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Phase transition in the ABC model
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Recent studies have shown that one-dimensional driven systems can exhibit phase separation even if the
dynamics is governed by local rules. TBe&8C model, which comprises three particle species that diffuse
asymmetrically around a ring, shows anomalous coarsening into a phase separated steady state. In the limiting
case in which the dynamics is symmetric and the parangedescribing the asymmetry tends to one, no phase
separation occurs and the steady state of the system is disordered. In the present work, we consider the weak
asymmetry regimeg=exp(—pB/N), whereN is the system size, and study how the disordered state is ap-
proached. In the case of equal densities, we find that the system exhibits a second-order phase transition at
some nonzer@, . The value of.= 2m/3 and the optimal profiles can be obtained by writing the exact large
deviation functional. For nonequal densities, we write down mean-field equations and analyze some of their

predictions.
DOI: 10.1103/PhysRevE.67.066115 PACS nunier64.60.Cn, 02.70.Uu, 05.58q
I. INTRODUCTION i.e., the energy of most microscopic configurations scales

quadratically with system sizH so that the contribution of

Nonequilibrium steady states, wherein the properties of dhe entropy becomes negligible. Almost all configurations
system are stationary but the steady state probabilities are nate therefore suppressed and only strongly phase separated
described by Boltzmann weights with respect to a local enconfigurations contribute. Although, generally, in tA&C
ergy function, may exhibit a number of interesting phenom-and theLR models for nonequal numbers of particles de-
ena absent from equilibrium systems: for example, driverfailed balance does not hold and one does not have an energy
diffusive systemg1] have generically long-range correla- function, the same strong phase separation is observed in
tions; phase transitions may also occur in one-dimensionadimulations{14].
nonequilibrium steady states although they are, of course, Inthe ABC model, there is a parametgthat governs the
precluded from one-dimensional equilibrium systems withlocal dynamics. It describes the asymmetry in the rates of
short-range interactions. nearest neighbor particle exchangsse Sec. )l If q<1 is

Examples of nonequilibrium phase transitions include theneld fixed, then one always has strong phase separation in
absorbing state phase transitiof®] and the boundary- the thermodynamic limit l—c0). However forq=1, in
induced phase transitions in driven systems wherein a corwhich case the particles exchange symmetrically, the system
served current is driven through a finite open sysf8m7].  is in a homogeneous disordered state where all configura-
Bulk (i.e., not boundary-drivenphase transitions may arise tions are equally probable. In the present work, we investi-
in systems with no absorbing states such as conservingate theABC model in the weak asymmetry regime. That is,
driven systems through the introduction of several species ofe introduce a system size dependence igteo that an
particles[8—13. extensive energy is recoverédhen an energy function in-

Phase separation has been exhibited in several one dimetieed existg It turns out that the appropriate choice ipfs
sional driven system$3,14,19 consisting of several species
of particles with nearest neighbor exchanges occurring with _ ex;{
prescribed rates. Models in this class are &BC model g
[14], the AHR model[8,9,16—both containing three spe-
cies of particles—and theR model[15] which consists of ~Thus, is now the control parameter and plays the role of an
two sublattices with two species each. The phase separatidhverse temperature, i.3=1/T. In this regime, an interest-
in these models has the striking feature of the domains ding question arises as to how the transition from the strongly
each species being pure. That is, far away from the domaiphase separated state to the disordered state occUrssas
walls, there is zero probability of finding a particle of one varied. Since the energy function is of long range, it is pos-
species in a domain of a different species. This is referred tsible to have a phase transition at a well-defined temperature
as strong phase separation. TC=,BC‘l even though the system is one dimensiofidD)

An understanding of this phenomenon has emergedphase transitions, in fact, do occur in one-dimensional sys-
through the exact solution of the steady state in some specitéms with algebraically decaying interactiph?7] or in the
cases of théABC[14] and theLR models[15]. Even though Bernasconi mode[18] which is an Ising spin model with
the dynamics is strictly local, in these special cases it hasnergy function given by long-range, four-spin interactions
been shown that the steady state obeys detailed balance w(th9]).
respect to a long-range energy function. The long-range in- In the present paper, we first summarize in Sec. Il some
teraction leads to superextensivity of this energy functionknown facts about thé.BC model. In Sec. Ill, we present

