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Phase transition in theABC model
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Recent studies have shown that one-dimensional driven systems can exhibit phase separation even if the
dynamics is governed by local rules. TheABC model, which comprises three particle species that diffuse
asymmetrically around a ring, shows anomalous coarsening into a phase separated steady state. In the limiting
case in which the dynamics is symmetric and the parameterq describing the asymmetry tends to one, no phase
separation occurs and the steady state of the system is disordered. In the present work, we consider the weak
asymmetry regimeq5exp(2b/N), whereN is the system size, and study how the disordered state is ap-
proached. In the case of equal densities, we find that the system exhibits a second-order phase transition at
some nonzerobc . The value ofbc52pA3 and the optimal profiles can be obtained by writing the exact large
deviation functional. For nonequal densities, we write down mean-field equations and analyze some of their
predictions.
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I. INTRODUCTION

Nonequilibrium steady states, wherein the properties o
system are stationary but the steady state probabilities are
described by Boltzmann weights with respect to a local
ergy function, may exhibit a number of interesting pheno
ena absent from equilibrium systems: for example, driv
diffusive systems@1# have generically long-range correla
tions; phase transitions may also occur in one-dimensio
nonequilibrium steady states although they are, of cou
precluded from one-dimensional equilibrium systems w
short-range interactions.

Examples of nonequilibrium phase transitions include
absorbing state phase transitions@2# and the boundary-
induced phase transitions in driven systems wherein a c
served current is driven through a finite open system@3–7#.
Bulk ~i.e., not boundary-driven! phase transitions may aris
in systems with no absorbing states such as conser
driven systems through the introduction of several specie
particles@8–13#.

Phase separation has been exhibited in several one di
sional driven systems@8,14,15# consisting of several specie
of particles with nearest neighbor exchanges occurring w
prescribed rates. Models in this class are theABC model
@14#, the AHR model @8,9,16#—both containing three spe
cies of particles—and theLR model @15# which consists of
two sublattices with two species each. The phase separa
in these models has the striking feature of the domains
each species being pure. That is, far away from the dom
walls, there is zero probability of finding a particle of on
species in a domain of a different species. This is referre
as strong phase separation.

An understanding of this phenomenon has emer
through the exact solution of the steady state in some spe
cases of theABC @14# and theLR models@15#. Even though
the dynamics is strictly local, in these special cases it
been shown that the steady state obeys detailed balance
respect to a long-range energy function. The long-range
teraction leads to superextensivity of this energy functi
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i.e., the energy of most microscopic configurations sca
quadratically with system sizeN so that the contribution of
the entropy becomes negligible. Almost all configuratio
are therefore suppressed and only strongly phase sepa
configurations contribute. Although, generally, in theABC
and theLR models for nonequal numbers of particles d
tailed balance does not hold and one does not have an en
function, the same strong phase separation is observe
simulations@14#.

In theABC model, there is a parameterq that governs the
local dynamics. It describes the asymmetry in the rates
nearest neighbor particle exchanges~see Sec. II!. If q,1 is
held fixed, then one always has strong phase separatio
the thermodynamic limit (N→`). However for q51, in
which case the particles exchange symmetrically, the sys
is in a homogeneous disordered state where all config
tions are equally probable. In the present work, we inve
gate theABC model in the weak asymmetry regime. That
we introduce a system size dependence intoq so that an
extensive energy is recovered~when an energy function in
deed exists!. It turns out that the appropriate choice ofq is

q5expS 2
b

ND . ~1!

Thus,b is now the control parameter and plays the role of
inverse temperature, i.e.,b51/T. In this regime, an interest
ing question arises as to how the transition from the stron
phase separated state to the disordered state occurs asT is
varied. Since the energy function is of long range, it is p
sible to have a phase transition at a well-defined tempera
Tc5bc

21 even though the system is one dimensional~1D!
~phase transitions, in fact, do occur in one-dimensional s
tems with algebraically decaying interaction@17# or in the
Bernasconi model@18# which is an Ising spin model with
energy function given by long-range, four-spin interactio
@19#!.

