is in equilibrium with r̄(x)=r0. (Equations
(2.2)–(2.4) have a well-defined limit for r1 q r0, with F(x)=r0+(r1−r0) x
+O((r1−r0)2).) Otherwise F({r}) lies above Feq({r}) and thus gives
reduced probability for fluctuations away from the typical profile.

Note that the integrand in (2.10) (or (1.2)) is local: changing r(x) in
some interval [a, b] only changes the value of this integrand inside that
interval. This is not true for the integrand of (2.2), because F is determined
by the differential equation (2.3) and so F(x) will generally depend on the
value of r(y) everywhere in [0, 1].

(d) For a constant profile r(x)=r, the solution F of (2.3) and (2.4)
satisfies FŒ=AFr(1−F)1−r, where A is fixed by (2.4), and

F({r})=log 5Fr1
r0

1 r
z
2 r 11−r
1−z
21−r dz
r1−r0
6 . (2.12)

We see that F({r})=. if r=0 and r0=1, or r=1 and r1=0. By con-
trast Feq({r}) as given in (2.10) would be

Feq({r})=F
r1

r0

log 51 r
z
2 r 11−r
1−z
21−r6 dz

r1−r0
, (2.13)

which is finite except in the degenerate cases r0=r1=1 and r0=r1=0, in
which case the measure is concentrated on a single configuration and
Feq=. unless r=r0.

(e) If we minimize F subject to the constraint of a fixed mean density
>10 r(x) dx, the right hand side of (2.8) becomes an arbitrary constant, and
together with (2.3) one obtains that the most likely profile is exponential:
r(x)=A1 exp(hx)+A2 (with F(x)=1−A2+A2(1−A2) exp(−hx)/A1), the
constants being determined by the value of the mean density and the
boundary conditions (2.4). (This exponential form, which is the stationary
solution of a diffusion equation with drift, was first suggested to us by
Errico Presutti).

Similarly, if we impose a fixed mean density in k nonoverlapping
intervals, >biai r(x) dx=ci for i=1,..., k, with no other constraints, then one
can show using (2.3) and (2.8) that the optimal profile has an exponential
form inside these intervals and is linear outside; it will in general not be
continuous at the end points of the intervals.

(f ) Using the fact that the exponential is the optimal profile for the
case of a fixed mean density in the entire interval, we may compute the
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distribution ofM, the total number of particles in the system, in the steady
state for large N. The result for the variance of M which is obtained by
applying this computation to small fluctuations agrees with that obtained
in [3] directly from the microscopic model (see also Section 7.2) and from
fluctuating hydrodynamics [2]:

lim
NQ.

N−1[OM2PSNS−OMP2]

= lim
NQ.

N−1[OM2Peq−OMP2]−
(r1−r0)2

12
. (2.14)

(Since r̄ is given by (2.9) for both systems, OMPSNS=OMPeq=OMP=
(r0+r1)/2.) Note that the variance is reduced in comparison to that in a
system in local equilibrium (2.10) with the same r̄; this reduction of fluc-
tuations was already visible in (2.11). We may also obtain (2.14) by
expanding F(r(x)}) about r̄(x)> in (2.2); see Section 7.1.

The structure of the rest of the paper is as follows: In Sections 3 and 4
and Appendices A and B we derive our main result (2.2)–(2.4) from the
knowledge of the weights of the microscopic configurations as given by
their matrix product expressions. Our approach consists in considering the
system of N sites as decomposed into n boxes of N1, N2,..., Nn sites. We
first calculate the generating function of the probability PN1,..., Nn (M1,..., Mn),
that M1 particles are located on the first N1 sites, M2 particles on the next
N2 sites of the lattice, etc. We then use this generating function to obtain
PN1,..., Nn (M1,..., Mn). The expression we obtain appears in a parametric
form because we extract this probability from the generating function
through a Legendre transformation. Then we take the limit of an infinite
system which corresponds implicitly to the usual hydrodynamic scaling
limit, as explained in great detail in refs. 15 and 18, by first letting NQ.,
keeping Ni/N=yi fixed, and then letting yi Q 0 to obtain (2.2)–(2.4).

In Section 5 we prove that for any profile r(x) there exists a unique
monotonic function F(x) which satisfies (2.3) and (2.4). We also establish
there, for 1 > r0 > r1 > 0, that F({r})=supF G({r}, {F}) and that F is a
convex functional of r(x), as discussed in (a) above. In the course of this
discussion we describe the behavior of the large deviation functional for
piecewise constant density profiles. In Section 6 we calculate optimal pro-
files under various constraints, as discussed in (e) above. In Section 7 we
calculate the correlations of the fluctuations of the density profile around
the most probable one and we show that a direct calculation of these cor-
relations agrees with what can be calculated from (2.2)–(2.4). Lastly in
Section 8 we exhibit a few examples of density profiles for which one can
calculate explicitly the function F and the value of F({r}).
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3. EXACT GENERATING FUNCTION

For the SSEP with open boundaries as described in the Introduction,
the probability of a configuration y={y1,..., yN} in the (unique) steady
state of our model is given by (20–24, 14)

PN(y)=
wN(y)

OW| (D+E)N |VP
, (3.1)

where the weights wN(y) are given by

wN(y)=OW|PNi=1(yiD+(1−yi) E) |VP (3.2)

and the matrices D and E and the vectors |VP and OW| satisfy

DE−ED=D+E, (3.3)

(bD−dE) |VP=|VP, (3.4)

OW| (aE− cD)=OW|. (3.5)

To obtain the probability of a specified density profile we first cal-
culate the sum WN1,..., Nn (M1, M2,..., Mn) of the weights wN of all the con-
figurations with M1 particles located on the first N1 sites, M2 particles on
the next N2 sites, etc. The key to obtaining (2.2) is that the following
generating function can be computed exactly:

