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We consider the asymmetric exclusion process (ASEP) in one dimension on sites
i=1,..., N, in contact at sites i=1 and i=N with infinite particle reservoirs at
densities ra and rb. As ra and rb are varied, the typical macroscopic steady state
density profile r̄(x), x ¥ [a, b], obtained in the limit N=L(b − a) Q ., exhibits
shocks and phase transitions. Here we derive an exact asymptotic expression
for the probability of observing an arbitrary macroscopic profile r(x):
PN({r(x)}) ’ exp[ − LF[a, b]({r(x)}; ra, rb)], so that F is the large deviation
functional, a quantity similar to the free energy of equilibrium systems. We find,
as in the symmetric, purely diffusive case q=1 (treated in an earlier work), that
F is in general a non-local functional of r(x). Unlike the symmetric case,
however, the asymmetric case exhibits ranges of the parameters for which
F({r(x)}) is not convex and others for which F({r(x)}) has discontinuities in
its second derivatives at r(x)=r̄(x). In the latter ranges the fluctuations of
order 1/`N in the density profile near r̄(x) are then non-Gaussian and cannot
be calculated from the large deviation function.

KEY WORDS: Large deviations; asymmetric simple exclusion process; open
system; stationary nonequilibrium state.

1. INTRODUCTION

Stationary nonequilibrium states (SNS) maintained by contact with infinite
thermal reservoirs at the system boundaries are objects of great theoretical



and practical interest. (1–9) One is tempted to think that, at least when the
gradients and fluxes induced by the reservoirs are small, the full system
behavior is just that of a union of subsystems, each in local equilibrium,
with spatially varying particle and energy densities or equivalently local
chemical potential and temperature. This is, however, not the entire story,
as is clear when one considers the paradigm of such systems, a fluid in
contact with a thermal reservoir at temperature Ta at the top and one
at temperature Tb at the bottom, the Rayleigh–Bénard system. (6) In this
system there are long range correlations not present in equilibrium systems,
which have been measured by neutron scattering experiments. This system
exhibits, when Tb − Ta exceeds some positive critical value, dynamic phase
transitions corresponding to the formation of different patterns of heat and
mass flow as the parameters are varied. These are due to macroscopic
instabilities, caused by gravity, but are not derivable at present, despite
various attempts, (9) in terms of a microscopic theory of SNS such as that
provided by statistical mechanics in the case Ta=Tb, when the system is an
equilibrium one.

In this paper we study the SNS of a model system which, despite its
simplicity, has some phase transitions and exhibits many phenomena, such
as long range correlations and non-Gaussian fluctuations, which are very
different from those of systems in local thermal equilibrium. For this
system the weights of the microscopic configurations are known and the
typical behavior has been deduced from them. (12) Here we determine—
again from the microscopic weights—the probabilities of various atypical
macroscopic behaviors, that is, of large deviations.

The model we consider is the SNS of the open asymmetric simple
exclusion process (ASEP): (10, 11) a lattice gas on a chain of N sites which we
index by i, 1 [ i [ N. At any given time t, each site is either occupied by a
single particle or is empty, and the system evolves according to the follow-
ing dynamics. In the interior of the system (2 [ i [ N − 1), a particle
attempts to jump to its right neighboring site with rate 1 and to its left
neighboring site with rate q (with 0 [ q < 1). The jump is completed if the
target site is empty, otherwise nothing happens. The boundary sites i=1
and i=N are connected to particle reservoirs and their dynamics is
modified as follows: if site 1 is empty, it becomes occupied at rate a by a
particle from the left reservoir; if it is occupied, the particle attempts to
jump to site 2 (succeeding if this site is empty) with rate 1. Similarly, if site
N is occupied, the particle may either jump out of the system (into the right
reservoir) at rate b or to site N − 1 at rate q.

More generally, one can also consider the ASEP with the above
dynamical rules supplemented by an output rate c at i=1 and an input
rate d at i=N. However, the calculations in the case of nonzero c or d are
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more complicated, and for that reason we limit our analysis in the present
paper to the case c=d=0.

It is convenient to introduce the two parameters

ra=
a

1 − q
, rb=1 −

b

1 − q
; (1.1)

we require that 0 [ a, b [ 1 − q, so that 0 [ ra, rb [ 1. These parameters
have a natural interpretation as reservoir densities. In particular, when
ra=rb the steady state of the system is a Bernoulli measure at constant
density ra, that is, each site is occupied independently with probability ra;
this may be seen for example from the so-called ‘‘matrix method’’ (see
Section 4). In general, then, we interpret ra and rb as the densities of par-
ticles in the left and right reservoirs, respectively.

In what follows we are interested by the large N limit and we will
describe the system in terms of a macroscopic variable x; for later discus-
sions it is convenient to allow x to belong to an arbitrary interval [a, b].
Thus the microscopic and macroscopic coordinates are related by x=
a+(b − a) i/N, the ratio L between the macroscopic and the microscopic
lengths is L=N/(b − a), and there are N=L(b − a) sites on the macro-
scopic interval [a, b].

The goal of the present work is to calculate the large N behavior of
PN({r(x)}), the probability of seeing a macroscopic profile r(x) for
a < x < b in the steady state for a system of N=L(b − a) sites. This prob-
ability PN({r(x)}) can be thought of as the sum of the probabilities of
all microscopic configurations such that in each box of L dx sites (with
dx ° 1 and L dx ± 1), the number of particles is close to Lr(x) dx. The
ratio log(PN({r(x)}))/L has a well defined limit for large L,

lim
L Q .

log PN({r(x)})
L

— −F[a, b]({r(x)}; ra, rb), (1.2)

which depends on b − a, on the density profile r(x), and on the reservoir
densities. F is called the large deviation functional (LDF) of the system.

When ra=rb, the steady state is a Bernoulli measure, as described
above. This measure is just the equilibrium state of a system of particles,
noninteracting except for the hard-core exclusion, at chemical potential
log(ra/(1 − ra)). For this system the LDF can be computed by elementary
means, and is given by (13–15)

F[a, b]({r(x)}; ra, ra)=F
b

a

5r(x) log
r(x)
ra

+(1 − r(x)) log
1 − r(x)
1 − ra

6 dx.

(1.3)
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The present paper is devoted primarily to the derivation of the exact
expression of F in the case ra ] rb.

1.1. Additivity and Large Deviations in the ASEP

In our earlier work (16, 15) on the large deviation functional for the sym-
metric simple exclusion process, corresponding to equal jump rates to the
left and right, i.e., to q=1, we were able to use the matrix method (12, 17–19)

to calculate directly the probability of a given macroscopic profile r(x) by
summing the probabilities of all configurations corresponding to that
profile. For the asymmetric model, however, such a direct calculation is a
priori more complicated. For that reason, we follow here a different path,
which has its origin in an a posteriori observation made in ref. 15. We
noted there that while the large deviation functional for the symmetric case
is nonlocal, it possesses a certain ‘‘additivity’’ property. For the ASEP we
first derive an additivity property, similar to that of the symmetric model,
and from that obtain F. The derivations are given in Section 5.

The addition formula involves a function H related to F by

H[a, b]({r(x)}; ra, rb)=F[a, b]({r(x)}; ra, rb)+(b − a) K(ra, rb), (1.4)

where K(ra, rb) does not depend on r(x). Since the dynamics in the bulk is
driven from left to right (for 0 [ q < 1), the roles played by the left and the
right reservoirs (1.1) are not symmetric and the additivity relation and the
expressions for K(ra, rb) in (1.4) and for F[a, b]({r(x)}; ra, rb) depend on
whether ra > rb or ra < rb.

1.1.1. The Case ra \ rb

When ra \ rb the constant in (1.4) is

K(ra, rb)= sup
rb [ r [ ra

log[r(1 − r)], (1.5)

and the additivity relation, obtained in Section 5 below, is that for any c
with a < c < b,

H[a, b]({r(x)}; ra, rb)

= sup
rb [ rc [ ra

[H[a, c]({r(x)}; ra, rc)+H[c, b]({r(x)}; rc, rb)]. (1.6)

Equation (1.6) expresses a relation between the large deviation function of
the whole system and those of two subsystems connected at the break point
to a reservoir at an appropriate density rc.
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Once we have the additivity relation (1.6), the derivation of the large
deviation functional is simple, and we give it here. We divide our system
into n parts of equal length and apply (1.6) n times; this will introduce
intermediate reservoir densities ra — r0 \ r1 \ · · · \ rn — rb. For very
large n, most of the intervals must have reservoir densities rk − 1, rk at their
boundaries which are nearly equal, and the LDF for these intervals is
approximately given by (1.3) (with ra there replaced by rk − 1 4 rk). On the
other hand, the total length of the intervals for which this is not true will
approach 0 for large n. Now taking the n Q . limit and introducing a
function F(x) as the interpolation of the values r0, r1,..., rn, we are lead
directly to a formula for the large deviation functional:

F[a, b]({r(x)}; ra, rb)

=−(b − a) K(ra, rb)+sup
F(x)

F
b

a
dx r(x) log[r(x)(1 − F(x))]

+(1 − r(x)) log[(1 − r(x)) F(x)], (1.7)

where the supremum is over all monotone nonincreasing functions F(x)
which for a [ x < y [ b satisfy

ra=F(a) \ F(x) \ F(y) \ F(b)=rb. (1.8)

This supremum is achieved at a certain function Fr(x). Note that without
the constraints (1.8) one would have Fr(x)=1 − r(x). The monotonicity
requirement, however, makes the determination of Fr more subtle (see
Section 3.1) and the expression of F nonlocal. This will be at the origin of
most of its interesting properties.