Nk 1)

1063-651X/2003/6(6)/0661158)/$20.00 67 066115-1 ©2003 The American Physical Society



CLINCY, DERRIDA, AND EVANS PHYSICAL REVIEW E67, 066115 (2003

our results of Monte Carlo simulations done in the weakample, the time it takes af particle to traverse 8 domain
asymmetry regime for an equal number of particles of eaclof length | is of the order ofq'. Thus, the elimination of
species. These simulations indicate that there is a criticalomains of sizé occurs at a rate of order ' which results
value B.=1/T.=11. In Sec. IV, we derive the exact free in the typical domain size growing ds-Int. This growth
energy functional for an arbitrary density profile from the law which is slower than any power afis referred to as
expression for the weights in the steady state in the case @homalous coarseniri@0]. Ultimately, the coarsening pro-
equal particle numbers. By minimizing this functional we cess results in a strongly phase separated state comprising
obtain the exact value oB,=273=10.88... and the three pure domains.

shape of the density profiles in the neighborhood of the tran- The general steady state is not, as yet, known. In the
sition. In Sec. V, we investigate the case of arbitrary globalspecial case of equal particle numb&ig=Ng=Nc=N/3,
densities within a mean-field approximation. We observe thahowever, one can show that the steady state obeys detailed
this approximation turns out to be exact in the case of equdbalance with respect to a long-range energy funcfitinA

numbers of particles. configuration of the system is specified by the set of indica-
tor variables{X;} ={A;,B;,C;} which take value 1 or 0 de-
Il. THE ABC MODEL pending on whether sitieis occupied by the relevant particle

_ _ _ _ _ or not. For exampleA;j=1 if site i is occupied by anA
The ABC model is defined on a 1D ring witN lattice  particle. Clearly, these variables satisfy;+B;+C;=1.

sites. Each site is occupied by one of the three types ofvith these indicator variables, the energy function may be
particles denoted a&, B, or C. They exhibit hard-core inter- \yritten as

action, i.e. only one particle per site is allowed. Neighboring

sites on the ring are exchanged according to the following N N-1
rates: 1
H({xi})zﬁ ;1 IZl K(BiCi+ktCiAi+ktABi k) (5
q
AB=BA, 2
1 and the steady state weights of the system are given by
q - .
BC=CB, &) P({X}) =2y g, (6)
1
. where Z==q"Xi) denotes the partition function. Note
CA=AC. (4) ?gt(g;e energy given in Refl14] differs by a constant from
1 . .

In Eq. (5), the interaction between sitésandi+k are
Thus, forq+1 the particles diffuse asymmetrically around both long range and asymmetric, and the energy function is
the ring and in the casgq=1 they diffuse symmetrically. Superextensive and scales quadratically with systemisize
Note that periodic boundary conditions are implied and the The width of the domain walls in the phase separated state
dynamics conserves the number of particles. is of the order of 1inqg| [14]. So forq—1, the size of the
This model has been extensively studied in R&#] by ~ domain walls diverges and the system will be in a homoge-
analytical and numerical means. Let us summarize in thigieous disordered state. Moreover, we expect an interesting
section the main results. Starting from an initially randomregime to occur when the width of the domain walls is of the
configuration, the system coarsens into a strongly phaserder of the domain length/3, i.e.,
separated state for amy* 1. Thus, the steady state exhibits
long-range order, even though the dynamics is strictly local. 1
We will restrict our discussion aff# 1 to the case <1 for
simplicity. (The caseq>1 can be obtained by the transfor-
mation g— 1/q together with the exchange &f and B par-
ticles) For q=1, particles of all species have equivalent This yields the weakly asymmetric regime stated in the In-
dynamics, which results in a steady state in which all coniroduction, Eq.(1), where the control parameter is nolv
figurations have equal weight and the steady state of th& 1/8. The steady state weigtf) and(6) also confirms that
system is disordered. Eqg. (1) is the natural choice for a scaling variable, since
To understand the coarsening dynamics derl, note under this scaling6) becomes
that domain walls of the typBA, CB, andAC are unstable
to interchanges leading t&B, BC, and CA, respectively. Pa{Xih) =2y exd — BEN{Xi D], 8
Therefore A particles are driven to the left inBxdomain and
to the right in aC domain(particlesB andC are also driven
in other species domainsThus the system arrives at a meta-