Z(l1,..., ln; m1,..., mn) —C
mN11
N1!
· · ·
mNnn
Nn!
lM11 · · ·l

Mn
n

WN1,..., Nn (M1,..., Mn)
OW |VP

=
OW| em1l1D+m1E · · · emnlnD+mnE |VP

OW |VP
, (3.6)

where the sum is over all Ni, Mi with 0 [Mi [Ni. As shown in Appen-
dix A, Z can be computed explicitly:

Z=1r0−r1
g
2a+b exp 5a C

n

i=1
mi(1−li)6 , (3.7)

where r0 and r1 are given by (1.4),

a=
1
c+a

, b=
1
b+d

, (3.8)
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and

g=−r1+r0e;
n
i=1 mi(1−li)+C

n

i=1

1
li−1

(emi(1−li)−1) e;j > i mj(1−lj). (3.9)

Expressions (3.7) and (3.9) are the basis of all the calculations leading to
the large deviation functions. As a first step, note that

Z(1; m)=
OW| em(D+E) |VP

OW |VP
=1 r0−r1
r0−r1−m
2a+b, (3.10)

so that one obtains the normalization factor in (3.1):

W0 —
OW| (D+E)N |VP

OW |VP
=

C(a+b+N)
C(a+b)(r0−r1)N

. (3.11)

4. FROM THE GENERATING FUNCTION TO THE LARGE

DEVIATION FUNCTION

It is clear from (3.7) that Z(l1,..., ln; m1,..., mn) is singular on the
hypersurface

g(m1,..., mn; l1,..., ln)=0, (4.1)

where g is given by (3.9). Let us consider a very large system of N sites
divided into n boxes of N1,..., Nn sites, with PN1,..., Nn (M1,..., Mn) the prob-
ability of finding M1 particles in the first box, M2 particles in the second
box, etc., and let Ni and Mi be proportional to N: Ni=Nyi, Mi=
riNi=ri yiN, i=1,..., n. As explained in Appendix B, one can show from
the definition of Z that for large N and fixed yi, ri,

log PN1,..., Nn (M1,..., Mn)
N

4 log(r0−r1)− C
n

j=1
yj 1 log

mj

yj
+rj log lj 2 , (4.2)

where the box sizes yj and their particle densities rj are related to the
parameters m1,..., mn, l1,..., ln by

yj=

“g
“ log mj

;n
i=1

“g
“ log mi

, (4.3)

rj=

“g
“ log lj
“g

“ log mj

, (4.4)

with all derivatives calculated on the manifold g=0.
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Equation (4.2) gives the large deviation function in a parametric form;
the 2n+1 equations (4.1), (4.3), and (4.4) determine the 2n parameters
m1,..., mn, l1,..., ln in terms of y1,..., yn and r1,..., rn (since y1+·· ·+yn=1,
the n equations (4.3) give only n−1 independent conditions, so that the
system is not overdetermined). Note from (3.7) and (3.9) that the param-
eters a and b defined by (3.8) do not appear in the expression for the criti-
cal manifold and therefore drop out in the large N limit, i.e., the large
deviation functional, like the typical profile, depends only on z0 and z1 or
r0 and r1.

4.1. Case of a Single Box

One can apply the above results in the case n=1 of a single box. With
l1 — l and m1 — m, equation (4.1) for the critical manifold becomes

g(m; l) — −r1+r0em(1−l)+
1
l−1

(em(1−l)−1)=0, (4.5)

or more conveniently g̃(m; l)=0, where

g̃(m; l)=m(1−l)− log 11−r1+lr1
1−r0+lr0

2 . (4.6)

The function g̃ may be used in place of g in (4.3)–(4.4), because the deriva-
tives there are evaluated on the manifold g=0, so that if the average
density r=r1 in the box is given by

r=
− l

1−l log11−r1+lr11−r0+lr0
2+ r0l

1−r0+lr0
− r1l

1−r1+lr1

log11−r1+lr11−r0+lr0
2

, (4.7)

then for large N andM 4 rN,

1
N

log PN(M) 4 −r log l− log 5
log11−r1+lr11−r0+lr0

2

(l−1)(r1−r0)
6 . (4.8)

Remark. For small fluctuations of the form

r−
r0+r1
2
=dr° 1, (4.9)
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(4.8) gives, again withM 4 rN,

1
N

log PN(M) 4
−6(dr)2

6r0+6r1−5r
2
0−2r0r1−5r

2
1

+O((dr)3). (4.10)

For a Bernoulli distribution with average profile (2.9) (the most likely
profile, as we will see in Section 6), one would get

1
N

log PN(M) 4
−3(dr)2

3r0+3r1−2r
2
0−2r0r1−2r

2
1

+O((dr)3); (4.11)

from this we can compute the fluctuations ofM and obtain (2.14).

4.2. A Finite Number n of Large Boxes

Let us calculate “g
“ log mi

on the manifold g=0. From (3.9), we have

“g
“ log mi

=r0mi(1−li) e;
n
j=1 mj(1−lj)−mie;

n
j=i mj(1−lj)

+mi(1−li) C
j < i

1
lj−1

(emj(1−lj)−1) e;k > j mk(1−lk), (4.12)

which becomes, using (4.1) and (3.9),

“g
“ log mi

=−mie;j > i mj(1−lj)

+mi(1−li) C
j > i

1
1−lj

(emj(1−lj)−1) e;k > j mk(1−lk)+r1mi(1−li).
(4.13)

One can also show that

“g
“ log li

=−
li

1−li

“g
“ log mi

−
li

(li−1)2
(emi(1−li)−1) e;j > i mj(1−lj) . (4.14)

This parametric form can be simplified by replacing the role of the two
sequences of parameters mi and li by a single sequence of parameters Gi.
Let us define the constant C by

C=C
n

i=1

“g
“ log mi

, (4.15)
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and the sequence Gi by

Gi=
1
C
e;

n
j=i mj(1−lj), Gn+1=

1
C
. (4.16)

From the very definition of the Gi’s it is clear that

mi=
log(Gi/Gi+1)
1−li

, (4.17)

and from (4.3), (4.13), (4.15), and (4.16), we see that

Gi+1
1−li

=−
yi

log(Gi/Gi+1)
+C
j > i

Gj−Gj+1
1−lj

+
r1

C
, (4.18)

so that both the mi and the li are determined in terms of the sequence Gi,
the box sizes yi and the constant C. The condition (4.1) that g=0 becomes

r1

C
+C

n

i=1

Gi−Gi+1
1−li

=r0G1, (4.19)

which gives the extra equation needed to determine the constant C (as well
as Gn+1). Therefore we are left with n free parameters, the Gi’s for 1 [ i [ n.

