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We calculate the first four cumulants of the integrated current of the one-
dimensional symmetric simple exclusion process of N sites with open boundary
conditions. For large system size N, the generating function of the integrated
current depends on the densities ra and rb of the two reservoirs and on the
fugacity z, the parameter conjugated to the integrated current, through a single
parameter. Based on our expressions for these first four cumulants, we make a
conjecture which leads to a prediction for all the higher cumulants. In the case
ra=1 and rb=0, our conjecture gives the same universal distribution as the
one obtained by Lee, Levitov, and Yakovets for one-dimensional quantum
conductors in the metallic regime.
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1. INTRODUCTION

The study of the current through a system in contact with two reservoirs at
unequal chemical potentials or at unequal temperatures is one of the most
studied aspects of the theory of non-equilibrium systems. (1, 2)



For the last decade, there has been an increasing interest in the study
of the fluctuations of the current of quantum particles (fermions) through
a disordered wire. It is now well established that the quantum statistics of
the particles determines the distribution of the fluctuations of the current,
and that in the metallic regime, (3, 4) this distribution (5–7) is universal. More
recent works have shown that the main property of the quantum nature of
the particles which was responsible for these universal fluctuations is the
Pauli exclusion principle. (8–12)

Here we consider the symmetric simple exclusion process SSEP (13–17)

which is a stochastic model of classical particles with hard core interactions
(and without inertia) which diffuse on a finite chain with open boundary
conditions. The chain is in contact at its two ends with two reservoirs of
particles at unequal densities. (18–22) The combined effects of the stochastic
injection and removal of particles at the two boundaries and of the diffu-
sive nature of the hard core particles produce a fluctuating current. We
calculate the first four cumulants of the integrated current for a long chain.
Based on our results for these four cumulants, we give a conjecture for
all the higher cumulants and for the whole distribution of the current
fluctuations.

The fluctuations of the current in exclusion processes is also a subject
with a long history. (23–27) Most of the known results obtained so far concern
infinite geometries(23, 24, 27) or systems with periodic boundary conditions(26, 28–30)

(see ref. 31 for the variance of the integrated current of the asymmetric
simple exclusion process with open boundaries).

Our paper is organised as follows: in Section 2 we define the model
and we summarize our results. In Section 3, we show how the first two
cumulants can be calculated from the steady state properties. In Section 4,
we write a hierarchy (see also Appendix C) for the correlation functions on
which our approach is based. In Sections 5 and 6 we solve this hierarchy, in
a low density expansion, where at each order the hierarchy can be trun-
cated. Appendix A gives a derivation of the Gallavotti–Cohen relation (32, 33)

for the SSEP with open boundaries. Appendix B points out the analogy
with multi-particle ruin problems.

2. DEFINITION OF THE MODEL AND MAIN RESULTS

2.1. The Symmetric Exclusion Process with Open Boundaries

In the one-dimensional symmetric simple exclusion process, each site i
(with 1 [ i [ N) of a one-dimensional lattice of N sites is either occupied
by a single particle or empty. A configuration C at time t is therefore fully
determined by N binary variables yi(t), the occupation numbers of the
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N sites (yi(t)=1 if site i is occupied and yi(t)=0 if site i is empty). In the
bulk, each particle independently attempts to jump to its right neighboring
site, and to its left neighboring site, in each case at rate 1. It succeeds if the
target site is empty; otherwise nothing happens (this means that during
time t and time t+dt with 0 < dt ° 1, a particle at site i jumps to site i − 1
with probability (1 − yi − 1) dt, to site i+1 with probability (1 − yi+1) dt and
does not move with probability 1 − (2 − yi − 1 − yi+1) dt). At the left bound-
ary particles are injected at site 1 at rate a and removed from site 1 at rate c.
Similarly at the right boundary, particles are removed from site N at rate b

and injected at site N at rate d.
For general values of a, b, c, d, a current of particles flows through the

system and we want to study the fluctuations of this current. To do so, we
denote by Q(t) the number of particles which have moved from the left
reservoir into the system during time t (so Q(t) is the number of particles
which have jumped into the system at site 1 minus the number of particles
which have left the system from site 1). We want to calculate the distribu-
tion of the total charge Q(t) during a long time t.