In the present paper, we first summarize in Sec. II so
known facts about theABC model. In Sec. III, we presen
©2003 The American Physical Society15-1



a
ac
ic
e
e

e
e

an
ba
h
u

-
ing
in

d

th

th
m
a
ts
ca

r-

n
on
th

a-

v-
e

-
ising

the

ailed

ca-
-
e

be

e

n is

tate

ge-
ting

he

In-

ce

CLINCY, DERRIDA, AND EVANS PHYSICAL REVIEW E67, 066115 ~2003!
our results of Monte Carlo simulations done in the we
asymmetry regime for an equal number of particles of e
species. These simulations indicate that there is a crit
value bc51/Tc.11. In Sec. IV, we derive the exact fre
energy functional for an arbitrary density profile from th
expression for the weights in the steady state in the cas
equal particle numbers. By minimizing this functional w
obtain the exact value ofbc52pA3.10.88 . . . and the
shape of the density profiles in the neighborhood of the tr
sition. In Sec. V, we investigate the case of arbitrary glo
densities within a mean-field approximation. We observe t
this approximation turns out to be exact in the case of eq
numbers of particles.

II. THE ABC MODEL

The ABC model is defined on a 1D ring withN lattice
sites. Each site is occupied by one of the three types
particles denoted asA, B, or C. They exhibit hard-core inter
action, i.e. only one particle per site is allowed. Neighbor
sites on the ring are exchanged according to the follow
rates:

AB�
1

q

BA, ~2!

BC�
1

q

CB, ~3!

CA�
1

q

AC. ~4!

Thus, for qÞ1 the particles diffuse asymmetrically aroun
the ring and in the caseq51 they diffuse symmetrically.
Note that periodic boundary conditions are implied and
dynamics conserves the number of particles.

This model has been extensively studied in Ref.@14# by
analytical and numerical means. Let us summarize in
section the main results. Starting from an initially rando
configuration, the system coarsens into a strongly ph
separated state for anyqÞ1. Thus, the steady state exhibi
long-range order, even though the dynamics is strictly lo
We will restrict our discussion ofqÞ1 to the caseq,1 for
simplicity. ~The caseq.1 can be obtained by the transfo
mation q→1/q together with the exchange ofA and B par-
ticles.! For q51, particles of all species have equivale
dynamics, which results in a steady state in which all c
figurations have equal weight and the steady state of
system is disordered.

To understand the coarsening dynamics forq,1, note
that domain walls of the typeBA, CB, andAC are unstable
to interchanges leading toAB, BC, and CA, respectively.
Therefore,A particles are driven to the left in aB domain and
to the right in aC domain~particlesB andC are also driven
in other species domains!. Thus the system arrives at a met
stable configuration of the formA•••AB•••BC•••CA•••
AB•••BC•••CA••• and a slow coarsening process, invol
ing the elimination of the smallest domains, ensues. For
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ample, the time it takes anA particle to traverse aB domain
of length l is of the order ofql . Thus, the elimination of
domains of sizel occurs at a rate of orderq2 l which results
in the typical domain size growing asl; ln t. This growth
law which is slower than any power oft is referred to as
anomalous coarsening@20#. Ultimately, the coarsening pro
cess results in a strongly phase separated state compr
three pure domains.

The general steady state is not, as yet, known. In
special case of equal particle numbersNA5NB5NC5N/3,
however, one can show that the steady state obeys det
balance with respect to a long-range energy functionH. A
configuration of the system is specified by the set of indi
tor variables$Xi%5$Ai ,Bi ,Ci% which take value 1 or 0 de
pending on whether sitei is occupied by the relevant particl
or not. For example,Ai51 if site i is occupied by anA
particle. Clearly, these variables satisfyAi1Bi1Ci51.
With these indicator variables, the energy function may
written as

H~$Xi%!5
1

N (
i 51

N

(
k51

N21

k~BiCi 1k1CiAi 1k1AiBi 1k! ~5!

and the steady state weights of the system are given by

P~$Xi%!5ZN
21qH($Xi %), ~6!

where ZN5(qH($Xi %) denotes the partition function. Not
that the energy given in Ref.@14# differs by a constant from
Eq. ~5!.

In Eq. ~5!, the interaction between sitesi and i 1k are
both long range and asymmetric, and the energy functio
superextensive and scales quadratically with system sizeN.

The width of the domain walls in the phase separated s
is of the order of 1/u ln qu @14#. So for q→1, the size of the
domain walls diverges and the system will be in a homo
neous disordered state. Moreover, we expect an interes
regime to occur when the width of the domain walls is of t
order of the domain lengthsN/3, i.e.,

1

u ln qu
;O~N!. ~7!