A more convenient way of writing the li’s (i.e., (4.18)) in terms of the
Gi’s is

1
li−1

=
1
Gi+1

yi
log(Gi/Gi+1)

−r0+C
i

j=1

1 1
Gj
−
1
Gj+1
2 yj

log(Gj/Gj+1)
, (4.20)

and the condition (4.19) becomes

r0−r1=C
n

j=1

1 1
Gj
−
1
Gj+1
2 yj

log(Gj/Gj+1)
, (4.21)

which can be thought as an equation which determines Gn+1 in terms of
the Gi’s.

Once the li are known through (4.20) and (4.21), one gets from (4.4),
(4.13), and (4.14) expressions for the ri’s and the large deviation function:

ri=−
li

1−li
−

li

(1−li)2
Gi−Gi+1
yi

, (4.22)
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and

log[PN1,..., Nn (M1,..., Mn)]
N

4 − C
n

i=1

3yi log 5
log1 GiGi+1

2

yi(r0−r1)
6−yi log(1−li)+yiri log(li)4 . (4.23)

Equations (4.20)–(4.23) determine the large deviation function for any
specified number n of large boxes, i.e., for fixed yi, ri, and NQ..

4.3. An Infinite Number of Large Boxes and the Continuous Limit

Letting n become large while keeping each box a small fraction of the
total system, i.e., all the yi’s are small or, more formally letting NQ.

followed by nQ. and yi Q 0, one can introduce a continuous variable x,
0 [ x [ 1 and let

xi=y1+y2+·· ·+yi . (4.24)

All the discrete sequences can now be thought of as functions of x with

Gi — G(xi); li — l(xi); ri — r(xi), i=1,..., n. (4.25)

Then using extrapolations to make G, l, r smooth functions of x so that

Gi+1−Gi 4 yiGŒ(x), (4.26)

one finds that (4.20) and (4.21) become

1
l(x)−1

=
−1
GŒ(x)

−r0−F
x

0

du
G(u)

, (4.27)

r0+F
1

0

du
G(u)

=r1. (4.28)

At this stage it is convenient to replace the function G(x) by another func-
tion F(x) defined by

F(x)=r0+F
x

0

du
G(u)

. (4.29)
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The expression (4.27) of l(x) becomes then

1
l(x)−1

=
FŒ2(x)
Fœ(x)

−F(x). (4.30)

Using the above relations we may rewrite (4.22) and (4.23) in terms
of F, obtaining (2.2) and (2.3); the boundary conditions (2.4) come from
(4.28). The monotonicity of F follows from the uniqueness of the sign of G
(see (4.16); note from (4.29) that G is negative in the case r0 > r1 that we
consider).

5. THE LARGE DEVIATION FUNCTIONAL IN THE CONTINUUM

LIMIT

We derive here some properties of Eqs. (2.2)–(2.4). We discuss only the
case 1 > r0 > r1 > 0 and concentrate on results for piecewise constant
density profiles, in some instances giving only a sketch of the extension to
more general r(x). The case in which either r0=1 or r1=0 seems techni-
cally more difficult; for this case we can show the existence of a solution,
but omit the proof here.

5.1. Uniqueness

In this section we show that any monotone solution F(x) of (2.3) and
(2.4) is unique. If F and F̂ are distinct solutions then necessarily
FŒ(0) ] F̂Œ(0), since the standard initial value problem for (2.3), with
prescribed values of F(0) and FŒ(0), has a unique solution. Suppose that
F̂Œ(0) > FŒ(0); we will show that then F̂(x) > F(x) for 0 < x [ 1, contra-
dicting F(1)=F̂(1)=r1. For otherwise let y to be the smallest positive
number for which F(y)=F̂(y), so that

F(x) < F̂(x) , 0 < x < y [ 1. (5.1)

Let g(x)=F(x)(1−F(x))/FŒ(x) and ĝ(x)=F̂(x)(1−F̂(x))/F̂Œ(x). Then
g(0) > ĝ(0) and, from (2.3), which can be written in the form gŒ(x)=
1−F(x)−r(x), and (5.1), gŒ(x)− ĝŒ(x)=F̂(x)−F(x) > 0 for 0 < x < y, so
that g(y) > ĝ(y) and hence FŒ(y) < F̂Œ(y), which is inconsistent with (5.1).
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5.2. Piecewise Constant Profiles and Extensions

In this section we prove existence of a solution Fr(x) of (2.3) and (2.4),
and show that this solution maximizes G({r}, {F}), given by (2.5), for a
piecewise constant density profile

r(x)=ri for xi−1 < x < xi, (5.2)

where 0=x0 < x1 < · · · < xn=1. We will write yi=xi−xi−1. It follows
from (2.3) that Fr(x) must satisfy

F −r(x)=Aiki(Fr(x)) (5.3)

for xi−1 < x < xi, where Ai is a (negative) constant and

ki(F)=1
F
ri
2 ri 11−F
1−ri
21−ri. (5.4)

Continuity of Fr(x) and F −r(x) implies that Fr(x1),..., Fr(xn−1) and the
constants A1,..., An must satisfy

Ai=
1
yi

F
Fr(xi)

Fr(xi−1)

dz
ki(z)

(5.5)

and

Aiki(Fr(xi))=Ai+1ki+1(Fr(xi)). (5.6)

Conversely, the existence of values Fr(x1),..., Fr(xn−1) and A1,..., An
satisfying (5.5) and (5.6) implies the existence of a solution Fr of (2.3) and
(2.4), obtained by solving (5.3) on each interval [xi−1, xi].