For finite N the system has 2N internal configurations C (each site
can be either occupied by a particle or empty). Let pt(C) be the probability
of finding the system in configuration C at time t. As the dynamics is
a Markov process, the evolution of the probability pt(C) of finding the
system in configuration C at time t can be written as

dpt(C)
dt

=C
CŒ

[W1(C, CŒ)+W0(C, CŒ)+W−1(C, CŒ)] pt(CŒ) (2.1)

where we have decomposed the Markov matrix into three parts, depending
on whether when the system jumps from configuration CŒ to configuration C,
Q(t) increases by 1, 0, or − 1 (the matrix W0 contains all the diagonal terms
which are all negative as well as all the non-diagonal elements correspond-
ing to moves which do not take place at the left boundary, i.e., do not
change Q(t)). One way to determine the distribution of Q(t) is to calculate
its generating function OzQ(t)P.

If we define Pt(C, Q) the probability that the system is in configura-
tion C at time t and that Q(t)=Q, one has

dPt(C, Q)
dt

=C
CŒ

W1(C, CŒ) Pt(CŒ, Q − 1)+W0(C, CŒ) Pt(CŒ, Q)

+W−1(C, CŒ) Pt(CŒ, Q+1). (2.2)
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Then the generating functions Pt(C, z) defined by

Pt(C, z)= C
.

Q=−.

Pt(C, Q) zQ (2.3)

satisfy

dPt(C, z)
dt

=C
CŒ

5zW1(C, CŒ)+W0(C, CŒ)+
1
z

W−1(C, CŒ)6 Pt(CŒ, z). (2.4)

If we introduce the matrix Mz defined by

Mz(C, CŒ)=zW1(C, CŒ)+W0(C, CŒ)+
1
z

W−1(C, CŒ) (2.5)

it is clear from (2.4) that in the long time limit

OzQ(t)P=C
C

Pt(C, z) ’ emt (2.6)

where m is the largest eigenvalue of the matrix Mz. So this largest eigen-
value m fully determines the distribution of Q(t) in the long time limit. (26)

2.2. Symmetries of m

In principle, m depends on six parameters: the input rates a, b, c, d

at the two boundaries, the fugacity z and the number of sites N. There are
three symmetries in the system that leave m unchanged:

1. The left-right symmetry: if we exchange the roles of a, c and d, b,
this has the effect of exchanging the roles of the left and of the right
boundaries, and so the statistical properties of Q(t) are replaced by those
of − Q(t). Therefore m should satisfy

m(a, c, d, b, z, N)=m 1d, b, a, c,
1
z

, N2 . (2.7)

2. The particle-hole symmetry: instead of counting the number of
particles Q(t) entering at the left boundary, one can as well count the
number − Q(t) of holes entering at the left boundary. Now the holes are
injected at rate c and removed at rate a at the left boundary and they are
injected at rate b and removed at rate d at the right boundary. They also
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jump with the same exclusion rules as the particles in the bulk. Therefore,
this symmetry implies that

m(a, c, d, b, z, N)=m 1c, a, b, d,
1
z

, N2 . (2.8)

3. The Gallavotti–Cohen symmetry: the rates a, b, c, d represent the
transfer of particles between the system and reservoirs at densities ra= a

a+c

and rb= d

b+d
at the two boundaries (sites 1 and N). When ra=rb, the

system is in equilibrium and the dynamics satisfy detailed balance with
respect to a Bernoulli measure (20) at density r=ra=rb. One can always
think that the case ra ] rb represents the effect of an external field which
enhances the flux of particles from one reservoir into the system, a situa-
tion for which (as explained in the Appendix A) the Gallavotti–Cohen
relation holds. (32, 33) This implies that

m(a, c, d, b, z, N)=m 1a, c, d, b,
cd

abz
, N2 . (2.9)

2.3. Main Results

When N is large, one finds, at least pertubatively in powers of a and c

(see Sections 5 and 6) that m depends only on the densities ra and rb of the
left and right reservoirs

ra=
a

a+c
; rb=

d

b+d
(2.10)

instead of the four parameters a, b, c, and d.
The three symmetries (2.7)–(2.9) then become

m(ra, rb, z, N)=m 1rb, ra,
1
z

, N2 (2.11)

m(ra, rb, z, N)=m 11 − ra, 1 − rb,
1
z

, N2 (2.12)

m(ra, rb, z, N)=m 1ra, rb,
rb(1 − ra)
zra(1 − rb)

, N2 . (2.13)
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It is also a fact observed in the perturbation theory to arbitrary order (see
Sections 5 and 6) that, for large N, m is proportional to 1/N times a func-
tion of a single variable w defined by

w=
(z − 1)(raz − rb − ra rb(z − 1))

z
(2.14)

and the result of our expansion in powers of w of Section 6 is that

m=
1
N

R(w)+O 1 1
N2

2 (2.15)

where

R(w)=w −
w2

3
+

8w3

45
−

4w4

35
+O(w5). (2.16)

The symmetries (2.11)–(2.13) leave w given by (2.14) unchanged so that m

given by (2.14), (2.15) satisfies automatically these symmetries. From (2.16)
one can easily obtain the large N expression of the first four cumulants of
Q(t)

lim
t Q .