This yields the weakly asymmetric regime stated in the
troduction, Eq.~1!, where the control parameter is nowT
51/b. The steady state weight~5! and~6! also confirms that
Eq. ~1! is the natural choice for a scaling variable, sin
under this scaling~6! becomes

PN~$Xi%!5ZN
21exp@2bEN~$Xi%!#, ~8!

whereZN is a normalization constant~the partition function!,
and the extensive rescaled energyEN($Xi%) is defined as

EN~$Xi%!5H~$Xi%!/N. ~9!
5-2
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III. MONTE CARLO SIMULATIONS

We have measured by Monte Carlo simulations the nu
ber of nearest neighbor pairs of sites occupied by the s
species of particles in the steady state. We shall refer to th
as nearest neighbor~nn! matching pairs. For a completel
disordered system~i.e., for b50), the probability of finding
a nn matching pair is 1/3 for largeN. As b increases, one
expects this number to increase and to be equal to 1 ab
→` ~i.e., as one reaches the strongly separated regime!.

In Fig. 1, we show the results of our simulations formN
defined as

mN5
~number of nn matching pairs!

~system size!
2

1

3
~10!

5
1

N (
i 51

N

@AiAi 111BiBi 111CiCi 11#2
1

3
,

~11!

with the occupation variableXi5Ai ,Bi ,Ci defined as in Eq.
~5!. Note that because of the periodic boundary conditio
site N11 is identified with site 1. We see that asN in-
creases,mN seems to be closer and closer to zero asb
,11, whereas it seems to have a well-defined limitm which
depends onb for b.11,

m5 lim
N→`

mN . ~12!

Note thatm only contains nearest neighbor correlations
opposed to, e.g., the measure of order used in Ref.@14#
which contains long-range terms. Also one could consi
the lowest Fourier mode of the density profile~see Sec. IV!.

For T,Tc , we expect 0,m,2/3, with m approaching
2/3 in the limit T→0. This behavior can be seen in Fig.
For 1/T'11, a crossover from an ordered to a disorde
state appears, which becomes sharper with the increa
system size. In Fig. 2, we plot the specific heat defined
CN5]EN/]T. One sees strong finite size effects atb51/T
'11. Moreover, the curves suggest that a discontinu
emerges in the infinite system limit which would be cons
tent with a second-order phase transition.

FIG. 1. Parameterm defined by Eq.~11! for system sizesN
530–240.
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To determine the critical temperature of the system,
have performed a standard finite size scaling analysis@21#
based on the distribution of the parametermN defined as in
Eq. ~11!. Such an analysis has already proved to be effec
in the study of nonequilibrium steady states@22,23#. We per-
formed Monte Carlo simulations of the model for syste
sizesN530 to 210 over 109 sweeps in the steady state fo
each set of parameters. To determine the critical tempera
Tc , we measured the ratio between two moments of the
rametermN ,

UN512
^mN

4 &

3^mN
2 &2

. ~13!

~In fact, since one does not have to distinguish between p
tive and negative values of the parameterm, the ratio
^m2&/^m&2 could as well be used to determine the critic
temperature.!

At the critical temperatureTc , UN has a universal value
U* . Thus, on measuringUN for various system sizes as
function of T, U* is the common intersection point of th
curves and identifiesTc . Our results shown in Fig. 3 indicat
bc51/Tc.10.95.

FIG. 2. Specific heat for system sizesN530, 60, 90, and 150.

FIG. 3. Critical temperatureTc as an intersection pointU* of
the fourth-order cumulant of the order parameterUN ~the straight
lines are linear fits to the data!.
5-3
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IV. LARGE DEVIATION FUNCTIONAL FOR EQUAL
DENSITIES AND THE EXACT TRANSITION

TEMPERATURE

In this section, we consider only the case of equal nu
bers of each species

NA5NB5NC5
N

3
, ~14!

where there exists an energy function given by Eqs.~5! and
~9!,

EN~$Xi%!5
1

N2 (
i 51

N21

(
k51

N21

k~BiCi 1k1CiAi 1k1AiBi 1k!,

~15!

with the occupation variables$Xi%5$Ai ,Bi ,Ci% defined as
in Eq. ~5!. The steady state probabilities of the system
given by Eq.~8!.