So we need to prove that (5.5) and (5.6) can be solved. Now it follows
from (5.3) that

G({r}, {F})=G0({r}, (F(x0), F(x1),..., F(xn))), (5.7)

where {r}=(r1,..., rn) and for {H}=(H0,..., Hn) a sequence satisfying

r0=H0 \H1 \ · · · \Hn=r1, (5.8)

we have defined

G0({r}, {H})=C
n

i=1
yi log 1 − 1

yi
F
Hi

Hi−1

dz
ki(z)
2− log(r0−r1). (5.9)
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Equation (2.7) suggests that we consider the problem of maximizing G0.
Since G0 is continuously differentiable in {H} on the interior of the
compact domain (5.8) and equal to −. on its boundary, it achieves a
maximum at some interior point {Hg} at which

“G0

“Hi
({r}, {Hg}) —

1
Ai+1ki+1(H

g
i )
−

1
Aiki(H

g
i )
=0, (5.10)

for i=1,..., n−1, where

Ai=
1
yi

F
Hg
i

Hg
i−1

dz
ki(z)

. (5.11)

Since (5.10) and (5.11) correspond to (5.5) and (5.6), we obtain a solution
of the latter equations, and hence a solution Fr of (2.3) and (2.4), by taking
Fr(xi)=H

g
i . Note that the argument above could be used to construct a

solution of (2.3) and (2.4) from any point {H} at which

“G0

“Hi
({r}, {H})=0, i=1,..., n−1; (5.12)

since the solution is unique (see Section 5.1), {Hg} is the only point
satisfying (5.12).

It is now easy to verify (2.7) for r(x). For if F(x) is any continuously
differentiable monotone function with F(0)=r0 and F(1)=r1, then from
Jensen’s inequality applied on each interval [xi−1, xi],

G({r}, {F}) [ C
n

i=1
yi log 1 − 1

yi
F
F(xi)

F(xi−1)

dz
ki(z)
2− log(r0−r1)

[ sup
H

G0({r}, {H})

=G0({r}, {Hg})=G({r}, {Fr})=F({r}). (5.13)

We now discuss briefly the extension of these results to arbitrary pro-
files. A general proof of existence of a solution of (2.3) and (2.4) may be
given which is independent of the arguments above: if r(x) is continuous
then Theorem XII.5.1 of ref. 35 implies immediately the existence of a
solution Fr of (2.3) and (2.4), and for measurable r(x) only slight modifi-
cations of the proof in ref. 35 are necessary. The uniqueness theorem for
the initial value problem for (2.3) implies that the derivative of the solution
must be everywhere nonzero, so that the solution is monotonic. Equation
(2.7) may be verified for arbitrary r(x) by a limiting argument from the
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same result (proved above) for piecewise constant densities; the key idea is
to show that Fr and F −r are, in the uniform norm, continuous functions of
r in the L1 norm.

5.3. Convexity ofF({r})

Finally we show that F({r}) is strictly convex. Recall that Fr is the
solution of (2.3) and (2.4) corresponding to the profile r. From (2.6),

dG

dF(x)
:
{r}, {Fr}

=0, (5.14)

we have

d2G

dr(y) dF(x)
:
{r}, {Fr}

+F
1

0

d2G

dF(u) dF(x)
:
{r}, {Fr}

dFr(u)
dr(y)

({r}) du=0, (5.15)

and therefore

d2F

dr(x) dr(y)
({r})=

d

dr(x)
1 dG
dr(y)
:
{r}, {Fr}

2

=
d2G

dr(x) dr(y)
:
{r}, {Fr}

−F
1

0
F
1

0

d2G

dF(u) dF(w)
:
{r}, {Fr}

×
dFr(u)
dr(x)

({r})
dFr(w)
dr(y)

({r}) du dw. (5.16)

Since G({r}, {F}) has a maximum at Fr the second term in this expression
is positive semidefinite. The first term is positive definite:

d2G

dr(x) dr(y)
:
{r}, {Fr}

=
d(x−y)

r(x)(1−r(x))
. (5.17)

6. OPTIMAL PROFILES

The convexity of F({r}) established above implies the existence of
a unique global minimum, corresponding to the optimal or most likely
profile r̄(x). From (2.8) it follows that r̄(x) must satisfy

log 5 r̄(x)(1−F(x))
(1− r̄(x)) F(x)

6=0, (6.1)
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where F(x) is the solution of (2.3) and (2.4) corresponding to r̄(x). Equa-
tion (6.1) leads immediately to

F(x)=r̄(x), (6.2)

and with (2.3) this implies that Fœ(x)=0; the boundary conditions (2.4)
then yield

F(x)=r̄(x)=r0+(r1−r0) x, (6.3)

verifying that the optimal profile is as given in (2.9).
We may also ask for the most likely profile r(x) under a constraint of

the form

F
1

0
k(x) r(x) dx=K, (6.4)

with fixed weighting function k(x) and constant K. From (2.8) one sees
that r(x) must satisfy

r(x)(1−F(x))
(1−r(x)) F(x)

=exp[ck(x)] (6.5)

for some constant c, where again F(x) is the solution of (2.3) and (2.4)
corresponding to r(x).