W~O(N). @)

whereZy is a normalization constafthe partition function,

stable configuration of the form. - -AB- - -BC---CA. -- and the extensive rescaled enefgy({X;}) is defined as
AB---BC---CA- .- and a slow coarsening process, involv-
ing the elimination of the smallest domains, ensues. For ex- En({Xi}) =H({X;})/N. 9)
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FIG. 1. Parametem defined by Eq.(11) for system sizes\ FIG. 2. Specific heat for system sizbls=30, 60, 90, and 150.
=30-240.
. MONTE CARLO SIMULATIONS To determine the critical temperature of the system, we

have performed a standard finite size scaling analil$

We have measured by Monte Carlo simulations the numbased on the distribution of the parametay defined as in
ber of nearest neighbor pairs of sites occupied by the sameg. (11). Such an analysis has already proved to be effective
species of particles in the steady state. We shall refer to these the study of nonequilibrium steady staf@®,23. We per-
as nearest neighbdnn) matching pairs. For a completely formed Monte Carlo simulations of the model for system
disordered systerfi.e., for 3=0), the probability of finding  sizesN=30 to 210 over 1 sweeps in the steady state for
a nn matching pair is 1/3 for largd. As 8 increases, one e€ach set of parameters. To determine the critical temperature
expects this number to increase and to be equal to g as T, we measured the ratio between two moments of the pa-
—o (i.e., as one reaches the strongly separated regime rametermy,

In Fig. 1, we show the results of our simulations fof

defined as (mg)
Up=1- ——. (13
(number of nn matching pairs 1 10 3(m{)
mN: . -3
(system sizp 3 (In fact, since one does not have to distinguish between posi-
1 N 1 tive and negative values of the parameter the ratio
== [AA.,+BB1+CCi.1]— =, (m?)/{m)? could as well be used to determine the critical
N =1 3 temperature.
(Y At the critical temperaturd@,, Uy has a universal value

. ; . ;
with the occupation variabl¥;=A; ,B;,C; defined as in Eq. U Thus, on rﬂe‘?‘su““% for various sysftem SIzes as a
(5). Note that because of the periodic boundary conditionsfunCtIon of T U IS the common mtersec.uon_ pomt O.f the
site N1 is identified with site 1. We see that A& in- curves and identifie$, . Our results shown in Fig. 3 indicate
creasesmy seems to be closer and closer to zero/s Be=1/Tc=10.95.

<11, whereas it seems to have a well-defined limithich 0.05

depends orB for g>11, : S oot T

m= lim my. (12
N—oo 0.04-

1
=<t

Note thatm only contains nearest neighbor correlations as

opposed to, e.g., the measure of order used in Ref] =003

which contains long-range terms. Also one could consider ©

the lowest Fourier mode of the density profjsee Sec. IV. a II:]IZ?(;O
For T<T., we expect & m<2/3, with m approaching 0.0k v N=210|

2/3 in the limit T—0. This behavior can be seen in Fig. 1.
For 1/T~11, a crossover from an ordered to a disordered
state appears, which becomes sharper with the increasing , ! , ! , ! , ! ,
system size. In Fig. 2, we plot the specific heat defined as Yo 10.92 10.94 T 10.96 10.98 11
Cn=JdEN/JT. One sees strong finite size effects@at 1/T

~11. Moreover, the curves suggest that a discontinuity FIG. 3. Critical temperatur@, as an intersection poin* of

emerges in the infinite system limit which would be consis-the fourth-order cumulant of the order paramdtgy (the straight
tent with a second-order phase transition. lines are linear fits to the data
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IV. LARGE DEVIATION FUNCTIONAL FOR EQUAL
DENSITIES AND THE EXACT TRANSITION
TEMPERATURE
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pa(X)=Constx eXp< —Bfol[pB(x+ Z)+pc(x—2)]zdz

In this section, we consider only the case of equal num-

bers of each species

N

NA:NB:chgi (14

where there exists an energy function given by Efsand

(9),

1

N-1
N2 i=1

N-1
kzl K(BiCi kT CiAi 1kt ABi 1),
(15

En({Xi}) =

with the occupation variablesX;}={A;,B;,C;} defined as

in Eq. (5). The steady state probabilities of the system are

given by Eq.(8).