We pass to the continuum limit whererA(x),rB(x), and
rC(x) are the density profiles ofA,B, and C particles, re-
spectively, at positionx5 i /N. Then, the free energy func
tional @24,25# ~or large deviation functional!
F@rA(x),rB(x),rC(x)# which gives the probability of any
density profile through

P@rA~x!,rB~x!,rC~x!#5exp$2NF@rA~x!,rB~x!,rC~x!#%
~16!

can be written in terms of the density profiles as

F@rA~x!,rB~x!,rC~x!#5K1E
0

1

dx@rA~x!ln rA~x!

1rB~x!ln rB~x!1rC~x!ln rC~x!#

1bE
0

1

dxE
0

1

dz@rB~x!rC~x1z!

1rC~x!rA~x1z!1rA~x!rB~x

1z!#z, ~17!

whererA ,rB , andrC are periodic functions of period 1 an
K is a normalization constant such that the minimum ofF
over all profiles vanishes. The second term on the right h
side of Eq.~17! represents the entropy of the given profile
while the term proportional tob is the continuum form of
energy~15!.

It is easy to derive an expression for the optimal pro
for rA(x) by finding the extremum of Eq.~17! with respect
to rA(x) subject to the constraint that

E rA~x!dx51/3.

One obtains
06611
-

e

d
,

rA~x!5Const3expS 2bE
0

1

@rB~x1z!1rC~x2z!#zdzD
~18!

which implies that

drA~x!

dx
52brA~x!@rB~x!2rC~x!#. ~19!

Similar equations hold forrB(x) and rC(x), and using
rC(x)512rA(x)2rB(x) one obtains the coupled equation

drA~x!

dx
52brA~x!~rA~x!12rB~x!21!, ~20!

drB~x!

dx
52brB~x!@122rA~x!2rB~x!#. ~21!

Clearly, one solution of Eq.~20! and ~21! is rA(x)
5rB(x)51/3, which corresponds to the disordered pha
but this extremum is the minimum only in the disorder
phase. To test when an ordered solution emerges, we d
the Fourier series of arbitrary profiles as

rA~x!51/31 (
n51

`

@anexp~ i2pnx!1a2nexp~2 i2pnx!#,

~22!

rB~x!51/31 (
n51

`

@bnexp~ i2pnx!1b2nexp~2 i2pnx!#,

~23!

rC~x!51/31 (
n51

`

@cnexp~ i2pnx!1c2nexp~2 i2pnx!#.

~24!

We insert these into Eqs.~20! and ~21! and, anticipating a
continuous phase transition, expand to first order inan ,bn .
We look for values ofb for which a solution for nonzeroan ,
bn , cn is present and, therefore, the uniform solution cou
be unstable. One finds that the uniform solution becom
unstable to thenth mode forb2/35(2pn)2 so that the first
instability occurs atbc given by

bc52pA3510.882 796 . . . . ~25!

Nearbc , Eqs.~20! and ~21! can be solved perturbatively in

e5
b2bc

bc
. ~26!

One finds to leading order
5-4
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rA~x!5rBS x1
1

3D5rCS x1
2

3D
5

1

3
1S e

6D 1/2

2 cos@2p~x2x0!#

1S e

6D2 cos@4p~x2x0!#1O~e3/2!, ~27!

wherex0 can be arbitrary~as an optimal profile remains op
timal when it is translated!. Also, choosingx050, one can
show thatan5a2n and a3m50 for umu50,1 . . . to all or-
ders ine and that to leading order ine,

a1;S e

6D 1/2

, a2;S e

6D , a4;2S e

6D 2

,

a5;2S e

6D 5/2

, . . . . ~28!

The parameterm defined as in Eqs.~12! and~11! becomes in
the continuum limit

m5E
0

1

@rA
21rB

21rC
2 #dx2

1

3
, ~29!

and from Eq.~27! one obtains

m;
b2bc

bc
. ~30!

Thus, the parameterm as defined in Eqs.~12! and ~11! van-
ishes linearly at the transition. An alternative, and proba
more standard, choice for the order parameter could be
amplitudea1 of the fundamental mode@26# and this would
lead to an exponent 1/2.

We now turn to the calculation of the energy. For arbitra
density profiles, the energetic contribution to the free ene
~15! may be written in terms of the Fourier coeffcients as

E5
1

6
2 (

nÞ0

anb2n1bnc2n1cna2n

2p in
. ~31!