In particular, we may impose the constraint of a fixed mean density rg

by taking k(x) — 1, K=rg. Then from (6.5),

r(x)(1−F(x))
(1−r(x)) F(x)

=ec, (6.6)

and we find from (2.3) that F must satisfy

Fœ(x)
FŒ2(x)

=
ec−1

1+(ec−1) F(x)
. (6.7)

The solutions of (6.7) have the form F(x)=A+B exp(−hx), which with
the boundary conditions (2.4) leads to

F(x)=
(r1−r0e−h)−(r1−r0) e−hx

(1−e−h)
; (6.8)

618 Derrida et al.



from (2.3) one then finds an exponential profile

r(x)=
[(1−r0) e−h−(1−r1)][(r1−r0e−h) ehx−(r1−r0)]

(1−e−h)(r1−r0)
. (6.9)

Here h is a free constant which must be chosen to satisfy the constraint
of mean density rg. If rg=(r0+r1)/2, the expected (and typical) total
density in the stationary state, then h=0 and (6.9) reproduces the optimal
profile r̄(x).

Remarks. (a) Unless h=0 or r0=1,

r(0) — lim
x s 0
r(x) ] r0. (6.10)

Thus when we constrain the total number of particles to be different from
its most likely value, the optimal profile is discontinuous at x=0 (unless
r0=1). Similar conclusions hold at x=1, where a discontinuity occurs
unless h=0 or r1=0, and, by symmetry, in the case r0 < r1.

(b) In the limit r1 q r0, one should scale h ’ r0−r1 in order to
obtain a meaningful answer. The resulting optimal profile is constant, with
an arbitrary density r0+hr0(1−r0)/(r0−r1).

(c) If h is chosen such that

e−h=
1−r1+r1l
1−r0+r0l

, (6.11)

one can recover (4.7) and (4.8); (4.7) by calculating >10 r(x) dx from (6.9),
and (4.8) from (2.2), (6.8) and (6.9).

Finally, we may also impose simultaneously several constraints of the
form (6.4). For example, we can decompose the system as the union of
disjoint boxes and then fix the mean density in some of these, imposing no
constraints in the remainder. Then (6.1) will hold in the unconstrained
boxes, so that F(x)=r(x) will be linear there, and (6.6) will hold in the
constrained boxes (with a box-dependent constant c), so that F and r will
be exponential there; the specified mean densities in the constrained boxes
and the requirement of continuity of F and FŒ at the box boundaries then
completely determine F and hence r, which will, in general, be discontinu-
ous at the boundaries.
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Suppose, for example, that we require that the density vanish for
0 < x < x0, with no additional constraint. Then

F(x)=˛1−(1−r0) e
Bx, if x [ x0,

r1−(1−r0) BeBx0(x−1), if x > x0,
(6.12)

and continuity of F at x=x0 requires that B satisfy

1−r1
1−r0

=[1+B(1−x0)] eBx0. (6.13)

From (2.2) we find that F({r}), which in this case is simply the probability
that r(x) vanish for 0 < x < x0, is given by

F({r})=−log 1r0−r1
B
2+(1−x0) log 1 1−r1

1+B(1−x0)
2 . (6.14)

If now we take r0 Q 1 with r1 and x0 fixed, (6.13) implies that B 4

−x−10 log(1−r0) and therefore

F({r}) 4 x0 log(−log(1−r0)) . (6.15)

Thus the probability of finding zero density in the box x < x0 when r0=1
is super-exponentially small.

7. SMALL FLUCTUATIONS IN THE PROFILE

We have already given in (4.10) the formula for the probability of
small fluctuations in the total number of particles in the system. In this
section we compute, directly from the large deviation functional F({r}),
the covariance of small fluctuations in the profile around the stationary
profile r̄(x)=(1−x) r0+xr1 (2.9). We show also that the result agrees
with with a direct computation of the correlation functions from the
microscopic measure describing the SNS (note that the possibility that
these two computations might disagree had been conjectured in ref. 12).

7.1. Small Fluctuations from Large Deviations

For a small fluctuation of the density profile around its optimum r̄(x),

r(x)=r̄(x)+E(x) , E(x)° 1, (7.1)
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there will be a corresponding variation of F(x),

F(x)=r̄(x)+f(x). (7.2)

From (2.4) we have f(0)=f(1)=0, and from (2.3) f(x) will satisfy, to first
order in E(x),

E(x)=f(x)+
r̄(x)(1− r̄(x))
r̄Œ(x)2

fœ(x). (7.3)

From (2.2), again to lowest (quadratic) order in E(x),

F({r})=−
1
2
F
1

0
dx 3fŒ(x)

2

r̄Œ2
−
r̄(x)(1− r̄(x))

r̄Œ4
fœ(x)24 . (7.4)

One can rewrite (7.3) as

E(x)=F
1

0
dy C(x, y) fœ(y), (7.5)

with C(x, y) given by

C(x, y)=−(1−x) yh(x−y)−x(1−y) h(y−x)+
r̄(x)(1− r̄(x))

r̄Œ2
d(y−x),

(7.6)

where h(x) is the Heaviside function, or with a more compact notation,

C(x, y)=D−1(x, y)+
r̄(x)(1− r̄(x))

r̄Œ2
d(x−y). (7.7)

Here D is the second derivative operator with Dirichlet boundary condi-
tions at x=0 and x=1. The expression (7.4) can then be written as

F({r})=
1
2r̄Œ2

F
1

0
dx F

1

0
dy fœ(x) C(x, y) fœ(y)

=−
1
2r̄Œ2

F
1

0
dx F

1

0
dy E(x) C−1(x, y) E(y), (7.8)

where we have used (7.5). This formula expresses the fact that, for large N,
density fluctuations are approximately Gaussian with covariance matrix
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r̄Œ2C(x, y)/N. Using the explicit expression (7.6) of C, this leads to the
formula for the correlations OE(x) E(y)P:

OE(x) E(y)P=
r̄Œ2C(x, y)
N

=
1
N
{− r̄Œ2[(1−x) yh(x−y)+(1−y) xh(y−x)]

+ r̄(x)(1− r̄(x)) d(x−y)}. (7.9)

This result was obtained earlier by Spohn, (3) and shown there to agree with
the results from fluctuating hydrodynamics.