We pass to the continuum limit whegg\(x),pg(x), and
pc(X) are the density profiles oA,B, and C particles, re-
spectively, at positiox=i/N. Then, the free energy func-
tional [24,25 (or large deviation functional
Flpa(X),pe(X),pc(X)] which gives the probability of any
density profile through

PLpa(X),pp(X),pc(X)]=exp{— NHPA(X),PB(X),PC(XH%)

can be written in terms of the density profiles as

1
FLoa(30.p50X),0c001=K+ | aXLpa00IN pa¥
+ pe(X)IN pg(X)+ pc(X)IN pe(X)]
1 1
+Bfo dxfo dZ pg(X)pc(x+2)

+ pc(X) pa(X+2)+ pa(X) pp(X

17

+2)]z,

wherepa ,pg, andpc are periodic functions of period 1 and
K is a normalization constant such that the minimum#of

a8
which implies that
d
O a0 pe0). (19

Similar equations hold forpg(x) and pc(x), and using
pc(X)=1—pa(x) —pg(X) one obtains the coupled equations

d

pdA)((X) == Bpa(X)(pa(X)+2pp(X)—1), (20)
d

pc?f(X) == Bre(N)[1=2pa(X)=pe()].  (2D)

Clearly, one solution of Eq(20) and (21) is pa(X)
=pg(x)=1/3, which corresponds to the disordered phase,
but this extremum is the minimum only in the disordered
phase. To test when an ordered solution emerges, we define
the Fourier series of arbitrary profiles as

pa(X)=1/3+ >, [a,expi27nx)+a_exp —i27nx)],
n=1
(22)
pa(X)=1/3+ >, [byexp(i2mnx)+b_exp—i27nx)],
n=1
(23)
pc(X)=1/3+ >, [cpexpli2amnx)+c_ exp —i2mnx)].
n=1
(24)
We insert these into Eq$20) and (21) and, anticipating a
continuous phase transition, expand to first ordea,jnb,, .
We look for values of3 for which a solution for nonzera,,

b,, ¢, is present and, therefore, the uniform solution could
be unstable. One finds that the uniform solution becomes

over all profiles vanishes. The second term on the right handnstable to theth mode forg2/3=(2n)? so that the first
side of Eq.(17) represents the entropy of the given profiles,instability occurs a3, given by

while the term proportional t@ is the continuum form of
energy(15).

It is easy to derive an expression for the optimal profile

for pa(x) by finding the extremum of Eq17) with respect
to pa(x) subject to the constraint that

f pa(X)dx=1/3.

One obtains

B.=2m\/3=10.8827% ... . (25)

Near 8., Egs.(20) and(21) can be solved perturbatively in

B_:Bc

B. (26)

€=

One finds to leading order
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2
PA(X)=pp| X+ 3 :pC(X+§
1 12
:§+ 5 2 cog2m(X—Xo)]

€
+g)2co$4w(x—x0)]+0(63’z), (27)

wherex, can be arbitraryas an optimal profile remains op-

timal when it is translated Also, choosmgxo 0, one can
show thata,=a_, andas,=0 for |m|= . to all or-
ders ine and that to leading order ig,
€ 1/2 € € 2
al 6 ] a-2 6 ) a4 6 3
5/2
~—|= . 2
as 6) , (28

The parametem defined as in Eqg12) and(11) becomes in
the continuum limit

1
= JO [pa+pE+pldx—3, (29
and from Eq.(27) one obtains
B_,Bc
m~ . 30
B. (30)