1.1.2. The Case ra [ rb

When ra [ rb the constant in (1.4) is

K(ra, rb)=min[log ra(1 − ra), log rb(1 − rb)], (1.9)

and the additivity relation, again derived in Section 5, is

H[a, b]({r(x)}; ra, rb)

= min
rc=ra, rb

[H[a, c]({r(x)}; ra, rc)+H[c, b]({r(x)}; rc, rb)]. (1.10)
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By an argument similar to that which led to (1.7), we obtain the formula

F[a, b]({r(x)}; ra, rb)

=−(b − a) K(ra, rb)

+ inf
a [ y [ b

3F
y

a
dx r(x) log[r(x)(1 − ra)]+(1 − r(x)) log[(1 − r(x)) ra]

+F
b

y
dx r(x) log[r(x)(1 − rb)]+(1 − r(x)) log[(1 − r(x)) rb]4 .

(1.11)

The fact that for each r(x) one has to find in (1.11) the infimum over y
makes, in this case too, the large deviation function nonlocal.

It is interesting to note that the formulas (1.7) and (1.11) for the large
deviation function do not depend on q.

1.2. Outline of the Paper

In Section 2 we review briefly some known results on the open ASEP,
emphasizing the phase diagram. In Section 3 we give a summary of our
results which follow as consequences of the formulas (1.7) and (1.11) for
the large deviation function. In Section 4 we recall the matrix method for
carrying out exact calculations in the ASEP and give several results
obtained by this method which are relevant to our considerations here.
Then in Section 5 we give the derivation of the addition formulas (1.6) and
(1.10). An unexpected consequence of our results, discussed in Section 6,
is that the correlations in the steady state are not related in any simple
manner to the large deviation function. We also show in that section that
the fluctuations of the number of particles in any box of size Lx, with
0 < x < 1, are not Gaussian for certain ranges of the parameters ra, rb.
Section 7 gives some concluding remarks, and certain more technical ques-
tions are discussed in appendices.

2. THE STEADY STATE OF THE ASEP WITH OPEN BOUNDARY

CONDITIONS

We describe here the phase diagram of the ASEP with open boundary
conditions, which has been obtained by various methods. (12, 18–21) As indi-
cated above, we consider here only the case c=d=0, 0 [ a, b [ 1 − q.

The phase diagram is given in Fig. 1, where we have chosen as
parameters the densities ra and rb (1.1) of the two reservoirs. There are
three phases: a low density phase A with a constant density r̄(x)=ra in the
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Fig. 1. The phase diagram of the open ASEP.

bulk, a high density phase B with a density r̄(x)=rb, and a maximal
current phase C with a density r̄(x)=1/2. The current in each phase is
given by J=(1 − q) r̄(1 − r̄). The transition lines between these phases are
second order phase transitions where r̄(x) is a continuous function of ra

and rb, except for the boundary S (ra=1 − rb < 1/2) between phase A
and B, where the transition is first order: r̄(x) jumps from ra to rb. On the
line S the typical configurations are shocks between phase A with density ra

at the left of the shock and phase B with density rb at the right of the shock:

ry(x) — raG(y − x)+rbG(x − y), (2.1)

with G the Heaviside function. The position y of the shock is uniformly
distributed along the system, (22, 23) and as a result the average profile is
linear: Or̄(x)P=ra(1 − x)+rbx.

This phase diagram can be understood easily in heuristic terms. First
consider an infinite one dimensional lattice on which the initial configura-
tion is a Bernoulli distribution at density ra to the left of the origin and rb

to the right of the origin. If ra < rb, this initial condition produces a shock
moving at velocity (1 − ra − rb)(1 − q); thus in the long time limit, the dis-
tribution near the origin is Bernoulli, with density ra if ra+rb < 1 and
density rb if ra+rb > 1. On the other hand if ra > rb, the profile becomes a
rarefaction fan: r(x, t)=ra if x [ xa(t), r(x, t)=ra+(rb − ra)(x − xa(t))/
(xb(t) − xa(t)) if xa(t) < x < xb(t), and r(x, t)=rb if xb(t) [ x, with
xa(t)=(1 − q)(1 − 2ra) t, a=a, b. If 1/2 < rb < ra then the entire fan
moves away to the left, if rb < ra < 1/2 then it moves away to the right,
and if rb < 1/2 < ra then the origin remains in the fan for all time. These
three cases give rise in the long time limit to Bernoulli distributions at the
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origin, with densities ra, rb, and 1/2, respectively (see, e.g., ref. 24 and ref-
erences therein).

If now we consider the finite system with left and right reservoirs at
densities ra and rb, and start with a Bernoulli distribution at density ra at
the left of some point in the bulk far from the boundaries, and rb at the right
of this point, then the evolution will be the same as in the infinite system
until the shock or the fan reaches the boundary, leading, for the asymptotic
density in the bulk, to what is given in the phase diagram. This idea is at the
basis of what has been done recently by Popkov and Schütz(25, 26) to predict
boundary induced phase diagrams in more general cases.

The dashed line ra=rb (a+b=1 − q) in Fig. 1 separates what we will
call the shock region ra < rb and the fan region ra > rb. On this line the
measure reduces to a Bernoulli measure at density ra (see Section 4) and
the large deviation function is given by (1.3). The line plays no role in the
phase diagram for the typical profile r̄ but separates phases A and B into
two subphases, A1, A2 and B1, B2, which, as we have seen in Section 1, can
be distinguished by the different expressions (1.7), (1.11) for the large
deviation function in these regions.

3. CONSEQUENCES OF THE LARGE DEVIATION FORMULA FOR

THE ASEP

In this section we describe some consequences of formulas (1.7) and
(1.11) for the large deviation function. It is convenient to write (1.5) and
(1.9) in the unified form

K(ra, rb)=log r̄(1 − r̄), (3.1)

where r̄=r̄(x) depends on ra and rb and is obtained from the phase
diagram, Fig. 1. Note that r̄, the bulk density on the macroscopic scale (on
which boundary profiles are invisible) is independent of x, except on the
line S; there r̄ can be any shock profile ry(x) (2.1), but the value of
K(ra, rb) is independent of the shock position y since ra+rb=1 on S. We
also introduce the notation

h(r, f; r̄)=r log
r
f

+(1 − r) log
1 − r
1 − f

+log
f(1 − f)
r̄(1 − r̄)

, (3.2)

so that (1.7) and (1.11) become respectively

F[a, b]({r(x)}; ra, rb)

=sup
F(x)

F
b

a
dx h(r(x), F(x); r̄)=F

b

a
dx h(r(x), Fr(x); r̄), (3.3)
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for ra > rb, and

F[a, b]({r(x)}; ra, rb)

= inf
a [ y [ b

3F
y

a
dx h(r(x), ra; r̄)+F

b

y
dx h(r(x), rb; r̄)4 , (3.4)

for ra < rb, where again r̄ is determined from ra, rb through the phase
diagram. Note that h(r, f; r̄) is strictly convex in r for fixed f, r̄, with a
minimum at r=f.

3.1. Construction of the Function Fr

There is a rather simple way of constructing the optimizing function
Fr(x) in (3.3). If g(x) is any function defined on the interval [a, b], its
concave envelope gg is the smallest concave function that gg(x) \ g(x) on
[a, b]. Now let Gr(x) be defined for a [ x [ b by

Gr(x)=Concave Envelope 3F
x

a
(1 − r(y)) dy4 ; (3.5)

then Fr is obtained by cutting off G −

r(x) at ra and rb:

Fr(x)=˛ra, if GŒ(x) \ ra.

GŒ(x), if rb [ GŒ(x) [ ra,

rb, if GŒ(x) [ rb,

(3.6)

This construction is verified in Appendix A.
In Fig. 2 we illustrate the construction for the density profile

r(x)=0.5 − 0.45 cos 3px, with ra=0.8 and rb=0.0.
As a second example, suppose that r(x) is a constant profile: r(x)=r.

Then the expression in brackets in (3.5) is concave and hence equal to
Gr(x), so that G −

r(x)=1 − r and Fr is constant: Fr=ra if r < 1 − ra,
Fr=1 − r if 1 − ra [ r [ 1 − rb, and Fr=rb if 1 − rb < r. In particular,
taking r=r̄ we find that

Fr̄=r̄. (3.7)

For (i) in region A2, where 1/2 > ra > rb, r=ra < 1 − ra and so
Fr=ra=r̄; (ii) in region C, where ra > 1/2 > rb, r=1/2 and so
Fr=1 − r=1/2=r̄; (iii) in region B2, where ra > rb > 1/2, r=rb > 1 − rb

and so Fr=rb=r̄.
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Fig. 2. The concave envelope construction for ra=0.8, rb=0.0, and r(x)=0.5−0.45 cos 3px.
On the left we show >x

0 (1 − r(y)) dy (solid line) and its concave envelope Gr(x) (dashed line);
on the right 1 − r(x) (solid) and Fr(x) (dashed).