7.2. Microscopic Correlation Functions

One may also compute correlations directly from from the algebra
(3.3)–(3.5) and the normalization factor (3.11). By recursions over i and j
one finds for 1 [ i [N that

OW| (D+E) i−1D(D+E)N−i |VP

=r0 OW| (D+E)N |VP−(a+i−1)OW| (D+E)N−1 |VP, (7.10)

and for 1 [ j < i [N that

OW| (D+E) j−1D(D+E) i− j−1D(D+E)N−i |VP

=r20 OW| (D+E)
N |VP−r0(2a+i+j−2)OW| (D+E)N−1 |VP

+(a+j−1)(a+i−2)OW| (D+E)N−2 |VP. (7.11)

Using (3.11), one obtains from (7.10) the average profile

OyiP=r0+
a+i−1

a+b+N−1
(r1−r0), (7.12)

and from (7.11) the truncated (microscopic) correlation function: for j < i,

OyjyiP−OyjPOyiP=−(r1−r0)2
(a+j−1)(b+N−i)

(a+b+N−1)2 (a+b+N−2)
. (7.13)

Equations (7.12) and (7.13) agree with the corresponding formulas in ref. 3,
where for rates satisfying a+b=a=c+d=b=1, random walk methods
were used to calculate the one particle and pair correlation for this system.
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In the large N limit, (7.12) yields the linear profile (2.9), and by
summing (7.13) over i and j, one recovers (2.14). Moreover, we may
recover (7.9): if we divide the system into boxes of size Dx (with
1° Dx−1°N) and write, for x and y multiples of Dx,

E(x) 4
1
NDx

C
N(x+Dx)

i=Nx
yi−r(x), E(y) 4

1
NDx

C
N(y+Dx)

i=Ny
yi−r(y), (7.14)

then

OE(x) E(y)P−OE(x)POE(y)P

4
1

N2Dx2
3dx, y C

N(x+Dx)

i=Nx
(OyiP−OyjP2)+ C

N(x+Dx)

j=Nx
C

N(y+Dx)

i=Ny
(OyjyiP−OyjPOyiP)4 ,

(7.15)

and this, with (7.12) and (7.13), yields (7.9).

8. EXAMPLES

Although in general the calculation of the large deviation function
F({r}) for a given profile r(x) is not easy, since it requires the solution of
the nonlinear second order differential equation (2.3), there are nevertheless
some cases for which it can be done. Piecewise constant profiles were dis-
cussed in Section 5.2; in particular, for a profile of constant density r the
large deviation functional is given by (2.12), and this function can be found
explicitly when r=0 or 1 (in which case F(x) is exponential) or r=1/2
(when F(x) is sinusoidal). F({r}) can also be found explicitly in some
cases for the optimal profiles under constraint, discussed in Section 6.

One may also construct examples by specifying F(x) and obtaining
r(x) from (2.3) and F({r}) from (2.2). One must check in each case that
0 [ r(x) [ 1, since this is not guaranteed by (2.3). In the remainder of this
section we give two examples of this type which address the question: for
what profiles r(x) is F({r}) infinite? If 1 > r0 > r1 > 0 then F({r}) <.;
this follows from (2.2) and the fact that, by the uniqueness theorem for the
initial value problem for (2.3) (see remark at the end of Section 5.2), FŒ(x)
cannot vanish. Suppose then that r0=1 (analysis of the case r1=0 is
similar). The examples below suggest that F({r})=. when limxQ 0 r(x)=0
and this limit is approached faster than any power of x. This is also sup-
ported by the example at the end of Section 6, which shows that F({r})=.
if r0=1 and r(x) vanishes identically on an arbitrarily small interval
0 < x < x0. However, we have not formulated any sharp conjecture.
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In both examples we take r0=1. For the first, define

F(x)=1−(1−r1) ec(1−1/x
n), (8.1)

with c a positive constant. Note that F is monotone decreasing and satisfies
the boundary conditions (2.4). Then

FŒ(x)=−
nc
xn+1

(1−F(x)), (8.2)

Fœ(x)=−1 nc
xn+1
22 11−n+1

cn
xn2(1−F(x)), (8.3)

and hence from (2.3),

r(x)=
n+1
cn
xnF(x). (8.4)

Thus r(x) vanishes like xn at x=0, while limxQ 1 r(x)=r1(n+1)/cn.
Certainly we may choose c (e.g., c=(n+1)/n) to ensure that 0 [ r(x) [ 1
for all x (note that by choosing c sufficiently small we see that (2.3) for an
admissible F does not guarantee 0 [ r(x) [ 1). If we then write (2.2) in the
form

F({r})=F
1

0
dx3r(x) log

r(x)(1−F(x))
(1−r(x)) F(x)

+log
(1−r(x))
(1−r1)

+log
−FŒ(x)
(1−F(x))
4

(8.5)

then (8.1), (8.2), and (8.4) show that F({r}) <..
Finally, we again take r0=1 and c > 0 and define

F(x)=1−(1−r1) ec(e−e
1/x) . (8.6)

Then

FŒ(x)=−
ce1/x

x2
(1−F(x)), (8.7)

Fœ(x)=−1ce
1/x

x2
22 11−2x+1

c
e−1/x2(1−F(x)), (8.8)
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and

r(x)=
2x+1
c
e−1/xF(x). (8.9)

Now r(x) vanishes faster than any power of x at x=0. Again we may
choose c (e.g., c=3) so that 0 [ r(x) [ 1 for all x; if we then write (2.2) as
in (8.5) we see from (8.6), (8.7), and (8.9) that although the first two terms
are finite, the last contributes >10 dx/x, so that F({r})=..

9. CONCLUSION

In the present work, we have seen that the large deviation functional
F({r}) of the density profile r(x) can be calculated for the SSEP, starting
from the known weights of the microscopic configurations. We find that
the large deviation function is in general finite, although there are counter-
examples (see (2.12) and Section 8).

The simplest way we found to write our results is a parametric form
(2.2)–(2.4) in which both the large deviation function and the density
profile are expressed in terms of a monotonic function F(x) varying
between r0 and r1, the densities of the two reservoirs at the two ends of the
system.