Thus, the parameten as defined in Eq912) and(11) van-
ishes linearly at the transition. An alternative, and probabl

amplitudea,; of the fundamental modg26] and this would
lead to an exponent 1/2.
We now turn to the calculation of the energy. For arbitrary

y_
more standard, choice for the order parameter could be the N

PHYSICAL REVIEW E 67, 066115 (2003

V. NONEQUAL DENSITIES AND MEAN-FIELD THEORY

We now turn to the case of nonequal densities of particles.
A direct consequence of the stochastic dynamical r(#ess
that

diA I>_Q<A| 1B+ A(CiAi 1) +(BiAi 1 1) +(A_1Cj)

—0(ABi 1) —a(Ci1A) —(Bi_1A) —(ACi, 1)
(33

and similar equations hold fa(B;)/dt and d(C;)/dt. We

do not know how to solve these exact equations, in particu-
lar, because they require the knowledge of two point func-
tions. One can, however, write down mean-field equations
[4] by making an approximation which neglects correlations
(i.e., where one replaces correlation functions such as

(Ai—1B;) by (Ai_1)(B})),

<dt|> _q<A| 1><B|>+Q<C ><A|+1>+<B'><A'+1>

+(A - (C) —a(ANBi+ 1) —Ad(Ci—1)(A)
—(Bi—){A) —(A)Cis1).

Assuming that the profiles vary slowly with we write
pa(X)=(A;) and

(34

Ipa(X) N

1 (92[) X
A( )
X

< i+ 1> pa(X) = ONZ  ax2

(39

then keeping leading-order terms inNl/and defining =
%t in Eq. (36) yields

2

density profiles, the energetic contribution to the free energy

(15 may be written in terms of the Fourier coeffcients as

1 ab_,+b,c_,+cpa_,
E= g_n;!:o 2in (31)
For profiles pg(X) = pa(X—1/3), pc(X)=pa(x—2/3), this
energy becomes
2 S|n(277n/3) (32)

Thus, using Eq(28), nearB. we haveE=1/6—3¢/23, and
the heat capacity- B29E/J has a discontinuity of 3/2 at
B¢, consistent with the data of Fig. 2.

aPA 3PA
7 P [pA(pB pc) ]+
Ix?
5’PB 92PB
ﬂ [PB(PC pa)l+— (36)
Ix?
Ipe pe

=B Lpclpa=pe) ]+ Py

One can linearize these equations around constant density
profiles

pPa(X) =T+ Apa(X), pe(X)=rg+Apg(X),

pc(X)=rctApc(X), (37

whereApa(X),Apg(X), andApc(x) represent small depar-

This equal density case is similar to some special caseigires from constant profiles at densitigg=NA/N,rg

found in a recent study of the dynamical winding of random=

Ng/N, andrc=N¢c/N (rp,rg, andrc are the global den-

walks [27] for which the fact that the dynamics satisfies de-sities of the three species and, of course, they satigfy
tailed balance allows one to write equations for the densitytrg+rc=1). Then one finds that these small departures are

profiles of type(20) and to locate the exact transition point. damped wherﬁ<ﬂ

, given by
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20 in the Appendix show that, in the unequal density case, the

fcnf: CEECI large deviation functionall6) and(17) becomes
(2rarg+2r AT+ 2rgrc—ra—rag—r2)12

FLpa(X),pa(X),pc(X)]
2

C[1-2(r24r2+12)1v2

(39 1
=Ko+ [ @ pa0In paX)+ P01 ()

We see that in the equal density casgrg=rc=1/3), the . L

mean-field valug of3. coincides w_|th the exact valu@5). _ +PC(X)|nPc(X)]+ﬂf dxf dz 4 pp(X) pe(x+2)
Moreover, one finds that the solutions of the exact equations 0 0

for the optimal profile(19) are steady state solutions of the
mean-field equation&6) (as they make the left-hand side of
these equations vanisiSo, at least for the equal time prop-
erties, in this equal density casg, and the profiles pre- 1 1
dicted by the mean-field theory are exact. Xj dxf dz Z1-2)[r (1 3r p) pe(X) pe(X+2)

Near 3., one can perturbatively find stationary nonmov- 0 0
ing profiles. The first Fourier mode of these profiles is given

by

3
+pc(X)pa(X+2)+pa(X)pp(X+2)]— Zﬁz

+rg(1-3rg)pc(X)pa(x+2)