For profiles rB(x)5rA(x21/3), rC(x)5rA(x22/3), this
energy becomes

E5
1

6
23(

n51

`
ana2n

np
sin~2pn/3!. ~32!

Thus, using Eq.~28!, nearbc we haveE.1/623e/2bc and
the heat capacity2b2]E/]b has a discontinuity of 3/2 a
bc , consistent with the data of Fig. 2.

This equal density case is similar to some special ca
found in a recent study of the dynamical winding of rando
walks @27# for which the fact that the dynamics satisfies d
tailed balance allows one to write equations for the den
profiles of type~20! and to locate the exact transition poin
06611
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V. NONEQUAL DENSITIES AND MEAN-FIELD THEORY

We now turn to the case of nonequal densities of partic
A direct consequence of the stochastic dynamical rules~4! is
that

d^Ai&
dt

5q^Ai 21Bi&1q^CiAi 11&1^BiAi 11&1^Ai 21Ci&

2q^AiBi 11&2q^Ci 21Ai&2^Bi 21Ai&2^AiCi 11&

~33!

and similar equations hold ford^Bi&/dt and d^Ci&/dt. We
do not know how to solve these exact equations, in parti
lar, because they require the knowledge of two point fu
tions. One can, however, write down mean-field equatio
@4# by making an approximation which neglects correlatio
~i.e., where one replaces correlation functions such
^Ai 21Bi& by ^Ai 21&^Bi&),

d^Ai&
dt

5q^Ai 21&^Bi&1q^Ci&^Ai 11&1^Bi&^Ai 11&

1^Ai 21&^Ci&2q^Ai&^Bi 11&2q^Ci 21&^Ai&

2^Bi 21&^Ai&2^Ai&^Ci 11&. ~34!

Assuming that the profiles vary slowly withi, we write
rA(x)5^Ai& and

^Ai 61&5rA~x!6
1

N

]rA~x!

]x
1

1

2N2

]2rA~x!

]x2
1•••,

~35!

then keeping leading-order terms in 1/N and definingt
5N2t in Eq. ~36! yields

]rA

]t
5b

]

]x
@rA~rB2rC!#1

]2rA

]x2
,

]rB

]t
5b

]

]x
@rB~rC2rA!#1

]2rB

]x2
, ~36!

]rC

]t
5b

]

]x
@rC~rA2rB!#1

]2rC

]x2
.

One can linearize these equations around constant de
profiles

rA~x!5r A1DrA~x!, rB~x!5r B1DrB~x!,

rC~x!5r C1DrC~x!, ~37!

whereDrA(x),DrB(x), andDrC(x) represent small depar
tures from constant profiles at densitiesr A5NA /N,r B
5NB /N, andr C5NC /N (r A ,r B , andr C are the global den-
sities of the three species and, of course, they satisfyr A
1r B1r C51). Then one finds that these small departures
damped whenb,bc

mf , given by
5-5
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bc
mf5

2p

~2r Ar B12r Ar C12r Br C2r A
22r B

22r C
2 !1/2

5
2p

@122~r A
21r B

21r C
2 !#1/2

. ~38!

We see that in the equal density case (r A5r B5r C51/3), the
mean-field value ofbc coincides with the exact value~25!.
Moreover, one finds that the solutions of the exact equati
for the optimal profile~19! are steady state solutions of th
mean-field equations~36! ~as they make the left-hand side
these equations vanish!. So, at least for the equal time prop
erties, in this equal density case,bc and the profiles pre-
dicted by the mean-field theory are exact.

Nearbc , one can perturbatively find stationary nonmo
ing profiles. The first Fourier mode of these profiles is giv
by

DrA~x!.c~e!@Ar Ae2ip(x2x0)1c.c.#, ~39!

DrB~x!.c~e!F r C2r A2r B2 iA122~r A
21r B

21r C
2 !

2Ar A

3e2ip(x2x0)1c.c.G , ~40!

DrC~x!.c~e!F r B2r A2r C1 iA122~r A
21r B

21r C
2 !

2Ar A

3e2ip(x2x0)1c.c.G , ~41!

wheree is defined as in Eq.~26! and

c~e!5
122~r A

21r B
21r C

2 !