OQ(t)P
t

4
1
N

[ra − rb] (2.17)

lim
t Q .

OQ2(t)Pc

t
4

1
N
5ra+rb −

2(r2
a+ra rb+r2

b)
3

6 (2.18)

lim
t Q .

OQ3(t)Pc

t
4

1
N

(ra − rb) 51 − 2(ra+rb)+
16r2

a+28ra rb+16r2
b

15
6

(2.19)

lim
t Q .

OQ4(t)Pc

t
4

1
N
5ra+rb −

2(7r2
a+ra rb+7r2

b)
3

+
32r3

a+8r2
arb+8ra r2

b+32r3
b

5

−
96r4

a+64r3
arb − 40r2

ar2
b+64ra r3

b+96r4
b

35
6 . (2.20)

One can notice that the nth cumulant (at least for n [ 4) is a polynomial of
degree n in ra, rb. We will comment on this at the end of Section 5.
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2.4. Two Particular Cases

Let us examine these expressions in two particular cases. First when

ra=1 and rb=0 (2.21)

one sees that (2.17)–(2.20) give in the long time limit

OQ(t)P
t

Q

1
N

(2.22)

OQ(t)2Pc

t
Q

1
3N

(2.23)

OQ(t)3Pc

t
Q

1
15N

(2.24)

OQ(t)4Pc

t
Q

− 1
105N

. (2.25)

These numbers coincide with those found for quantum conductors with
many channels in the metallic regime (5) and for quasi-classical conductors
analysed by a Boltzmann–Langevin approach. (10)

Another particular case of interest is when the two reservoirs are at the
same density r

ra=rb=r. (2.26)

All the odd cumulants vanish and (2.18), (2.20) become

lim
t Q .

OQ2(t)Pc

t
4

1
N

2r(1 − r) (2.27)

lim
t Q .

OQ4(t)Pc

t
4

1
N

2r(1 − r)(1 − 2r)2. (2.28)

2.5. Conjecture

We see in (2.28) that the fourth cumulant vanishes when ra=rb

=1/2. We conjecture that in this particular case, ra=rb=1/2, all the
higher cumulants vanish (i.e., the distribution is Gaussian) so that m is
given in this case by

m=
1
N

(log z)2

4
+O 1 1

N2
2 .
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This conjecture (see (2.14) and (2.15)) fully determines the function R(w)

R(w)=[log(`1+w+`w)]2 (2.29)

and therefore m, using (2.15), (2.29) for arbitrary ra, rb, and z.
Expression (2.29) needs to be modified when w becomes negative.

We will also conjecture that for w < 0, (2.29) is replaced by its analytic
continuation

R(w)=−[sin−1(` − w)]2. (2.30)

Looking again at the first case we analyzed (2.21), we get that not only
the first four cumulants (2.22)–(2.25) are the same as those of the distribu-
tion first obtained by Lee et al., (5) but all the higher cumulants are the same

OQ(t)5Pc

t
Q

− 1
105N

OQ(t)6Pc

t
Q

1
231N

OQ(t)7Pc

t
Q

27
5005N

OQ(t)8Pc

t
Q

− 3
715N

.

In the equilibrium case (ra=rb=r) too, this conjecture determines
all the cumulants higher than (2.27), (2.28)

OQ(t)6Pc

t
Q 2r(1 − r)(2r − 1)2 (1 − 16r+16r2)

OQ(t)8Pc

t
Q 2r(1 − r)(2r − 1)2 (1 − 80r+656r2 − 1152r3+576r4).

Our conjecture for the distribution of Q(t) for arbitrary ra and rb

coincides with the distribution found in a multi-channel quantum picture (7)

(with a small discrepancy with the distribution proposed in ref. 6).
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2.6. The Large Deviation Function

The knowledge of the large N behaviour of m gives some information
on the large deviation function FN(q). This large deviation function FN(q)
is defined by

Probability 1Q(t)
t

4 q2 ’ exp[tFN(q)] (2.31)

or for a more mathematical definition

lim
t Q .