An interesting question posed by the present work is how the additi-
vity property of the free energy of equilibrium systems is modified in the
nonequilibrium case. We first note that if a system of N sites, in contact
with left and right reservoirs at chemical potentials corresponding to
densities ra and rb, is described by a macroscopic coordinate x satisfying
a [ x [ b (rather than 0 [ x [ 1), then the probability P of observing a
profile r(x), a [ x [ b, satisfies

log P 4 −
N
b−a

F[a, b]({r}; ra, rb), (9.1)

where

F[a, b]({r}; ra, rb) — F
b

a
dx 3r(x) log 1 r(x)

F(x)
2+(1−r(x)) log 1 1−r(x)

1−F(x)
2

+log 1 (b−a) FŒ(x)
rb−ra
24 , (9.2)
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and F(x) is related to r(x) on the interval a < x < b by (2.3) with the
boundary conditions

F(a)=ra, F(b)=rb. (9.3)

(Note that FŒ(x) has the same sign as rb−ra, so that the argument of the
log is positive in the last term of (9.2).)

Now consider two systems, of Nu and N(1−u) sites respectively (with
0 < u < 1), with the left system in contact with left and right reservoirs at
chemical potentials corresponding to densities r0 and rm and the right
system with reservoirs corresponding to densities rm and r1 (with no other
relation between them, in particular with no particles jumping directly from
one system to the other). If r(x) is a profile on 0 < x < 1 and r (1)(x) and
r (2)(x) are its restrictions to the intervals 0 < x < u and u < x < 1, then we
would like to relate the probability PN of observing r(x) to the probabil-
ities P (1)N and P (2)N of observing r (1)(x) and r (2)(x) in the two subsystems. If
F were truly local we would have PN 4 P (1)N P

(2)
N . The most naive general-

ization of this idea here would be that PN 4 suprm (P
(1)
N P

(2)
N ) or, since from

(9.1) log P (1)N 4 −NF[0, u]({r (1)}; r0, rm) and log P (2)N 4 −NF[u, 1]({r (2)};
rm, r1), equivalently that F[0, 1]({r}; r0, r1)=infrm[F[0, u]({r

(1)}; r0, rm)+
F[u, 1]({r (2)}; rm, r1)]. One can check, however, that this is not true.

Instead, we observe that if we define a ‘‘modified free energy’’ H by

H[a, b]({r}; ra, rb)=F[a, b]({r}; ra, rb)+(b−a) log 1ra−rb
b−a
2 , (9.4)

then we obtain from (2.7) the ‘‘additivity’’ property

H[0, 1]({r}; r0, r1)=sup
rm

{H[0, u]({r (1)}; r0, rm)+H[u, 1]({r (2)}; rm, r1)}.
(9.5)

The occurrence in (9.5) of the supremum rather than infimum is a conse-
quence of (2.2), but we do not understand its physical basis at this time.

It is perhaps surprising that the additivity property (9.5) suffices to
determine the large deviation functional completely. For suppose we divide
our system as above, but into n rather than 2 subsystems, with division
points 0=x0 < x1 < · · · < xn=1, and denote the corresponding reservoir
densities by r0=F0 > F1 > · · · > Fn−1 > Fn=r1. Then iterating (9.5) we
find that

F[0, 1]({r}; r0, r1)

= sup
F1,..., Fn−1

C
n

j=1

3F[xj−1, xj]({r}; Fj−1, Fj)+yj log 1 Fj−1−Fj
(r0−r1) yj

24, (9.6)
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where yj=xj−xj−1. When n is large and all yj are small,

Fj−Fj−1 4 yjFŒ(xj); (9.7)

moreover, since Fj 4 Fj−1, that is, the two reservoirs at the ends of the
interval [xj−1, xj] have essentially the same chemical potentials, we can
expect each this subsystem to be in equilibrium, so that from (2.10),

F[xj−1, xj]({r}; Fj−1, Fj)

4 yj 5r(xj) log 1 r(xj)
F(xj)
2+(1−r(xj)) log 1 1−r(xj)

1−F(xj)
26 . (9.8)

By substituting (9.7) and (9.8) into (9.6) and taking the limit nQ. with
yj Q 0 for all j, we obtain our basic result (2.7).

Clearly it would be of great interest to give a direct derivation of the
additivity property (9.5), and to know if this property is limited to the
SSEP or whether similar relations hold for more general systems.

APPENDIX A: DERIVATION OF (3.7) AND (3.9)

A.1. A First Consequence of (3.3)

Let us first prove that if D and E are operators satisfying (3.3),

DE−ED=D+E, (A.1)

then

exD+yE=1 (x−y) e
y

xey−yex
2E 1 (x−y) ex

xey−yex
2D . (A.2)

Equation (A.2) and similar equations below are to be interpreted in terms
of formal power series in x and y.

One can easily check from (A.1) that for all p \ 0

DEp=(E+1)p D+E(E+1)p−Ep+1, (A.3)

which means that for ‘‘arbitrary functions’’ f(E), one has

Df(E)=f(E+1) D+E[f(E+1)−f(E)]. (A.4)
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Then if one tries to write ez(xD+yE) under the form

ez(xD+yE)=e tEeuD, (A.5)

one gets that

dt
dz
=x(e t−1)+y, (A.6)

du
dz
=xe t, (A.7)

and by integrating over z, one obtains (A.2).