3.2. The Most Likely Profile

We will show in this section that the most likely profile is
always given by r(x)=r̄, with r̄ given by Fig. 1; specifically, that
F[a, b]({r(x)}; ra, rb) \ 0 for all r(x), that F[a, b]({r̄}; ra, rb)=0, and that
F[a, b]({r(x)}; ra, rb) > 0 if r(x) ] r̄. This is of course expected and in fact
represents an alternate way to obtain the phase diagram of Fig. 1.

To obtain the most likely profile in the fan region ra \ rb, we note
that (3.3), (3.7), and the convexity of h(r, f; r̄) in r imply that

F[a, b]({r(x)}; ra, rb)=F
b

a
dx h(r(x), Fr(x); r̄)

\ F
b

a
dx h(r(x), Fr̄; r̄)

\ F
b

a
dx h(Fr̄, Fr̄; r̄)=0. (3.8)

Moreover, if r(x)=r̄ then equality holds throughout (3.8), so that the
minimum value of F is zero and r̄ is a minimizer; otherwise the second
inequality is strict, from which it follows that this minimizer is unique.

In the shock region ra < rb, we observe that for fixed y, a [ y [ b,
the right side of (3.4) is minimized by the unique choice r(x)=ra for
a [ x < y, r(x)=rb for y < x [ b. Minimizing over y then implies that,
except on the first order line S, the optimal profile is again constant with
value r̄, and is unique; again the corresponding minimum value of F is
zero. On S all values of y give the value zero for F, so that the shock pro-
files ry(x) of (2.1) form a one parameter family of minimizing profiles.
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Note that a knowledge of the large deviation functional is not sufficient to
determine the distribution of the shock position y mentioned in Section 2.

3.3. Convexity

In the fan region ra \ rb, the LDF F[a, b]({r(x)}; ra, rb) is a strictly
convex functional of r(x), since by (3.3) it is the maximum (over the func-
tions F(x)) of strictly convex functionals of r(x). This is also true in the
symmetric case (16, 15) and in equilibrium systems not at a phase transition.
In the shock region ra < rb, on the contrary, F is not convex. This is most
easily verified on the line S, since it follows from Section 3.2 that on S a
superposition of minimizing profiles (2.1), r(x)=lry(x)+(1 − l) rz(x),
y ] z, satisfies F({r(x)}) > 0 for 0 < l < 1. But we will also see in Sec-
tion 3.5 below that for every ra, rb there is a constant profile r(x)=rg near
which F is not convex.

3.4. Suppression and Enhancement of Large Deviations

The LDF in the fan region ra > rb has similarities besides convexity to
the LDF in the symmetric case. In particular we have from (3.3) that

F[a, b]({r(x)}; ra, rb) \ F
b

a
dx h(r(x), r̄; r̄)

— Feq
[a, b]({r(x)}; r̄), if ra \ rb, (3.9)

where

Feq
[a, b]({r(x)}; r̄)=F

b

a

5r(x) log
r(x)

r̄
+(1 − r(x)) log

1 − r(x)
1 − r̄

6 dx
(3.10)

is the LDF for an equilibrium system at density r̄ (see (1.3)). But in the
shock region this inequality is reversed:

F[a, b]({r(x)}; ra, rb) [ Feq
[a, b]({r(x)}; r̄), if ra [ rb, (3.11)

as can be derived from (3.1) and (3.4), since in region B1 (A1), taking y=a
(y=b) on the right side of (3.4) gives Feq

[a, b]({r(x)}; r̄). On the line S,
where r̄=ry(x) (see (2.1)) for some y, (3.11) holds for all values of y.
Physically, (3.9) and (3.11) mean that the probability of a macroscopic
deviation from the typical density profile is reduced in the fan region, and
increased in the shock region, compared with the probability of the same
deviation in an equilibrium system with the same typical profile.
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3.5. Flat Density Profiles

One can readily compute the LDF for constant profiles r(x)=r. In
the fan region ra > rb one finds, as discussed in Section 3.1, that Fr is also
constant, with Fr=ra if r < 1 − ra, Fr=1 − r if 1 − ra [ r [ 1 − rb, and
Fr=rb if 1 − rb < r. There are correspondingly three different expressions
for the LDF F̂(r) — F[a, b](r; ra, rb):

F̂(r)=˛ (b − a) h(r, ra; r̄), if r < 1 − ra,

(b − a) h(r, 1 − r; r̄), if 1 − ra [ r [ 1 − rb,

(b − a) h(r, rb; r̄), if 1 − rb < r.

(3.12)

If ra > 1/2 > rb, so that r̄=1/2, (phase C of Fig. 1) and 1 − ra [

r [ 1 − rb, then from (3.12),

F̂(r)=2F[a, b](r; 1/2, 1/2)=2Feq
[a, b](r; 1/2), (3.13)

where again (see (3.10)) Feq
[a, b](r; 1/2) is the large deviation function for

observing the uniform density r in a Bernoulli measure with density 1/2. In
particular, for ra=1, rb=0, the probability of observing all sites empty,
r=0, or all sites occupied, r=1, is 2−N for the Bernoulli measure, where
N=L(b − a) is the number of sites, so that from (3.13) the corresponding
probability for the ASEP is given to leading order by 4−N.

In the shock region ra < rb, the minimizing y in (1.11) is y=b if r < rg

and y=a if r > rg, where

rg=
log

rb

ra

log 11 − ra

1 − rb

rb

ra

2
(3.14)

so that

F̂(r)=˛ (b − a) h(r, ra; r̄), if r [ rg,
(b − a) h(r, rb; r̄), if r \ rg.

(3.15)

At r=rg the derivative is discontinuous, with

dF̂
dr

:
r Q rg − 0

>
dF̂
dr

:
r Q rg+0

. (3.16)

Thus F̂(r) is not convex near r=rg, and hence F[a, b]({r(x)}; ra, rb) is not
convex in a neighborhood of r(x)=rg.
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3.6. Distribution of the Total Number of Particles

The probability PL(M) that there are a total of M=rN particles in
the system can be obtained from the LDF as

−
1
L

log PL(rN) 4 F̃(r) — F[a, b]({r(x)}; ra, rb), (3.17)

where r(x) is the most likely profile under the constraint

F
b

a
r(x) dx=r(b − a). (3.18)

It will be shown in Appendix B that r(x) is the constant profile r(x)=r,
and correspondingly F̃(r)=F̂(r), except in that portion of the shock
region in which r satisfies 1 − rb < r < 1 − ra, where

r(x)=˛1 − rb, if x < yr,
1 − ra, if x > yr,

(3.19)

with

yr=
b(1 − ra − r) − a(1 − rb − r)

rb − ra
. (3.20)

Then from (3.4) it follows that for these values of r,

F̃(r)=(b − a)[r log(1 − ra)(1 − rb)+(1 − r) log rarb − K(ra, rb)]. (3.21)

Remarks. (a) Equation (3.19) is easy to interpret on the first order
line S in the phase plane, where ra+rb=1: it corresponds there to a
typical shock configuration ryr

(x), with yr determined by (3.18).
(b) Although, as observed in Section 3.5, F̂ is not convex (at least in

the shock region), F̃ is always convex, and is in fact the convex envelope
of F̂.

(c) We will discuss in Section 6.3 how (3.21) may be derived by a direct
calculation from the matrix method.

3.7. Small Fluctuations

It is natural to ask about the connection between the LDF, which
gives the probabilities of macroscopic deviations from the typical density
profile, and the distribution of small fluctuations, i.e., those of order
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1/`N. (In what follows we will refer to these simply as ‘‘fluctuations.’’) In
the symmetric case discussed in ref. 15, as in an equilibrium system not at a
phase transition (in any dimension, with N being the number of sites in the
system), the distribution of fluctuations can be obtained from F as a limit.
More precisely if we write r(x)=r̄(x)+ 1

`L
u(x) and then expand F to

second order (the first order term being zero) we get a Gaussian distribution
for u(x) with covariance C(x, xŒ), where C−1(x, xŒ)=d2F/dr(x) dr(xŒ)
evaluated at r=r̄. This covariance is the suitably scaled microscopic trun-
cated pair correlation.(15)

For the asymmetric case discussed in this paper, however, the distri-
bution of small fluctuations need no longer be given by the LDF, as we
discuss in Section 6.1. In fact we show there that d2F/dr(x) dr(xŒ) is dis-
continuous at r̄=1/2 in the interior of region C of the phase diagram, i.e.,
where ra > 1/2 > rb. Furthermore, the fluctuations in this region are no
longer Gaussian; in Section 6.3 we show this by computing explicitly the
non-Gaussian distribution of the fluctuations of the number of particles in
a box of size Ly, with 0 < y < 1.

4. THE MATRIX METHOD FOR THE ASEP

The steady state properties of the ASEP with open boundaries can be
calculated exactly in various ways;(21, 27, 28) here we describe the so-called matrix
method,(12, 17–19) which we will use in the derivation of the additivity relations in
Section 5. Let us consider two operators denoted by D and E, a left vector
OW| and a right vector |VP, which satisfy the following algebraic rules:

DE − qED=D+E, (4.1)

bD |VP=|VP, (4.2)

OW| aE=OW|. (4.3)

Any matrix element of the form OW| Y1Y2 · · · Yk |VP/OW | VP, where Yi

denotes D or E, can be calculated from these rules (without the need of
writing down an explicit representation). Thus from (4.2, 4.3), one has
OW| D |VP/OW | VP=1/b and OW| E |VP/OW | VP=1/a, and the matrix
element of any product of n matrices can be expressed through (4.1)–(4.3)
in terms of sums of elements of shorter products.