A2~r A
21r B

21r C
2 !24~r A

31r B
31r C

3 !
e1/2. ~42!

Analyzing the whole phase diagram predicted by
mean-field equations~36! is not an easy task. Apart from th
constant profile solutions, which become unstable forb
.bc

mf , other~static or moving! solutions might exist in some
regions of the phase diagram and a full description of
phase diagram would require the knowledge of all the so
tions of the mean-field equations and of their stabilities.

Equation~38! implies that forr A
21r B

21r C
2 .1/2 there is

no second-order phase transition. However, looking at
~42! it is clear that the second-order transition from the fl
profile solution to solutions~39!–~42! should already be-
come first order whenr A

21r B
21r C

2 ,2(r A
31r B

31r C
3 ). This is

similar to what occurs in a mean-field study of another latt
gas@28#.

At present, we cannot tell whether the predictions of
mean-field theory~36!, such as Eq.~38!, remain exact in the
case of unequal global densities. To try to shed some ligh
this question, we have calculated the large deviation fu
tional to orderb2 in a smallb expansion. The details give
06611
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in the Appendix show that, in the unequal density case,
large deviation functional~16! and ~17! becomes

F@rA~x!,rB~x!,rC~x!#

5K1E
0

1

dx@rA~x!ln rA~x!1rB~x!ln rB~x!

1rC~x!ln rC~x!#1bE
0

1

dxE
0

1

dz z@rB~x!rC~x1z!

1rC~x!rA~x1z!1rA~x!rB~x1z!#2
3

4
b2

3E
0

1

dxE
0

1

dz z~12z!@r A~123r A!rB~x!rC~x1z!

1r B~123r B!rC~x!rA~x1z!

1r C~123r C!rA~x!rB~x1z!#1O~b3!. ~43!

We see that for the unequal density case, the large devia
functional is modified and terms of orderb2 appear which
were not present in Eq.~17!. This b2 term is the first of a
whole series inb. Without knowing these higher-orde
terms, it is neither possible to predict the exact value ofbc
nor how Eqs.~19! and~20! for the most likely profiles would
be modified. One cannot exclude the possibility that the m
likely profile in the ordered phase corresponds to mov
domains.

VI. CONCLUSION

In this work, we have investigated a locally driven syste
of three species on a ring which exhibits anomalous co
ening into a strongly phase separated steady state. In the
of equal numbers of the particles of each species, the ste
state obeys detailed balance with respect to a long-range
perextensive energy function, despite the strictly nea
neighbor dynamics. In the weak asymmetry regime wh
q→1 as in Eq.~1!, one recovers an extensive energy. In th
regime, we found a second-order phase transition.

For the case of equal particle densities, we have deri
the large deviation~or free energy! functional ~16! and ~17!
for the profiles. As in other examples of nonequilibrium sy
tems studied recently@24,25#, this functional is nonlocal al-
lowing for phase transitions in one dimension. By minimi
ing this free energy functional, we have obtained Eqs.~19!
satisfied by the optimal density profiles and analyzed
phase transition in the equal density case, in particular,
found bc52pA3.

For the general case of arbitrary particle densities,
used a mean-field theory. In the case of equal particle de
ties, it turns out that the mean-field solution yields the sa
profiles as the exact free-energy optimization just discuss
An open question remains as to the extent to which
mean-field theory is valid when the densities are unequa

The mechanism for the phase separation that we h
studied can be understood through the stability of the Fou
modes of the particle densities. In the high temperat
5-6
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phase, the system is disordered and the constant density
files are stable.Tc denotes the temperature at which the lo
est Fourier mode becomes unstable. AsT decreases, more
and more modes become unstable and the depth of
quench from the disordered high temperature phase to
low temperature phase determines the number of unst
modes which can grow from the constant profile solutio
However, in the steady state one expects only three p
domains. How the nonlinear evolution of the excited mod
combined with the effect of the noisy dynamics determ
the anomalous coarsening@14# towards the three pure do
mains is another interesting open question.

APPENDIX: EXPANDING THE STEADY STATE IN
POWERS OF THE BIAS

In this appendix, we justify expression~43! of the large
deviation functional. Let us consider a finite system ofN
lattice sites and write the asymmetryq as

q5e2f.