1
t

log[Probability(tq [ Q(t) < tq+1)]=FN(q). (2.32)

If we knew m(a, b, d, c, z, N), one would determine FN(q) in a parametric
form by varying z

q=z
“m

“z

FN(q)=m − q log z.

As here we know only m only for large N (see (2.15)), we cannot get
the full large deviation function FN(q) for arbitrary N but we can say that
in the large N limit,

lim
N Q .

NFN
1 q

N
2=G(q) (2.33)

where the function G(q) can be constructed from R(w) in a parametric
form by varying z

q=z 1dw

dz
21dR(w)

dw
2 (2.34)

G(q)=R(w) − q log z. (2.35)

This means that for large N we know FN(q) only for deviations q of order
1/N. Figure 1 shows G(q) versus q for two choices of ra and rb (the case
ra=1 and rb=0 and the case ra=rb=0.25).

3. THE AVERAGE CURRENT AND ITS VARIANCE

In this section we show that the expected value and the variance of the
integrated current Q(t) can be calculated easily by using the conservation
rules.
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Fig. 1. The rescaled large deviation functions G(q) versus q in the cases ra=rb=1/4 ( left
thick curve) and ra=1 and rb=0 (right thick curve). The thin lines represent for comparison
the Gaussians with the same two moments.

Let us define Yi(t) the integrated current between sites i and i+1
during the time interval 0, t (so Yi(t) is the total number of particles which
have jumped from i to i+1 minus the number of particles which have
jumped from i+1 to i during time t). Similarly let us define Y0(t) the
integrated current from the left reservoir to site 1 and YN(t) the integrated
current from site N to the right reservoir. Note that Y0(t) and Q(t) have
exactly the same definition and therefore

Q(t)=Y0(t).

The conservation of the number of particles implies that

Yi(t)=Yi − 1(t)+yi(0) − yi(t). (3.1)

The difference between Yi(t) and Yj(t) remains bounded ((3.1) implies that
|Yi(t) − Yi − 1(t)| [ 1 and |Yi(t) − Yj(t)| [ 1 |j − i|). Therefore in the long time
limit the cumulants of Yi(t) do not depend on i.

lim
t Q .

logOzQ(t)P

t
=lim

t Q .

logOzYi(t)P

t
=lim

t Q .

logOzYj(t)P

t
. (3.2)

The very definition of the dynamics in Section 2 means that during
each time interval dt ° 1,

Y0(t+dt)=Y0(t) with probability 1 − a(1 − y1) dt − cy1 dt

Y0(t)+1 with probability a(1 − y1) dt

Y0(t) − 1 with probability cy1 dt.
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From this evolution one can deduce the following time evolution for the
moments of Y0(t):

dOY0(t)P
dt

=a − (a+c)Oy1P (3.3)

dOY0(t)2P

dt
=2aOY0(t)P− 2(a+c)OY0(t) y1P+a+(c − a)Oy1P (3.4)

and more generally

dOY0(t)kP

dt
=aO[(Y0(t)+1)k − Y0(t)k](1 − y1)P+cO[(Y0(t) − 1)k − Y0(t)k] y1P.

From (3.3), (3.4) we obtain

d
dt

OY0(t)2P−OY0(t)P2

=−2(a+c)[OY0(t) y1P−OY0(t)POy1P]+a+(c − a)Oy1P. (3.5)

Similarly starting from the dynamics of the integrated current Yi(t)
through the bond i, i+1 or of the integrated current YN(t) between site N
and the right reservoir one can get

dOYi(t)P
dt

=OyiP−Oyi+1P (3.6)

d
dt

OYi(t)2P−OYi(t)P2=2[OYi(t)(yi − yi+1)P−OYi(t)POyi − yi+1P]

+Oyi+yi+1 − 2yiyi+1P (3.7)

and

dOYN(t)P
dt

=(b+d)OyNP− d (3.8)

d
dt

OYN(t)2P−OYN(t)P2=2(b+d)[OYN(t) yNP−OYN(t)POyNP]

+d+(b − d)OyNP. (3.9)
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3.1. The Current

If we define the parameters a, b, ra, rb as in refs. 19 and 20, and (2.10)

a=
1

a+c
; b=

1
b+d

ra=
a

a+c
; rb=

d

b+d

(3.10)

one obtains by combining (3.3), (3.6), (3.8) that

a
dOY0P

dt
+b

dOYNP

dt
+ C

N − 1

i=1

dOYiP

dt
=ra − rb.

We know (3.1), (3.2) that in the steady state dOYiP/dt does not depend
on i. Therefore, one obtains that way the steady state current

dOQP

dt
=

dOYiP

dt
=

ra − rb

N+a+b − 1
(3.11)

which gives (2.17) for large N.