For the open ASEP as described in Section 1, the probability P({yi})
of the microscopic configuration {yi} in the steady state can be written
as (12)

P({yi})=
OW| <N

i=1 (Dyi+E(1 − yi)) |VP

ZN
, (4.4)
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where yi=1 or 0 indicates whether site i is occupied or empty and the
normalization factor ZN is given by

ZN=OW| (D+E)N |VP. (4.5)

On the dashed line ra=rb of Fig. 1, there exists a one dimensional
representation of the matrix algebra; it then follows immediately from (4.4)
that the invariant measure is Bernoulli on this line. There are other lines in
the ra, rb plane where there exist finite dimensional representations (29, 30) of
the algebra (4.1)–(4.3), but the large deviation function has no particular or
remarkable expression along these lines, and so these cases will be treated
together with the general case.

From the algebra (4.1)–(4.3) all (equal time) steady state properties
can (in principle) be calculated. For example the average occupation OyiP
of site i is given by

OyiP=
OW| (D+E) i − 1 D(D+E)N − i |VP

ZN
, (4.6)

and the two point function is, for i < j,

OyiyjP=
OW| (D+E) i − 1 D(D+E) j − i − 1 D(D+E)N − j |VP

ZN
. (4.7)

The average steady state current JN is the same across any bond. It has the
form

JN=Oyi(1 − yi+1) − q(1 − yi) yi+1P

=
OW| (D+E) i − 1 (DE − qED)(D+E)N − i − 1 |VP

ZN
=

ZN − 1

ZN
. (4.8)

The probability QN1,..., Nk
(M1,..., Mk) that there are exactly M1 particles on

the first N1 sites, M2 particles on the next N2 sites, ..., Mk particles in the
rightmost Nk sites is given by

QN1,..., Nk
(M1,..., Mk)=

OW| Y1 · · · Yk |VP

ZN
, (4.9)

with

Yp=
1

2ip
F

2p

0
dh e−ihMp(De ih+E)Np. (4.10)
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Clearly by making the number k of boxes, and their sizes Np, large enough,
we can approximate any density profile r(x) via r(x)=Mp/Np for
x=N−1 ;r

j=1 Nj . Equation (4.9) then gives the probability of the profile
r(x), and one may attempt to obtain an asymptotic form via a saddle point
analysis. This approach, which is conceptually straightforward and was
followed in the symmetric case, (15) turns out to be more difficult to imple-
ment in the asymmetric case, and this is why we here follow the additivity
approach explained in Section 5.

Various more explicit expressions may be extracted from (4.6) and
(4.7); for example, in the totally asymmetric case (q=0) the average profile
OyiP near the boundaries was computed for all i in ref. 12. Moreover, for
q=0 and at the special point a=b=1 (ra=1 and rb=0) in the maximal
current phase C, finite-size corrections have been computed (28) for the mean
density profile OyiP and for the two point function OyiyjP−OyiPOyjP. In
particular it was found in ref. 28 that at a point i=Nx (with 1 [ i [ N) of
a system of N sites,

OyiP=
1
2
+

1

2 `p

1
N1/2

1 − 2x

`x(1 − x)
+O(N−3/2), (4.11)

which for a system of N=L(b − a) sites becomes for i=L(x − a)

OyiP=
1
2
+

1

2 `p

1
L1/2

b+a − 2x

`(b − a)(b − x)(x − a)
+O(L−3/2). (4.12)

Also, at this point (a=b=1) of the phase diagram it was shown (28)

that for large N, the variance of the total number M of particles is given by

OM2P−OMP2 4
N
8

, (4.13)

while a Bernoulli distribution at density 1/2 would give twice this variance
(see the discussion in Section 3.5).

5. DERIVATION OF THE ADDITIVITY FORMULAE

In this section we obtain the additivity formulae (1.6) and (1.10) for
the large deviation functional in the ASEP. We begin by deriving two
formulae valid for arbitrary system size N. The first of these, (5.10), is
obtained directly from the matrix formalism of Section 4 and is valid for a
range of parameters corresponding to the fan region ra > rb. By analytic
continuation of (5.10) we then obtain a new formula (5.24), which is valid
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for all parameter values. Finally, we analyze the large N behavior of (5.24)
to obtain (1.6) and (1.10).

For q=0, the additivity formula (5.10) takes a much simpler form,
which is given in ref. 31. We do not reproduce this formula in the current
paper because the treatment here of the general case 0 [ q < 1 requires
slightly different notations.

5.1. Preliminaries

Let D and E satisfy (4.1)–(4.3) with q < 1. We define the operators d
and e by

D=
1

1 − q
(1+d), E=

1
1 − q

(1+e); (5.1)

from (4.1) these operators satisfy

de − q ed=1 − q. (5.2)

We also define eigenvectors |zP and Oz| of d and e, for arbitrary complex z,
by

d |zP=z |zP, (5.3)

Oz| e=
1
z
Oz|. (5.4)

If X is a polynomial in the operators D and E (or equivalently d and e),
then the matrix element Oz0 | X |z1P/Oz0 | z1P is a polynomial in 1/z0 and z1,
with positive coefficients whenever the coefficients in X are positive; this
is easily seen since then X is a polynomial in d and e with positive coeffi-
cients, and using (5.2) one can push all the d’s to the right and all the e’s to
the left, maintaining this positivity.

Finally, we define the function j(z) by

j(z)= C
.

n=0

1
cn

zn, (5.5)

where the cn are constructed from the recursion

c0=1, cn=(1 − qn) cn − 1. (5.6)
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One can check easily from (5.5) that

j(z) − j(qz)=zj(z), (5.7)

so that

j(z)=D
.

n=0

1
1 − qnz

. (5.8)

5.2. Exact Additivity Formula for |z0| > |z1|

The additivity formula which we prove in this section is that if X0 and
X1 are arbitrary polynomials in the operators D and E, then for

|z0 | > |z1 | (5.9)

one has

Oz0 | X0X1 |z1P

Oz0 | z1P
j 1z1

z0

2

=
1

j(q)
C
.

n=0

qn

cn
G

dz
2piz

Oz0 | X0 |qnzP
Oz0 | qnzP

j 1qnz
z0

2 Oz| X1 |z1P

Oz | z1P
j 1z1

z
2 , (5.10)

where the contour of integration is a circle |z|=R with

|z1 | < R < |z0 |. (5.11)

Proof. Using (5.2), any polynomial X in D and E can be written in
the form

X=C
p, pŒ

Ap, pŒepŒdp. (5.12)

As (5.10) is linear in X0 and X1, it is sufficient to prove it for X0=ep −

0dp0

and X1=ep1dp −

1, and as Oz0 | and |z1P are eigenvectors of e and d, one can
immediately simplify the problem and limit the discussion to the case

X0=dp0, X1=ep1. (5.13)

For this choice of X0 and X1, the right hand side of (5.10) becomes

1
j(q)

C
.

n=0
C
.

m0=0
C
.

m1=0

qn(1+m0+p0)

cncm0
cm1

zm1
1

zm0
0

dm0+p0, m1+p1
, (5.14)
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once j(qnz/z0) and j(z1/z) have been replaced by their power series (5.5)
and the integration over z has been carried out. One can now use (5.5)
again to evaluate the sum over n, and then simplify the result using the
identity j(q1+m)=cmj(q), which follows from (5.7) by an inductive argu-
ment, to see that with the choice (5.13),

r.h.s. of (5.10)= C
.

m0=0
C
.

m1=0

j(q1+m0+p0)
j(q)

1
cm0

cm1

zm1
1

zm0
0

dm0+p0, m1+p1

= C
.

m0=0
C
.

m1=0

cm0+p0

cm0
cm1

zm1
1

zm0
0

dm0+p0, m1+p1
. (5.15)

So to prove (5.10), we just need to show that the left hand side of (5.10),
again with the choice (5.13), coincides with (5.15).

We argue by induction on p0. If p0=0, it is easy to see that the left
hand side of (5.10) is given by z−p1

0 j(z1/z0). Evaluating (5.15) in this case
leads to the same expression.

Let us assume, then, that (5.10) is valid for all p0 [ P. We want to
prove that it remains true for p0=P+1. To do so we observe the following
consequence of (5.2):

dP+1ep1=(1 − qp1) dPep1 − 1+qp1dPep1d. (5.16)

Using (5.16), the left hand side of (5.10) for p0=P+1, i.e., for X0=dP+1

and X1=ep1, becomes

(1 − qp1)
Oz0 | dPep1 − 1 |z1P

Oz0 | z1P
j 1z1

z0

2+qp1
Oz0 | dPep1d |z1P

Oz0 | z1P
j 1z1

z0

2 . (5.17)

As we have hypothesized that (5.10) is valid for p0 [ P, we can replace each
term of (5.17) by the corresponding expressions (5.15), leading to

l.h.s. of (5.10)= C
.

m0=0
C
.

m1=0

cm0+P

cm0
cm1

zm1
1

zm0
0

× [(1 − qp1) dm0+P, m1+p1 − 1+z1qp1dm0+P, m1+p1
]. (5.18)

If now in the second term in (5.18) we make the change of summation
index m1 Q m1 − 1, and then use the identities cm1

=(1 − qm1) cm1 − 1 and
cm0+P+1=(1 − qm0+P+1) cm1

, we obtain

l.h.s. of (5.10)= C
.

m0=0
C
.

m1=0

cm0+P+1

cm0
cm1

zm1
1

zm0
0

dm0+P+1, m1+p1
, (5.19)
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which is identical for p0=P+1 to (5.15). This completes the derivation of
(5.10).