A.2. Other Consequences of (3.3)

Using (A.2), one derives easily the following three identities:

exD+yE=1 xe
x−yey

(x−y) ey
2D 1 xex−yey
(x−y) ex
2E , (A.8)

exDeyE=1 ey

ex+ey−ex+y
2E 1 ex

ex+ey−ex+y
2D , (A.9)

exEeyD=1e
x+ey−1
ex
2D 1ex+ey−1

ey
2E . (A.10)

Then combining (A.8) and (A.9), one can also show that

exEeyD=1 (r0−r1) ex

1−(1−r0) ex−r1ey
2r0E−(1−r0) D

×1 (r0−r1) ey

1−(1−r0) ex−r1ey
2 (1−r1) D−r1E, (A.11)

and that

euEevDexD+yE=1 (x−y) eu+y

(x−y) ey+y(ev+y−ev+x)
2E

×1 (x−y) ev+x

(x−y) ey+y(ev+y−ev+x)
2D. (A.12)
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A.3. Derivation of (3.7)

As a consequence of (A.12) we see that if {xn} and {yn} are two
sequences and if the sequences {un} and {vn} are defined by the recursion

eun+1Eevn+1D=eunEevnDexn+1D+yn+1E, (A.13)

with the initial condition

u0=v0=0, (A.14)

then the general expressions of un and vn are given by

evn=5e; ni=1 yi −xi+C
n

i=1

yi
xi−yi

(eyi −xi−1) e;j > i yj −xj6
−1

, (A.15)

eun=e;
n
i=1 yi −xi 5e; ni=1 yi −xi+C

n

i=1

yi
xi−yi

(eyi −xi−1) e;j > i yj −xj6
−1

. (A.16)

Therefore

em1l1D+m1E · · · emklkD+mkE=eunEevnD, (A.17)

where un and vn are given by

evn=5e; ni=1 mi(1−li)+C
n

i=1

1
li−1

(emi(1−li)−1) e;j > i mj(1−lj)6
−1

, (A.18)

eun=e;
n
i=1 mi(1−li) 5e; ni=1 mi(1−li)+C

n

i=1

1
li−1

(emi(1−li)−1) e;j > i mj(1−lj)6
−1

.

(A.19)

Then using (A.11), one can rewrite (A.17) as

em1l1D+m1E · · · emklkD+mkE=eUn[−D+r0(D+E)]eVn[D−r1(D+E)], (A.20)

where

eVn=
r1−r0
g
, eUn=eVn+; ni=1 mi(1−li), (A.21)
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with g given by (3.9). Lastly, with r0, r1, a, and b given by (1.4) and (3.8),
the algebraic rules (3.4) and (3.5) can be written as

[D−r1(D+E)] |VP=b |VP, (A.22)

OW| [−D+r0(D+E)]=aOW|, (A.23)

and one obtains (3.7) from (A.20).

APPENDIX B: DERIVATION OF (4.1)–(4.4)

Consider a system of N sites, divided into n boxes, with a fugacity l1
on the N1 first sites on the left, then l2 on the next N2 sites and so on,
ln on the last Nn sites. Clearly we have

N=N1+N2+·· ·+Nn. (B.1)

Let us define W by

W=
OW| (l1D+E)N1 · · · (lnD+E)Nn |VP

OW |VP

= C
0 [Mi [Ni

lM11 · · ·l
Mn
n

WN1,..., Nn (M1,..., Mn)
OW |VP

, (B.2)

(see (3.6)), and W0 as in (3.11),

W0=
OW| (D+E)N |VP

OW |VP
. (B.3)

Here we have suppressed the dependence of W0 on N and of W on N1,..., Nn
and l1,..., ln. Suppose that for large N1,..., Nn, the quantity defined by
(B.2) has the following behavior:

W ’ eNh(y1, y2,..., yn; l1,..., ln)N1! · · ·Nn! , (B.4)

where

yi=
Ni
N
. (B.5)
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Clearly one has that the average density ri of particles in box i, in the
ensemble with fugacities l1,..., ln, is given by

ri yi=
OMiPl1,..., ln
N

=
1
N
“ log W
“ log li

4
“h

“ log li
. (B.6)

If we assume that the distribution of the Mi is strongly peaked near their
mean values then

W — W0 C
M1,..., Mn

lM11 · · ·l
Mn
n PN1,..., Nn (M1,..., Mn)

% W0l
r1y1N
1 · · ·l rn ynNn PN1,..., Nn (r1 y1N,..., rn ynN), (B.7)

where PN1,..., Nn (M1,..., Mn) denotes the probability computed in the
ensemble in which li=1 for all i. From (B.4) and (B.7),

log PN1,...Nn (M1,..., Mn)
N

4 h(y1,..., yn; l1,..., ln)−r1 y1 log l1− · · · −rn yn log ln+K, (B.8)

withMi=ri yi and K given by (see (3.11))

K=−
log W0
N
+C

n

i=1

log(Ni!)
N

4 log(r0−r1)+C
n

i=1
yi log yi . (B.9)

We thus obtain PN1,..., Nn (M1,..., Mn) in a parametric form (B.8): as we vary
the li’s, the densities ri in the boxes vary according to (B.6).

Let us now see how we can extract the function h which appears in
(B.4) from (3.6)–(3.9). If we consider the generating function (3.6),

Z= C
.

N1=0
· · · C

.

Nn=0

mN11
N1!
· · ·
mNnn
Nn!

OW| (l1D+E)N1 · · · (lnD+E)Nn |VP
OW |VP

, (B.10)

and use the asymptotic form (B.4), we see that Z becomes singular along a
manifold

g=0, (B.11)

where

g= max
y1,..., yn with y1+· · ·+yn=1

[h(y1,..., yn; l1,..., ln)+y1 log m1+·· ·+yn log mn].
(B.12)
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Along this manifold, we have obviously

h=−C
n

i=1
yi log mi, (B.13)

so that (B.8) and (B.9) reduce to (4.2). Moreover we see from (B.12) that

yi=
1
C

“g
“ log mi

, (B.14)

where the constant C is a Lagrange multiplier associated to the constraint
that ;i yi=1, and this establishes (4.3). Lastly (4.4) follows simply from
the fact that along the hypersurface given by (B.11) and (B.12), one has

“g
“ log li

=
“h

“ log li
, (B.15)

which shows that (4.4) follows from (B.6).
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