3.2. The Variance

Similarly adding (3.5), (3.7), (3.9) and using the fact that in the steady
state dOY2

i P−OYiP
2

dt does not depend on i one gets

(a+b+N − 1)
dOY2P−OYP2

dt

=2 C
N

i=1
OYiyiP−OYiPOyiP−OYi − 1yiP+OYi − 1POyiP

+ra+rb − 2raOy1P− 2rbOyNP+2 C
N

i=1
OyiP− 2 C

N − 1

i=1
Oyiyi+1P (3.12)

and using (3.1) one obtains (using that Oyi(0) yi(t)PQ Oyi(0)POyiP in the
long time limit)

(a+b+N − 1)
dOY2P−OYP2

dt

=ra+rb − 2raOy1P− 2rbOyNP+2 C
N

i=1
OyiP

2 − 2 C
n − 1

i=1
Oyiyi+1P. (3.13)
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All the steady state correlations can be calculated exactly, (20, 34) in particular

OyiP=rb+
N − i+b

N+a+b − 1
(ra − rb)=

ra(N+b − i)+rb(i − 1+a)
N+a+b − 1

and for i < j

OyiyjP−OyiPOyjP=−(rb − ra)2 (a+i − 1)(b+N − j)
(N+a+b − 1)2 (N+a+b − 2)

so that (3.13) becomes

d[OQ2P−OQP2]
dt

=
d[OY2

i P−OYiP
2]

dt

=
1

N1
(ra+rb − 2ra rb)

+
a(a − 1)(2a − 1)+b(b − 1)(2b − 1) − N1(N1 − 1)(2N1 − 1)

3N3
1(N1 − 1)

(ra − rb)2

(3.14)

where N1=N+a+b − 1. In the large N limit, one obtains (2.18).

4. A HIERARCHY OF EQUATIONS FOR THE CORRELATION

FUNCTIONS

In the long time limit, the vector Pt(C, z) in (2.4) becomes an eigen-
vector of the matrix Mz defined in (2.5)

Pt(C, z) ’ emtkm(C)

where km(C) satisfies

mkm(C)=C
CŒ

Mz(C, CŒ) km(CŒ). (4.1)

From (4.1), one can build a hierarchy of equations which, as we shall
see it in the next Section 5, can be truncated either when one expands in
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powers of z − 1 to obtain the first cumulants or when the densities ra and
rb in the reservoirs are small.

Let us define the following correlation functions:

for 1 [ i [ N

Ti=C
C

km(C) yi(C) (4.2)

for 1 [ i < j [ N

Ui, j=C
C

km(C) yi(C) yj(C) (4.3)

for 1 [ i < j < k [ N

Vi, j, k=C
C

km(C) yi(C) yj(C) yk(C) (4.4)

and so on, with the convention that

C
C

km(C)=1. (4.5)

Inserting these definitions into (4.1), one obtains a hierarchy of equa-
tions for the one-point functions Ti, the two point functions Ui, j, and so on.
By summing (4.1) over all C, one obtains

m=a(z − 1)+1c
1
z

− az+a − c2 T1. (4.6)

By multiplying (4.1) by yi(C) and summing over C, one gets

mTi=a(z − 1) Ti+1c
1
z

− az+a − c2 U1, i+Ti − 1+Ti+1 − 2Ti. (4.7)

At the two boundaries (4.7) is modified

mT1=az − (az+c) T1+T2 − T1 (4.8)

mTN=a(z − 1) TN+1c
1
z

− az+a − c2 U1, N+TN − 1 − (1+b+d) TN+d.
(4.9)
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In fact (4.8) and (4.9) (which are the boundary versions of (4.7)) reduce to
(4.7) provided that we require that T0, TN+1, and U1, 1 (for non-physical
values of the parameters) satisfy

a(z − 1) T1+1c
1
z

− az+a − c2 U1, 1+T0 − T1=az − (az+c) T1 (4.10)

d − (b+d) TN=TN+1 − TN. (4.11)

Similarly by multiplying by yi(C) yj(C) one gets

mUi, j=a(z − 1) Ui, j+1c
1
z

− az+a − c2 V1, i, j

+Ui − 1, j+Ui+1, j+Ui, j − 1+Ui, j+1 − 4Ui, j (4.12)

the boundary conditions and the case j=i+1 being automatically satisfied
provided that the extensions of U0, i, Ui, i, Ui, N+1, V1, 1, i to non-physical
values satisfy

a(z − 1) U1, i+1c
1
z

− az+a − c2 V1, 1, i+U0, i − U1, i=azTi − (az+c) U1, i

(4.13)

dTi − (b+d) Ui, N=Ui, N+1 − Ui, N (4.14)