5.3. Analytic Continuation of (5.10)

Recall that (5.10) has been established for |z0 | > |z1 |, with integration
contour a circle |z|=R with |z1 | < R < |z0 |. However, the left hand side of
this equation is an analytic function defined for all complex z0 and z1

except at z0=0 and at the poles of j(z1/z0). In this section we make an
analytic continuation of the right hand side to obtain an integral represen-
tation of the left side which is valid for any z0, z1 for which the left side is
defined. In the final representation we will again integrate over a contour
|z|=R, but now R will be allowed to take any value for which the contour
does not pass through singularities of the integrand, that is, for which

R > 0, R ] qm |z1 |, m \ 0, R ] q−m |z0 |, m \ 0. (5.20)

The expression on the right hand side of (5.10) must be modified
when, as one varies z0, z1 and R, the singularities of the integrand—that is,
the poles of j(qnz/z0) and j(z1/z)—cross the integration contour. When
this happens, however, the residue theorem tells us how (5.10) is to be
modified: one simply includes the residue of the pole on the right hand side
of the equation, adding or subtracting it according to whether the pole
crosses the contour from the inside to the outside or vice versa. Using the
fact that the residue of j(z) at z=q−m, m=0, 1,..., is

(−1)m+1 qm(m − 1)/2

cm
j(q), (5.21)

one then finds the following extension of (5.10):
Suppose that R satisfies (5.20). If R < |z1 | then define k1 by

qk1+1 |z1 | < R < qk1|z1 |, (5.22)

and if R > |z0 | define k0 by

|z0 |
qk0

< R <
|z0 |

qk0+1 . (5.23)
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Then

Oz0 | X0X1 |z1P

Oz0 | z1P
j 1z1

z0

2

= C
.

n=0

qn

cn

3 1
j(q)

G
|z|=R

dz
2piz

Oz0 | X0 |qnzP
Oz0 | qnzP

j 1qnz
z0

2 Oz| X1 |z1P

Oz | z1P
j 1z1

z
2

+G(|z1 | − R) C
k1

m=0

(−1)m qm(m+1)/2

cm
j 1qn+mz1

z0

2

×
Oz0 | X0 |qn+mz1P

Oz0 | qn+mz1P

Oqmz1 | X1 |z1P

Oqmz1 | z1P

+G(R − q−n |z0 |) C
k0 − n

m=0

(−1)m qm(m+1)/2

cm
j 1qn+mz1

z0

2

×
Oz0 | X0 |q−mz0P

Oz0 | q−mz0P

Oq−(n+m)z0 | X1 |z1P

Oq−(n+m)z0 | z1P
4 . (5.24)

5.4. Asymptotics of the Additivity Formula

We now ask what happens to the representation (5.24) when the
system size N becomes very large. Throughout this section we take z0 and
z1 to be positive real numbers and X0 and X1 to be polynomials, with posi-
tive coefficients, in the operators D and E. We will use throughout this
section three properties of the product

Pn(z) —
Oz0 | X0 |qnzP
Oz0 | qnzP

Oz| X1 |z1P

Oz | z1P
(5.25)

occurring in the integrands of the representation (5.24), which follow from
the discussion of Section 5.1: Pn(z) is a polynomial in qnz and 1/z, with
positive coefficients; for z on the positive real axis, Pn(z) is a convex func-
tion of z; for fixed positive z, Pn(z) decreases as n increases. We will
assume that, for z on the positive axis, Pn(z) grows exponentially in N.

Now P0(z) has a unique minimum at some value zmin on the positive
real axis; we will use the representation (5.24) with the choice R=zmin.
Using first the fact that the maximum of the magnitude |Pn(z)| on the
contour |z|=zmin occurs on the real axis, and then the monotonicity of
Pn(z) in n for z positive, we see that each integral occurring in (5.24)
satisfies
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:G
|z|=zmin

dz
2piz

Oz0 | X0 |qnzP
Oz0 | qnzP

j 1qnz
z0

2 Oz| X1 |z1P

Oz | z1P
j 1z1

z
2 :

M
Oz0 | X0 |qnzminP

Oz0 | qnzminP

Ozmin | X1 |z1P

Ozmin | z1P
,

[
Oz0 | X0 |zminP

Oz0 | zminP

Ozmin | X1 |z1P

Ozmin | z1P
, (5.26)

where the first inequality holds up to factors that do not grow exponen-
tially with N. On the other hand, when n=0 the point zmin will be a saddle
point for P0(z) lying on the contour |z|=zmin, and equality (again up to
factors not growing exponentially with N) will hold in (5.26).

The bound (5.26), and an argument similar to that above for the terms
in (5.24) arising from the poles, show that the n=0 terms there always
dominate those with n > 0, so that we may neglect the latter. But for n=0,
the fact that P0(z) is convex, with a minimum at zmin, implies that the
m=0 terms dominate each sum over m. Thus (5.24) becomes (again up to
factors not growing exponentially with N)

Oz0 | X0X1 |z1P

Oz0 | z1P
’ max 3Oz0 | X0 |zminP

Oz0 | zminP

Ozmin | X1 |z1P

Ozmin | z1P
,

G(z1 − zmin)
Oz0 | X0 |z1P

Oz0 | z1P

Oz1 | X1 |z1P

Oz1 | z1P
,

G(zmin − z0)
Oz0 | X0 |z0P

Oz0 | z0P

Oz0 | X1 |z1P

Oz0 | z1P
4 . (5.27)

Now the discussion can be completed by considering successively all the
possible relative positions of z0, z1 and zmin.

Suppose first that z1 < z0. Then (5.27) gives

Oz0 | X0X1 |z1P

Oz0 | z1P
4 ˛

Oz0 | X0 |zminP

Oz0 | zminP

Ozmin | X1 |z1P

Ozmin | z1P
, if z1 < zmin < z0,

Oz0 | X0 |z1P

Oz0 | z1P

Oz1 | X1 |z1P

Oz1 | z1P
, if zmin < z1 < z0,

Oz0 | X0 |z0P

Oz0 | z0P

Oz0 | X1 |z1P

Oz0 | z1P
, if z1 < z0 < zmin,

(5.28)
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and one sees that each case in (5.28) reduces to

Oz0 | X0X1 |z1P

Oz0 | z1P
4 min

z1 [ z [ z0

Oz0 | X0 |zP
Oz0 | zP

Oz| X1 |z1P

Oz | z1P
. (5.29)

On the other hand, if z0 < z1, then (5.27) gives

Oz0 | X0X1 |z1P

Oz0 | z1P

4 ˛ max
z=z0, z1

Oz0 | X0 |zP
Oz0 | zP

Oz| X1 |z1P

Oz | z1P
, if z0 < zmin < z1,

Oz0 | X0 |z1P

Oz0 | z1P

Oz1 | X1 |z1P

Oz1 | z1P
, if zmin < z0 < z1,

Oz0 | X0 |z0P

Oz0 | z0P

Oz0 | X1 |z1P

Oz0 | z1P
, if z0 < z1 < zmin,

(5.30)

and each case in (5.30) reduces to

Oz0 | X0X1 |z1P

Oz0 | z1P
4 max

z=z0, z1

Oz0 | X0 |zP
Oz0 | zP

Oz| X1 |z1P

Oz | z1P
. (5.31)

5.5. Derivation of (1.6) and (1.10)

We finally want to obtain the fundamental additivity relations for H,
(1.6) and (1.10), from (5.29) and (5.31). The first step is to relate the densi-
ties ra, rb to the parameters z0, z1. Using (1.1), (5.3), and (5.4), one can
easily establish that if

ra=
z0

1+z0
, rb=

z1

1+z1
, (5.32)

then

Oz0 | X0X1 |z1P

Oz0 | z1P
=

OW| X0X1 |VP

OW | VP
, (5.33)

where OW| and |VP are defined by (4.2) and (4.3).
Now let us consider a given profile r(x) defined for a < x < b, and for

fixed c with a < c < b denote by X0 the sum over all the products of D’s
and E’s consistent with the left part of this profile over the first L(c − a)
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sites, and by X1 the same quantity for the right part of the profile over the
last L(b − c) sites. We define H by

(1 − q)L(b − a) Oz0 | X0X1 |z1P

Oz0 | z1P
’ exp[ − LH[a, b]({r(x)}; ra, rb)]. (5.34)

Then we obtain immediately (1.6) and (1.10) from (5.29) and (5.31).
Moreover from (1.2), (4.4), (5.33), and (5.34) we see that the constant
K(ra, rb) which appears in (1.4) is given by

(1 − q)L(b − a) OW| (D+E)L(b − a) |VP ’ e−L(b − a) K(ra, rb). (5.35)

Writing (5.29) and (5.31) for X0=(D+E)L(c − a) and X1=(D+E)L(b − c), we
see that K(ra, rb) should satisfy