We are going to show in this appendix that the unnormali
weight P(C) of a configurationC in the steady state can b
written to orderf2 as

P~C!5exp@fR1~C!1f2R2~C!#, ~A1!

where

R1~C!52
1

N (
i 51

N

(
d51

N21

d~BiCi 1d1CiAi 1d1AiBi 1d!

~A2!

and

R2~C!5
3

4N2~N21! (
i 51

N

(
d51

N21

d~N2d!@NA~N

23NA!BiCi 1d1NB~N23NB!CiAi 1d1NC~N

23NC!AiBi 1d#. ~A3!

In the weak asymmetry regime~1!, this leads to the formula
~43! in the large-N limit.

Let us try to compare two configurationsC andC8 of the
form

C5X1X2•••Xi 21AiBi 11Xi 12•••XN , ~A4!

C85X1X2•••Xi 21BiAi 11Xi 12•••XN ,

which differ only by an exchange of anA and aB particle
between sitesi andi 11 ~the notation in Eq.~A4! means that
site i is occupied by anA particle, sitei 11 by aB particle,
and all the other sites are occupied by arbitrary particles!.

If Eqs. ~A2! and ~A3! were true, we would have

R1~C8!5R1~C!23
NC

N
, ~A5!
06611
ro-
-

he
he
le
.
re
s
e

d

R2~C8!5R2~C!1
3

4N2~N21!FNA~N23NA! (
d52

N21

Ci 1d~N

22d11!2NB~N23NB! (
d52

N21

Ci 1d~N22d11!

1NC~N23NC! (
d52

N21

Ai 1d~N22d11!2NC~N

23NC! (
d52

N21

Bi 1d~N22d11!G . ~A6!

Using the fact that

Ci 1d512Bi 1d2Ai 1d ,

this can be rewritten as

R2~C8!5R2~C!1QA (
d52

N21

Ai 1d~N22d11!

2QB (
d52

N21

Bi 1d~N22d11!, ~A7!

where

QA5
3

4

NC~N23NC!1NB~N23NB!2NA~N23NA!

N2~N21!
,

~A8!

QB5
3

4

NA~N23NA!1NC~N23NC!2NB~N23NB!

N2~N21!
,

~A9!

and QC is similarly defined. Thus, exchanging the particl
at anAB interface produces in Eq.~A7! a difference between
a term involving onlyA particles and a term involving onlyB
particles.

Let us consider now a cluster ofm sites occupied byA
particles so thatC has the form

C5X1X2•••XiAi 11•••Ai 1mXi 1m11•••XN ,

where sitesi and i 1m11 are occupied by particlesB or C,
so that

Xi5L8 and Xi 1m115L9,

whereL8 is a B or a C particle and so isL9.
There are two configurationsC8 and C9 which can be

reached fromC by single moves at the two boundaries of th
cluster. A rather simple calculation using Eq.~A6! shows that
5-7
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R2~C8!1R2~C9!22R2~C!5QA@2mNA2222~m21!N#

1QL9 (
d52

N21

Li 1m1d9 ~N22d11!

2QL8 (
d52

N21

Li 1d8 ~N22d11!.

~A10!

Then summing over all clusters yields

(
C8

@R2~C8!2R2~C!#52QA@NA
22NNA1~N21!~NAB

1NAC!#12QB@NB
22NNB1~N21!

3~NBC1NBA!#12QC@NC
2 2NNC

1~N21!~NCA1NCB!#, ~A11!

where the sum is over all the configurationsC8 which can be
reached from a givenC by a single exchange an
NAB ,NBA ,NBC , . . . are the numbers of neighboring pa
AB,BA,BC . . . along the chain.
. A

.

, J

A

s.

06611
So far Eqs.~A5! and ~A10! have been derived assumin
that Eqs.~A2! and~A3! are true. To prove that Eq.~A1! does
give the correct steady state weights, one needs to ch
stationarity, i.e.,

S 12f1
f2

2 D ~NAB1NBC1NCA!1NBA1NCB1NAC

5S 12f1
f2

2 D ~NBAe3fNC /N1NCBe3fNA /N

1NACe3fNB /N!1~NABe23fNC /N1NBCe23fNA /N

1NCAe23fNB /N!1f2(
C8

@R2~C8!2R2~C!#. ~A12!

This can be checked to orderf2, using simply the fact that
for any configuration

NAB2NBA5NBC2NCB5NCA2NAC .
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