Ui, i+Ui+1, i+1=2Ui, i+1. (4.15)

(Note that definitions such as (4.3) do not tell us what Ui, i is as Ui, j is only
defined for j > i. In general the values one has to choose for non-physical
values of the parameters in order to satisfy the boundary conditions
(4.13)–(4.15) are different from what one could obtain by simply putting
j=i in the definition: in particular Ui, i ] Ti. In this whole paper the Ui, j we
calculate are always polynomials in i and j and the unphysical values such
as Ui, i are simply obtained by taking j=i in the polynomial Ui, j .)

All the relations for the higher correlation functions can be generated
along the same steps. One way of writing all these relations is to introduce
the generating function

F(a1,..., aL; z)=7zQ(t) exp 5C
i

aiyi(t)68

(where Q(t), as above, is the total number of particles transferred from the
left reservoir to site 1 during time t). For large t one expects that

F(a1,..., aL) ’ em tf(a1,..., aL)
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where f satisfies

mf=5 C
L − 1

i=1
(eai+1 − ai − 1) 1 “

“ai
−

“
2

“ai “ai+1

2

+(eai − ai+1 − 1) 1 “

“ai+1
−

“
2

“ai “ai+1

2

+a(zea1 − 1) 11 −
“

“a1

2+c 1e−a1

z
− 12 “

“a1

+d(eaL − 1) 11 −
“

“aL

2+b(e−aL − 1)
“

“aL

6 f. (4.16)

Expanding (4.16) in powers of the ai allows one to recover all the above
relations between the correlation functions (4.6), (4.7),..., and to generate
the equations satisfied by the higher correlations. The first levels of the
hierarchy are summarized in Appendix C.

5. THE LOW DENSITY EXPANSION

When the densities ra and rb of the reservoirs are small the n-point
function is of order n to leading order in ra and rb. To calculate m to order
n in ra and rb, one can truncate the hierarchy by neglecting all the m-point
correlation functions for m > n.

A priori the truncated hierarchy remains a problem hard to solve.
However we noticed that the solutions Ti, Ui, j,... of the truncated hierarchy
are always polynomials in the coordinates i, j,... (see the Appendix B on the
analogy with a multi-particle ruin problem). For example if one tries to
expand to order 3 in ra and rb (or in a and c) one finds that Ti is a poly-
nomial of degree 5 in i, Ui, j of degree 4 in i, j and Vi, j, k a polynomial of
degree 3 in i, j, k (in fact Vi, j, k is linear in each of the three coordinates). So
to solve the truncated hierarchy, we introduced arbitrary parameters (the
coefficients of all the polynomials in i, i, j, i, j, k,...) and the equations of
the hierarchy give us a finite set of linear equations to solve for these
parameters.

We used Mathematica to solve these linear equations. The expressions
become quickly complicated for general a, b, ra, rb. The general expression
(C.14) of m at order 3 in ra and rb is given in the Appendix C. We give here
the result obtained that way for m to order 3 in ra, rb when a=b=1
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m=
(z − 1)(raz − rb)

z(N+1)

−
(z − 1)2 (r2

b+4ra rbz+r2
az2+2N(r2

b+ra rbz+r2
az2))

6z2(N+1)2

+
(z − 1)3 (2N+1)(raz − rb)(3r2

b+9ra rbz+3r2
az2+N(4r2

b+7ra rbz+4r2
az2))

45z3(N+1)3 .

(5.1)

For large N the expression (C.14) of m gets much simpler: to leading
order in N, the results do not depend anymore on the two parameters a
and b and one gets

m=
1
N
5(raz − rb)(z − 1)

z
−

(r2
az2+ra rbz+r2

b)(z − 1)2

3z2

+
2(raz − rb)(4r2

az2+7ra rbz+r2
b)(z − 1)3

45z3 +O(r4)6 . (5.2)

So in this large N regime, m is proportional to 1/N and is a function of
three parameters ra, rb, and z. In fact, if one uses the parameter w=
(z − 1)(raz − rb − ra rb(z − 1))/z defined in (2.14), one can easily check that
(5.2) can be rewritten as

m=
1
N
1w −

2
3

w2+
8
45

w3+O(w4)2 . (5.3)

Up to the factor 1/N, m depends on the single parameter w, defined by
(2.14), (at least to order 3 in w). The expansion of m in powers of ra and rb to
third order determines exactly the first three cumulants and more generally
the expansion of m to order n would give the exact expression of the first n
cumulants. This can be understood by noticing the similarity between an
expansion of m in powers of z − 1 and an expansion of m in powers of ra

and rb. In both cases, the hierarchy can be truncated and one can neglect all
the correlations higher than the n-point function if one wishes to obtain m at
order n. This is the reason why the exact expression of the nth cumulant is a
polynomial of degree n in ra and rb as noticed at the end of Section 2.3.