(b − a) K(ra, rb)= sup
rb [ rc [ ra

[(c − a) K(ra, rc)+(b − c) K(rc, rb)], (5.36)

if ra > rb, and

(b − a) K(ra, rb)= min
rc=ra or rb

[(c − a) K(ra, rc)+(b − c) K(rc, rb)], (5.37)

if ra < rb. Now when ra=rb the matrices D and E commute and may be
realized as the scalars D=(1 − q)−1 (1+z0), E=(1 − q)−1 (1+z−1

0 ), so that
from (5.35) and (5.32) we have

K(ra, ra)=−log 1z0+2+
1
z0

2=log[ra(1 − ra)]. (5.38)

From (5.36) and (5.38) one finds, by repeated subdivision of the interval
[a, b], that if ra > rb then

(b − a) K(ra, rb)=sup
f

F
b

a
dx log[f(x)(1 − f(x))], (5.39)

where the supremum is over nonincreasing functions f(x) with f(a)=ra

and f(b)=rb, and from (5.39) one obtains (1.5). Similarly, if ra < rb one
obtains from (5.36) and (5.38) that

(b − a) K(ra, rb)= inf
a [ y [ b

3F
y

a
dx log[ra(1 − ra)]+F

b

y
dx log[rb(1 − rb)]4 ,

(5.40)

and (1.9) follows.
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6. LARGE DEVIATIONS VERSUS TYPICAL FLUCTUATIONS

Expressions (1.7) and (1.11) enable us to calculate the large deviation
function for an arbitrary density profile r(x). As we have already noted
and will show in this section, the large deviation functional, which descri-
bes macroscopic (order N) deviations from the typical profile r̄, is in
region C, where

ra > 1
2 > rb, (6.1)

not simply related to the fluctuations (order `N) around r̄. We demon-
strate this by computing explicitly, for q=0, the probability of seeing a
given global density r in a window c < x < d of our system, with no other
constraint in the system, both for fixed r with r ] r̄ and for r − r̄ of order
1/`N.

We divide our system of N=L(b − a) sites into three boxes, of N1=
L(c − a) sites, N2=L(d − c) sites and N3=N(b − d) sites, corresponding to
macroscopic intervals [a, c], [c, d], and [d, b], and compute the probabil-
ity that the density is r in the middle box, i.e., the probability P(M2) that
the total number M2 of particles in the middle box is

M2=L(d − c) r, (6.2)

with no constraint imposed in the two other boxes.

6.1. Large Deviation

Corresponding to the above constraint there will be an optimal profile
r(x) for which, with F̄(r) — F[a, b](r(x); ra, rb), one has

P(M2) ’ exp[ − LF̄]. (6.3)

Since ra > rb, one can use the additivity formula (1.6)

H[a, b](r(x); ra, rb)= sup
rb [ rd [ rc [ ra

{H[a, c](r(x); ra, rc)

+H[c, d](r(x); rc, rd)+H[d, b](r(x); rd, rb)}. (6.4)

As there is no constraint on the profile in the two side boxes, one has
F[a, c](r(x); ra, rc)=F[d, b](r(x); rd, rb)=0, so that from (1.4),

H[a, c](r(x); ra, rc)=(c − a) K(ra, rc), (6.5)

H[b, d](r(x); rd, rb)=(b − d) K(rd, rb). (6.6)
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Moreover, since rc \ rd we know from Sections 3.5 and 3.6 that within the
central box [c, d] the optimal profile r(x), which corresponds to a fixed
number of particles there, is flat. From (1.4) and (3.12) we then have

H[c, d](r(x); rc, rd)=˛(c−d)[r log(r(1−rc))+(1−r) log((1−r) rc)],

(c−d)[2r log r+2(1−r) log(1−r)],

(c−d)[r log(r(1−rd))+(1−r) log((1−r) rd)],

(6.7)

when r < 1 − rc, 1 − rc < r < 1 − rd, and 1 − rd < r, respectively. Now from
(6.4) one must choose rc and rd to maximize the sum of (6.5), (6.6), and
(6.7). The result depends on the sign of r − 1/2.

Case 1. r < 1/2. In this case the optimizing values of rc and rd are

rc=min 3(d − a) − r(d − c)
d+c − 2a

, ra
4 , rd=

1
2

. (6.8)

The corresponding LDF is

F̄(r)=(d − c)[r log(4r(1 − rc))+(1 − r) log(4(1 − r) rc)]

+(c − a) log(4rc(1 − rc)), (6.9)

which for r close to 1/2 becomes

F̄(r)=
4(d − c)(d − a)

d+c − 2a
1 r −

1
2
22

+O 1 r −
1
2
23

. (6.10)

We also find from Section 3.2 that the optimal profile r(x) satisfies
r(x)=rc for a < x < c and r(x)=1/2 for d < x < b.

Case 2. r > 1/2. In this case, a similar calculation leads to

rc=
1
2

, rd=max 3(b − c) − r(d − c)
2b − d − c

, rb
4 (6.11)

and

F̄(r)=(d − c)[r log(4r(1 − rd))+(1 − r) log(4(1 − r) rd)]

+(b − d) log(4rd(1 − rd)); (6.12)
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and for r close to 1/2, (6.12) gives

F̄=
4(d − c)(b − c)

2b − c − d
1 r −

1
2
22

+O 1 r −
1
2
23

. (6.13)

We see from (6.10) and (6.13) that in general the limiting value of the
second derivative of F̄(r) at r=1/2 depends on the sign of r−1/2, so that
F̄(r) is in general nonanalytic at r=1/2. Note, however, that when the overall
density for the system is specified, i.e., when c=a and d=b, F̄(r) is analytic.

6.2. Fluctuations

Formulae (6.9) and (6.12), with (6.8) and (6.11), give us the leading
behavior of P(M2) for large deviations, i.e., for r − 1/2 of order 1. Let us
now discuss the small fluctuations, i.e., the regime in which r − 1/2=
O(L−1/2), so that LF is of order one. As (6.10) and (6.13) do not coincide,
one expects that typical fluctuations around the optimal profile r̄(x)=1/2
will be anomalous, i.e, non-Gaussian. Let us define the fluctuation m in the
number M2 of particles in the central box by

M2 −
(d − c) L

2
=m `L. (6.14)

In the next subsection we will derive, for q=0, the following probability
density p(m)=P(M2) `L for the random variable m:

p(m)=
8(b − a)3/2

[p(c − a)(b − d)]3/2 (d − c)

× F
.

0
dx F

.

0
dy xy exp 5−

x2

c − a
−

y2

b − d
6

×3exp 5− 2
m2+(m+x − y)2

d − c
6− exp 5− 2

(m+x)2+(m − y)2

d − c
64 .

(6.15)

We see that indeed m has a non-Gaussian distribution. Note, however, that
the `L scaling in (6.14) is that appropriate for ‘‘normal’’ fluctuations.

For large positive m, (6.15) becomes

p(m)=
4

mp

(b − a)3/2 (b − c)(b − d)
(d − c)1/2 (2b − c − d)3/2 (c − a)3/2 exp 5−

4(b − c)
(d − c)(2b − d − c)

m26 ,

(6.16)
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and for large negative m,

p(m)=
4

|m| p

(b − a)3/2 (d − a)(c − a)
(d − c)1/2 (d+c − 2a)3/2 (b − d)3/2 exp 5−

4(d − a)
(d − c)(d+c − 2a)

m26 .

(6.17)

We see that the large m asymptotics (6.16) and (6.17) match with (6.10) and
(6.13) when |m| ± 1 and |r − 1/2| ° 1, with m=(r − 1/2)(d − c) `L, i.e.,
that (6.15) interpolates between the large deviation regions r > 1/2 and
r < 1/2.

Also, from (6.15) one can compute the average OmP of m:

OmP=F p(m) m dm=
`(d − a)(b − d) − `(c − a)(b − c)

`p `b − a
. (6.18)

For a system of N=L(b − a) sites, one sees from (4.12) that

C
L(d − a)

i=L(c − a)

1OyiP−
1
2
2=

`L

2 `p
F

d

c

b+a − 2x

`(b − a)(b − x)(x − a)
dx, (6.19)

in agreement with (6.18), since OM2P− L(d − c)/2=OmP `L.

6.3. Derivation of (6.15)

One way to derive (6.15) is to use the following explicit representa-
tion (12) of (4.1), valid for q=0:

D= C
.

n=1
|nPOn|+|nPOn+1|, (6.20)

E= C
.

n=1
|nPOn|+|n+1POn|, (6.21)

where the vectors |1P, |2P,...|nP... form an orthonormal basis of an infinite
dimensional space (with On | mP=dn, m). Within this basis, the vectors |VP
and OW| are given (see (4.2), (4.3), and (1.1)) by

|VP= C
.

n=1

11 − b

b
2n

|nP= C
.

n=1

1 rb

1 − rb

2n

|nP, (6.22)

OW|= C
.

n=1

11 − a

a
2n

On|= C
.

n=1

11 − ra

ra

2n

On|, (6.23)
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and one can show (for example by recursion) that

Op| (D+E)N |pŒP=
(2N)!

(N+p − pŒ)! (N+pŒ − p)!
−

(2N)!
(N+p+pŒ)! (N − pŒ − p)!

(6.24)

and that (32, 33)

Op| XN, M |pŒP=
(N!)2

(M)! (N − M)! (M+p − pŒ)! (N − M − p+pŒ)!