_ 3
Apa(x)= (&) T a€2™*%0) 4 ¢.c], (39 +rc(1-3re)pa(X)pe(x+2)]+0(B%). (43

) ——— We see that for the unequal density case, the large deviation

ro—ra—Tg—iV1—2(rA+rg+rg) functional is modified and terms of ord@’ appear which

2\/r_A were not present in Eq17). This 82 term is the first of a
whole series inB. Without knowing these higher-order

, terms, it is neither possible to predict the exact valuggof

x 2 m(x=x0) 4 ¢ c.l, (400 nor how Egs(19) and(20) for the most likely profiles would

be modified. One cannot exclude the possibility that the most

. likely profile in the ordered phase corresponds to moving
rg—fa—TctiVI=2(ra+rg+rg) domains.

Apc(X)Zt//(E){ NN
A

APB(X):‘ﬂ(f){

VI. CONCLUSION

xe? %)y ccl, (41) In this work, we have investigated a locally driven system
of three species on a ring which exhibits anomalous coars-
ening into a strongly phase separated steady state. In the case
of equal numbers of the particles of each species, the steady
state obeys detailed balance with respect to a long-range su-
€2 (42) perextensive energy function, despite the strictly nearest
\/2(rf\+ r§+r%)—4(ri+rg+r%) neighbor dynamics. In the weak asymmetry regime where
g—1 as in Eq.(1), one recovers an extensive energy. In this
Analyzing the whole phase diagram predicted by theregime, we found a second-order phase transition.
mean-field equation&36) is not an easy task. Apart from the  For the case of equal particle densities, we have derived
constant profile solutions, which become unstable for the large deviatiorfor free energy functional (16) and (17)
> B, other(static or moving solutions might exist in some  for the profiles. As in other examples of nonequilibrium sys-
regions of the phase diagram and a full description of thaems studied recentlj24,25, this functional is nonlocal al-
phase diagram would require the knowledge of all the solutowing for phase transitions in one dimension. By minimiz-
tions of the mean-field equations and of their stabilities.  ing this free energy functional, we have obtained E4S)
Equation(38) implies that forri+r3+r2>1/2 there is satisfied by the optimal density profiles and analyzed the
no second-order phase transition. However, looking at Egphase transition in the equal density case, in particular, we
(42) it is clear that the second-order transition from the flatfound :8c=277\/§-
profile solution to solutiong39)—(42) should already be- For the general case of arbitrary particle densities, we
come first order whenz+r3+r2<2(r3+ri+rd). Thisis used a mean-field theory. In the case of equal particle densi-
similar to what occurs in a mean-field study of another latticeties, it turns out that the mean-field solution yields the same
gas[28]. profiles as the exact free-energy optimization just discussed.
At present, we cannot tell whether the predictions of theAn open question remains as to the extent to which the
mean-field theory36), such as Eq(38), remain exact in the mean-field theory is valid when the densities are unequal.
case of unequal global densities. To try to shed some light on The mechanism for the phase separation that we have
this question, we have calculated the large deviation funcstudied can be understood through the stability of the Fourier
tional to orders? in a small expansion. The details given modes of the particle densities. In the high temperature

wheree is defined as in Eq26) and

1-2(ra+rg+rd)