6. CONTINUOUS LIMIT

The expressions of the Ti’s, Ui, j’s, Vi, j, k’s we have obtained by
Mathematica to solve the hierarchy in powers of ra and rb are rather
complicated. However they take a somewhat simpler form in the large N
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limit. If one considers the connected correlation functions u i, j, vi, j, k,...
defined by (C.15), (C.16), their expressions become functions of the con-
tinuous variables:

x1=
i

N
, x2=

j
N

, x3=
k
N

. (6.1)

To leading order in 1/N and to third order in powers of ra and rb, one
obtains that way:

Ti 4 raz[rx1+(1 − x1)(1+s(−1+(1 − r)2 x1/3 − (1 − r)2 x2
1/6)

+s2(1+(−23+24r − 9r2+8r3) x1/45

+(29 − 42r+27r2 − 14r3) x2
1/90

+(r − 1)3 x3
1/15 − (r − 1)3 x4

1/60))] (6.2)

u i, j 4
1
N

r2
az2[x1(1 − x2)( − (1 − r)2+s(2(4 − 6r+3r2 − r3)/3

+(r − 1)3 x1 − (r − 1)3 x2
1/3+2(r − 1)3 x2/3 − (r − 1)3 x2

2/3))] (6.3)

vi, j, k 4
1

N2 r3
az3[ − 2x1(1 − 2x2)(1 − x3)] (6.4)

where the parameters r and s are defined by

r=
rb

raz
(6.5)

s=ra(z − 1). (6.6)

By examining the hierarchy (see Appendix C) for the connected func-
tions and by assuming that the structure obtained up to third order persists
to higher orders one expects that to leading order in N

Ti 4 razf(x1) (6.7)

u i, j 4
r2

az2

N
g(x1, x2) (6.8)

vi, j, k 4
r3

az3

N2 h(x1, x2, x3). (6.9)

With this scaling and as m is of order 1/N, one can neglect the right hand
side of (C.23)–(C.25). One can even show that g(0, x2)=h(0, x2, x3)=
i(0, x2, x3, x4)=0 so that (see (C.22))
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T1 4
az

az+c
(6.10)

Eu1, i 4 11 −
1
z
2 (1+ra(z − 1))(u1, i − u0, i) (6.11)

Ez1, i, j 4 11 −
1
z
2 (1+ra(z − 1))(z1, i, j − z0, i, j) (6.12)

and with these simplifications the hierarchy (C.18)–(C.31) in the large N
regime becomes:

the equation for m

m=s(1+s) fŒ(0) (6.13)

the bulk equations (C.19)–(C.21)

s(1+s)
d

dx1
g(0, x2)=

d2

dx2
1

f(x2) (6.14)

s(1+s)
d

dx1
h(0, x2, x3)=1 d2

dx2
1

+
d2

dx2
2

2 g(x2, x3) (6.15)

s(1+s)
d

dx1
i(0, x2, x3, x4)=1 d2

dx2
1

+
d2

dx2
2

+
d2

dx2
3

2 h(x2, x3, x4) (6.16)

the left and right boundary equations

f(0)=
1

1+s
; f(1)=r (6.17)

g(0, x)=g(x, 1)=0 (6.18)

h(0, x, y)=h(x, y, 1)=0 (6.19)

the equations for adjacent particles

1 d
dx1

−
d

dx2

2 g(x, x)=−1df(x)
dx1

22

(6.20)

1 d
dx1

−
d

dx2

2 h(x, x, y)=−2
df(x)

dx1

dg(x, y)
dx1

(6.21)

1 d
dx2

−
d

dx3

2 h(x, y, y)=−2
df(y)

dx1

dg(x, y)
dx2

(6.22)
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1 d
dx1

−
d

dx2

2 i(x, x, y, z)=−2
df(x)

dx1

dh(x, y, z)
dx1

− 2
dg(x, y)

dx1

dg(x, z)
dx1

(6.23)

1 d
dx2

−
d

dx3

2 i(x, y, y, z)=−2
df(y)

dx1

dh(x, y, z)
dx2

− 2
dg(x, y)

dx2

dg(y, z)
dx1

(6.24)

1 d
dx3

−
d

dx4

2 i(x, y, z, z)=−2
df(z)
dx1

dh(x, y, z)
dx3

− 2
dg(x, z)

dx2

dg(y, z)
dx2

.