−
(N!)2

(M+p)! (N − M − p)! (M − pŒ)! (N − M+pŒ)!
(6.25)

where XN, M is the sum over all the configurations of N sites with M
occupied particles. The probability P(M2) that the number of particles is
M2 in the central box is given by

P(M2)=
OW| (D+E)N1 XN2, M2

(D+E)N3 |VP

OW| (D+E)N1+N2+N3 |VP
. (6.26)

From (6.26) one may recover the results of Section 3.4.
Let us first analyze the denominator of (6.26):

OW| (D+E)N |VP= C
.

p1=1
C
.

p2=1

11 − ra

ra

2p1 1 rb

1 − rb

2p2

Op1 | (D+E)N |p2P.

(6.27)

For large N, this sum is dominated by p1 and p2 of order 1, so one can use
an approximation of (6.24) valid for p and pŒ of order `N or less,

Op| (D+E)N |pŒP 4
4N

`pN
5exp 1 − (p − pŒ)2

N
2− exp 1 − (p+pŒ)2

N
26 ,

(6.28)

and one gets for large N,

OW| (D+E)N |VP 4
4N+1

`p N3/2

(1 − ra) ra

(2ra − 1)2

(1 − rb) rb

(2rb − 1)2 . (6.29)
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One can write the numerator of (6.26) as

OW| (D+E)N1 XN2, M2
(D+E)N3 |VP=C

p1

C
p2

C
p3

C
p4

OW | p1P

Op1 | (D+E)N1 |p2POp2 | XN2, M2
|p3POp3 | (D+E)N3 |p4POp4 | VP. (6.30)

When N1, N2, N3 are large and of order L and when the difference
M2 − N2/2 is of order `L as in (6.14), these sums are dominated by p1 and
p4 of order 1 and p2 and p3 of order `L. If one writes

p2=x `L, p3=y `L, (6.31)

one gets that

Op2 | XN2, M2
|p3P 4 4N2

2
pN2

5exp 1 −
2L
N2

(m2+(m+x − y)2)2

− exp 1 −
2L
N2

((m − y)2+(m+x)2)26 , (6.32)

and the numerator becomes, after summing over p1 and p4 and replacing
the sums over p2 and p3 by integrals,

OW| (D+E)N1 XN2, M2
(D+E)N3 |VP

=
4N1+N2+N3+2 × 2

p2L2[(c − a)(b − d)]3/2 (d − c)

×
(1 − ra) ra

(2ra − 1)2

(1 − rb) rb

(2rb − 1)2 F
.

0
dx F

.

0
dy xy exp 5−

x2

c − a
−

y2

b − d
6

×3exp 5− 2
m2+(m+x − y)2

d − c
6− exp 5− 2

(m+x)2+(m − y)2

d − c
64

(6.33)

which reduces to (6.15) after dividing by (6.29).

Remark. One can also recover from (6.26) the expressions (6.9) and
(6.12) by allowing deviations in M2 of order L.

7. CONCLUSION

The main results of the present work are the exact expressions (1.7)
and (1.11) for the LDF F({r}) for the SNS of the open ASEP in one
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dimension and the simple additivity formulae (1.6) and (1.10) that they
satisfy.

This F, like the one we found for the symmetric case in refs. 15
and 16, is a non-local functional of the density profile {r(x)}. We expect
non-locality to be a general feature of such functionals for non-equilibrium
systems.

Our expressions of the LDF, which take different forms in the fan
region ra > rb (where the reservoirs and the bulk asymmetry cooperate)
and in the shock region ra < rb (where they act in opposite directions),
reflect several qualitative differences:

In the fan region, ra > rb, the probability of macroscopic deviations
from the typical density profile is reduced compared with that in an equi-
librium system with the same typical profile (see (3.9)); this was also true in
the symmetric case. (16) Another surprising feature of the fan region, at least
in the maximal current phase C, is that the fluctuations of the density
profile cannot be calculated from the LDF, and that these fluctuations are
in general not Gaussian (see Section 6). We have no heuristic explanation
of this behavior.

In the shock region of the phase diagram, ra < rb, F is not convex in
r (see Section 3.3). Moreover, in this region the probability of macroscopic
deviations from typical behavior is increased rather than reduced; see
(3.11). This enhancement of deviations appears similar to known beha-
vior (8) of fluctuations (the behavior of macroscopic deviations is not
known) in a slab of fluid in contact at the top with a heat reservoir at
temperature Ta, and at the bottom with another reservoir at temperature
Tb: the Rayleigh–Bénard system. (6) In this system the force of gravity causes
the SNS to undergo dynamic phase transitions when (Tb − Ta) is ‘‘suffi-
ciently’’ large, corresponding to different spatial patterns of heat and mass
flow. This transition is preceded, as Tb − Ta is increased, by enhanced fluc-
tuations even for very small differences between the two temperatures (for
which the system is stable) as long as Tb > Ta.

It is natural to expect that the probabilities of typical fluctuations and
of large deviations are either both enhanced or both reduced, in compari-
son with the equilibrium system having the same r̄, but this is not known
to be true in general. In fact, our work here shows that small (typical) fluc-
tuations cannot in general be computed from the LDF.

One can note that our expressions for the LDF (1.7) and (1.11) do
not depend on the asymmetry parameter 0 [ q < 1. These expressions,
however, are not valid at q=1, and they do not reproduce the symmetric
exclusion result: the limits q Q 1 and N Q . do not commute. It would be
interesting to analyze the case of large N with 1 − q=O(N−1), in order to
interpolate between the symmetric case and the asymmetric case.
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It would also be desirable to have a physical understanding of our
additivity formulae (1.6) and (1.10), and to see how our results could be
generalized to more complicated non-equilibrium steady states.

Lastly, from our knowledge of the LDF in the SNS steady state, one
could try to determine how a given (unlikely) profile was produced dynam-
ically out of the nonequilibrium steady state. This has been done for the
symmetric exclusion process on a circle in ref. 34, and recently for the open
system in refs. 35 and 36, where the LDF was given in terms of a time
integral over a trajectory taking the system, via a ‘‘reversed dynamics,’’
from a typical SNS configuration to the profile r(x). A dynamic LDF for
the ASEP on the circle was studied in ref. 37.

APPENDIX A. THE CONCAVE ENVELOPE CONSTRUCTION

In this appendix we justify the construction (3.5, 3.6) of the optimizing
function Fr for the supremum in (1.7). Recall that we are given a density
profile r(x) which is defined for a [ x [ b and satisfies 0 [ r(x) [ 1 for
all x, and reservoir densities ra and rb which satisfy 1 \ ra > rb \ 0. Let
Hr(x)=>x

a (1 − r(y)) dy, so that Gr is the concave envelope of Hr, and
recall that Fr is obtained by cutting off G −

r(x) at ra and rb (see (3.6)). Then
(1.7) may be written as

F[a, b]({r(x)}; ra, rb)

= − (b − a) K(ra, rb)+F
b

a
dx[r(x) log r(x)+(1 − r(x)) log(1 − r(x))]

+sup
F(x)

Br(F), (A.1)

where

Br(F)=F
b

a
dx 5(1 − r(x)) log

F(x)
1 − F(x)

+log(1 − F(x))6 , (A.2)

and the supremum in (A.1) is over monotone nonincreasing functions
F(x) satisfying F(a)=ra, F(b)=rb. Now since Hr(x) [ Gr(x) for all x
and log[F(x)/1 − F(x)] is decreasing, we obtain by integration by parts,
noting that H(a)=G(a) and H(b)=G(b), that for any F(x) in this class,

F
b

a
dx [(1 − r(x)) − G −

r(x))] log
F(x)

1 − F(x)

=−F
b

a
[Hr(x) − Gr(x)] d 5log

F(x)
1 − F(x)

6 [ 0, (A.3)
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so that

Br(F) [ F
b

a
dx 5G −

r(x) log
F(x)

1 − F(x)
+log(1 − F(x))6 . (A.4)

Since the integrand in (A.4) is pointwise concave in F(x), with a maximum
at F(x)=G −

r(x), the integral is, for the functions F(x) satisfying ra \

F(x) \ rb, bounded above by its value at F(x)=Fr(x). Thus

Br(F) [ F
b

a
dx 5G −

r(x) log
Fr(x)

1 − Fr(x)
+log(1 − Fr(x))6

=F
b

a
dx 5(1 − r(x)) log

Fr(x)
1 − Fr(x)

+log(1 − Fr(x))6

=Br(Fr); (A.5)

here the first equality is obtained by noting that if (c, d) is a maximal
interval on which Gr(x) ] Hr(x) then (i) G −

r(x) and hence Fr(x) are con-
stant on this interval and (ii) >d

c G −

r(x) dx=>d
c (1 − r(x)) dx. Equation (A.5)

shows that the supremum in (A.1) is achieved by F(x)=Fr(x).

APPENDIX B. OPTIMAL PROFILE UNDER A CONSTRAINT

Let r(x) be an optimal system profile for a fixed mean density r, that
is, a profile which minimizes F[a, b]({r(x)}; ra, rb) under the constraint

F
b

a
r(x) dx=r(b − a). (B.1)

In this section we show that r(x) is uniquely determined, and derive its
form.