ple)=
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phase, the system is disordered and the constant density pro- 3 N-1
files are stableT; denotes the temperature at which the low- R,(C')=R,(C)+ INAN=T) NA(N—3N,) 2 Ci q(N
est Fourier mode becomes unstable. Aslecreases, more ( ) d=2
and more modes become unstable and the depth of the N-1
guench from the disordered high temperature phase to the —2d+1)—Ng(N—3Np) 2 Ciigq(N—2d+1)
low temperature phase determines the number of unstable d=2
modes which can grow from the constant profile solution. N-1
However, in the steady state one expects only three pure +N~(N=3N A (N=2d+1)=N(N
domains. How the nonlinear evolution of the excited modes ol o) Z i+l )~ Ne(
combined with the effect of the noisy dynamics determine N-1
the anomalous coarsenif@4] towards the three pure do-
mains is another interesting open question. _SNC)EZ Bira(N—2d+1)). (AB)
APPENDIX: EXPANDING THE STEADY STATE IN Using the fact that
POWERS OF THE BIAS
In this appendix, we justify expressiqa3) of the large Ci+a=1-Bita—Aitas
deviation functional. Let us consider a finite systemNof
lattice sites and write the asymmeiyyas this can be rewritten as
q=e %
N—1
We are going to show in this appendix that the unnormalized R,(C")= RZ(C)+QA2 Aiiq(N=2d+1)
weight P(C) of a configurationC in the steady state can be d=2
written to order¢? as N-1
- Bi.q(N—2d+1), (A7)
P(C)=ex ¢Ry(C) + $*Ry(C)], (A1) Qs g, B
where where
N N-1
1
RiO =~ Z 21 d(BiCi+q+ CiAi+atAB ) ~ 3 Ng(N—3Ng)+Ng(N—3Ng) ~ No(N—3N,)
(A2) A4 N*(N—1) '
(A8)
and
N N-1 3 NA(N—=3N4) +Nc(N—3N¢) —Ng(N—3Np)
Ry(C) = 3, 2 dN-Q) NN 574 N2(N—1) !
2 4N2(N 1) & & A (A9)

—3Na)BiCi ¢+ Ng(N—=3Ng)CiA;, g+ Nc(N S , _ ,
and Q¢ is similarly defined. Thus, exchanging the particles
—3Nc)AB; 14l (A3)  at anAB interface produces in E¢A7) a difference between

_ . a term involving onlyA particles and a term involving on§
In the weak asymmetry regim@), this leads to the formula particles.

(43) in the largeN limit. _ _ Let us consider now a cluster ofi sites occupied byA
Let us try to compare two configuratiodsandC’ of the particles so tha€ has the form
form
C=XXo - Xi_1ABi 1 1 X127 - - Xn» (A4) C=XXo - XiAir1 - AirmXitmer - XN,
C'=X1 X - Xi—1BiAi 11X 127 Xn, where sites andi+m-+1 are occupied by particleB or C,
so that

which differ only by an exchange of aih and aB particle
between sitesandi + 1 (the notation in Eq(A4) means that
sitei is occupied by arA particle, sitei +1 by aB patrticle,
and all the other sites are occupied by arbitrary particles

Xi=|_, and Xi+m+l=L",

If Egs. (A2) and (A3) were true, we would have whereL’ is aB or aC particle and so i$.".
N There are two configuration§’ and C” which can be
! c i i i
R,(C')=Ry(C)—-3 (A5) reached fron€ by single moves at the two boundaries of this

cluster. A rather simple calculation using E46) shows that
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R,(C") +Ry(C")—2R,(C) = Q[ 2MmNy—2—2(m—1)N] So far Egs.(A5) and (A10) have been derived assuming
that Eqs(A2) and(A3) are true. To prove that E¢A1) does
N1 give the correct steady state weights, one needs to check

+Q|_~dg2 Lismia(N—2d+1)  stationarity, i.e.,
2

¢
1_¢>+7 (Nagt+NgctNca) +NgatNegt+ Nac

N—1
—QL,d§=‘,2 L/, q(N=2d+1).

2
(A10) =|1-¢+ %)(NBAeMNc’M Ncge3?Na/N
Then summing over all clusters yields + N €3N8 /N) 1 (N ge~ 3#Ne /N4 N e~ 39Na/N
"N _ 2 _ _
%‘4 [R2(C") —Ra(C)]=2QA[N3A—=NNa+(N—1)(Nap +NCAe73¢NB/N)+¢2§ [R,(C')—R,(C)]. (A12)

2
+Nac)]+2Qg[Ng—=NNg+(N—1)  This can be checked to orde?, using simply the fact that

for any configuration
X(Ngc+Nga) 1+ 2Qc[NE—NN¢ y g
Nag—Nga=Ngc—Neg=Nea—Nac.
F(N=1)(NeatNeg)l,  (ALD) AB TR TR TR TeR TR

where the sum is over all the configuratiafiswhich can be ACKNOWLEDGMENTS
reached from a givenC by a single exchange and  M.C. would like to thank the Gottlieb Daimler—und Karl
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