Case 1. ra > rb. Let Gr and Fr be defined by (3.5) and (3.6), so that

F[a, b]({r(x)}; ra, rb)=F
b

a
h(r(x), Fr(x); r̄) dx, (B.2)

where h(r, f; r̄) is defined in (3.2) and r̄ is determined from ra, rb as in
Fig. 1.
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We first show that r(x) must be monotone nondecreasing, that is, that
r(x)=1 − G −

r(x) (almost everywhere). For otherwise there will exist some
interval [c, d] … [a, b] satisfying

Gr(c)=F
c

a
(1 − r(y)) dy, Gr(d)=F

d

a
(1 − r(y)) dy, (B.3)

and

Gr(x) > F
x

a
(1 − r(y)) dy, for c [ x [ d. (B.4)

Then for c [ x [ d, G −

r(x)=1 − l, where

l=
1

c − d
F

d

c
r(y) dy, (B.5)

and if rg is defined by

rg(x)=˛l, if c < x < d,
r(x), otherwise,

(B.6)

then rg satisfies (B.1) and from the strict convexity of h(r, F; r̄) in r and
the fact that Fr is constant on [c, d] (with value l, ra, or rb) it follows that

(c − d) h(l, Fr; r̄) < F
d

c
h(r(x), Fr(x); r̄) dx (B.7)

and hence that F[a, b]({rg(x)}; ra, rb) < F[a, b]({r(x)}; ra, rb), contradicting
the definition of r(x).

Since r(x)=1 − G −

r(x) we have from (3.6) that Fr(x) is a local func-
tion of r(x) taking value ra if 1 − r(x) > ra, rb if 1 − r(x) < rb, and
1 − r(x) otherwise. Then one can check that the integrand h(r(x), Fr(x); r̄)
in (B.2) is pointwise convex in r(x). Thus since r(x) satisfies (B.1),
(b − a) h(r, 1 − r, r̄) [ F[a, b]({r(x)}; ra, rb), with equality if and only if
r(x) is the constant function r(x)=r.

Case 2. ra < rb. Let yr be the minimizing value in (1.11) corre-
sponding to the optimal profile r(x); it is clear that r(x) must be constant
on the intervals [a, yr] and [yr, b], so that

F[a, b]({r(x)}; ra, rb)

=(yr − a) h(ra, ra; r̄)+(b − yr) h(rb, rb; r̄) (B.8)
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for some values ra, rb satisfying

(yr − a) ra+(b − yr) rb=(b − a) r. (B.9)

Minimizing (B.8) over a [ yr [ b and (B.9) leads to yr=b, ra=r if
r < 1 − rb and yr=a, rb=r if r > 1 − ra, while if 1 − rb [ r [ 1 − ra, yr is
given by (3.20) and ra=1 − rb, rb=1 − ra.

ACKNOWLEDGMENTS

We thank T. Bodineau, G. Giacomin, and J. M. Ortiz de Zárate
for helpful discussions. The work of J. L. Lebowitz was supported by
NSF Grant DMR–9813268, AFOSR Grant F49620/0154, DIMACS and
its supporting agencies, and NATO Grant PST.CLG.976552. J.L.L.
acknowledges the hospitality of the Institut Henri Poincaré, and B.D. and
J.L.L that of the Institute for Advanced Study, where a part of this work
was done.

REFERENCES

1. S. R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland,
Amsterdam, 1962).

2. H. Spohn, Large Scale Dynamics of Interacting Particles (Springer-Verlag, Berlin, 1991).
3. R. Graham, Onset of cooperative behavior in nonequilibrium steady states, in Order and

Fluctuations in Equilibrium and Nonequilibrium Statistical Mechanics, G. Nicolis,
G. Dewel, and J. W. Turner, eds. (Wiley, New York, 1981).

4. H. Spohn, Long range correlations for stochastic lattice gases in a non-equilibrium steady
state, J. Phys A. 16:4275–4291 (1983).

5. R. Schmitz, Fluctuations in nonequilibrium fluids, Phys. Reports 171:1–58 (1988), and
references therein.

6. M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod.
Phys. 65:851–1112 (1993).

7. J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Generic long-range correlations in
molecular fluids, Annu. Rev. Phys. Chem. 45:213–239 (1994).

8. W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, Con-
centration fluctuations in a polymer solution under a temperature gradient, Phys. Rev.
Lett. 81:5580–5583 (1998).

9. S. Sasa and H. Tasaki, cond-mat/0108365 and references therein.
10. T. M. Liggett, Interacting Particle Systems (Springer-Verlag, New York, 1985).
11. B. Schmittman and R. K. P. Zia, Statistical Mechanics of Driven Diffusive Systems

(Academic Press, London, 1995).
12. B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, Exact solution of a 1D asymmetric

exclusion model using a matrix formulation, J. Phys. A 26:1493–1517 (1993).
13. S. Olla, Large deviations for Gibbs random fields, Probab. Th. Rel. Fields 77:343–357

(1988).
14. R. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer, New York, 1985).

The Asymmetric Exclusion Process 809



15. B. Derrida, J. L. Lebowitz, and E. R. Speer, Large deviation of the density profile in the
symmetric simple exclusion process, J. Stat. Phys. 107:599–634 (2002).

16. B. Derrida, J. L. Lebowitz, and E. R. Speer, Free energy functional for nonequilibrium
systems: an exactly solvable case, Phys. Rev. Lett. 87:150601 (2001).

17. S. Sandow, Partial asymmetric exclusion process with open boundaries, Phys. Rev. E
50:2660–2667 (1994).

18. T. Sasamoto, One dimensional partially asymmetric simple exclusion process with open
boundaries: Orthogonal polynomials approach, J. Phys. A 32:7109–7131 (1999).

19. R. A. Blythe, M. R. Evans, F. Colaiori, and F. H. L. Essler, Exact solution of a partially
asymmetric exclusion model using a deformed oscillator algebra, J. Phys. A 33:2313–2332
(2000).

20. J. Krug, Boundary-induced phase transitions in driven diffusive systems, Phys. Rev. Lett.
67:1882–1885 (1991).

21. G. Schütz and E. Domany, Phase transitions in an exactly soluble one-dimensional exclu-
sion process, J. Stat. Phys. 72:277–296 (1993).

22. T. M. Liggett, Stochastic Interacting Systems: Contact, Voter, and Exclusion Processes
(Springer-Verlag, New York, 1999).

23. L. Santen and C. Appert, The asymmetric exclusion process revisited: fluctuations and
dynamics in the domain wall picture, J. Stat. Phys. 106:187–199 (2002).

24. M. Bramson, Front propagation in certain one-dimensional exclusion models, J. Stat.
Phys. 51:863–869 (1988).

25. V. Popkov and G. M. Schütz, Steady state selection in driven diffusive systems with open
boundaries, Europhys. Lett. 48:257–263 (1999).

26. J. S. Hager, J. Krug, V. Popkov, and G. M. Schütz, Minimal current phase and universal
boundary layers in driven diffusive systems, Phys. Rev. E 63:056100 1–12 (2001).

27. B. Derrida, E. Domany, and D. Mukamel, An exact solution of a one dimensional
asymmetric exclusion model with open boundaries, J. Stat. Phys. 69:667–687 (1992).

28. B. Derrida and M. R. Evans, Exact correlation functions in an asymmetric exclusion
model with open boundaries, J. Phys. I France 3:311–322 (1993).

29. F. H. L. Essler and V. Rittenberg, Representations of the quadratic algebra and partially
asymmetric diffusion with open boundaries, J. Phys. A 29:3375–3408 (1996).

30. K. Mallick and S. Sandow, Finite dimensional representations of the quadratic algebra:
applications to the exclusion process, J. Phys. A 30:4513–4526 (1997).

31. B. Derrida, J. L. Lebowitz, and E. R. Speer, Exact free energy functional for a driven dif-
fusive open stationary nonequilibrium system, Phys. Rev. Lett. 89:030601 (2002).

32. B. Derrida, M. R. Evans, and D. Mukamel, Exact diffusion constant for one-dimensional
asymmetric exclusion models, J. Phys. A 26:4911–4918 (1993).

33. K. Mallick, Shocks in the asymmetry exclusion model with an impurity, J. Phys. A
29:5375–5386 (1996).

34. C. Kipnis, S. Olla, and S. R. S. Varadhan, Hydrodynamics and large deviations for simple
exclusion processes, Commun. Pure Appl. Math. 42:115–137 (1989).

35. L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Fluctuations in
stationary non equilibrium states of irreversible processes, Phys. Rev. Lett. 87:040601
(2001).

36. L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Macroscopic fluc-
tuation theory for stationary non equilibrium states, J. Stat. Phys. 107:635–675 (2002).

37. L. Jensen, Large deviations of the asymmetric simple exclusion process in one dimension,
Dissertation (New York University, 2000).

810 Derrida et al.


	1. INTRODUCTION
	2. THE STEADY STATE OF THE ASEP WITH OPEN BOUNDARY CONDITIONS
	3. CONSEQUENCES OF THE LARGE DEVIATION FORMULA FOR THE ASEP
	4. THE MATRIX METHOD FOR THE ASEP
	5. DERIVATION OF THE ADDITIVITY FORMULAE
	6. LARGE DEVIATIONS VERSUS TYPICAL FLUCTUATIONS
	7. CONCLUSION
	A. THE CONCAVE ENVELOPE CONSTRUCTION
	B. OPTIMAL PROFILE UNDER A CONSTRAINT
	ACKNOWLEDGMENTS