(6.25)

One can then solve this hierarchy, up to an arbitrary order in s. To
find m at order n in s, one needs to know f at order n − 1, g at order n − 2
and so on. When we calculated m at order 4 in s, we obtained

f(x1)=r+1 r −
1

s+1
2 (x1 − 1) 51 − w

x1(x1 − 2)
6

+w2 x1(3x3
1 − 12x2

1+28x1 − 32)
180

− w3 x1(5x5
1 − 30x4

1+138x3
1 − 352x2

1+600x1 − 576)
5040

6

(6.26)

g(x1, x2)=1 r −
1

s+1
22

x1(x2 − 1) 51 − w
2 − 3x1+x2

1 − 2x2+x2
2

3

+w2 1x4
1

24
−

x3
1

4
+

x2
1(26 − 10x2+5x2

2)
36

−
x1(3 − 2x2+x2

2)
3

+
56 − 80x2+60x2

2 − 20x3
2+5x4

2

120
26 (6.27)

h(x1, x2, x3)=1 r −
1

s+1
23

x1(x3 − 1) r4x2 − 2

− w

55x3
2 − 15x2

2+5x2(x2
1 − 3x1+x2

3 − 2x3+4)
− 3x2

1+9x1 − 2x2
3+4x3 − 6

6

3

s
(6.28)

i(x1, x2, x3, x4)=1 r −
1

s+1
24

2x1(x4 − 1)(15x2x3 − 10x2 − 5x3+3) (6.29)
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and

m=
1
N
5w −

w2

3
+

8w3

45
−

4w4

35
+O(w5)6 (6.30)

where we give the expressions of f, g, h, i, and m (except for a simple factor
r − 1

1+s) in powers of w defined by (2.14) instead of s.
In principle all the expressions should depend on the two parameters

s and r, but we observe that they only depend on the single parameter w.
This can be understood by noticing that if f, g, h,... solve the hierarchy
(6.13)–(6.25) for a certain choice of r, s, then Af+B, A2g, A3h,... solve the
same hierarchy for rŒ, sŒ with the same value of m if rŒ and sŒ satisfy

1
1+sŒ

=A
1

1+s
+B

rŒ=Ar+B

AsŒ(1+sŒ)=s(1+s).

These three relations are compatible only when

sŒ − rŒsŒ − rŒsŒ
2=s − rs − rs2

so that when w=s − rs − rs2 remains unchanged, one can easily transform
the solution of the hierarchy leaving m unchanged.

7. CONCLUSION

In this paper we have obtained the first four cumulants (2.17)–(2.20) of
the integrated current for the symmetric simple exclusion process with open
boundaries. To our surprise, the generating function of the integrated
current (2.6), (2.15) depends on the densities of the reservoirs ra and rb and
on the fugacity z, the parameter conjugated to the integrated current,
through a single parameter w defined in (2.14). It would be interesting to
understand why this is so through a simple physical argument.

When ra=rb=1/2, the fourth cumulant vanishes and we have
conjectured that in this particular case, the distribution of the integrated
current Q(t) is Gaussian (in the range Q(t)

t ’ 1
N). Based on this conjecture, we

can predict (2.29), (2.30) the large deviation function of the current for
arbitrary choices of ra, rb. For ra=1 and rb=0, the distribution of the
integrated current we obtained is identical to the one known for one-
dimensional quantum conductors in their metallic regime. (4, 5)
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The similarity between these results is striking if we consider the drastic
differences in the corresponding formalisms. In the quantum treatment of a
diffusive conductor, the statistics of the time integrated current appears as
the result of a convolution of a large number of independent binomial laws,
one for each conduction channel. (5) In the limit of a large number of such
channels (i.e., when the transverse dimension of the conductor is much
larger than the Fermi wave length) the result of this convolution is
governed by the universal distribution of eigenvalues of the transmission
matrix for a single particle in the presence of quenched disorder. The
exclusion effects induced by the Pauli principle only appear in the selection
of the energy window in which single particle states contribute to the
current. By contrast, the classical model considered here has no transverse
degree of freedom, and the exclusion constraint plays a crucial role. To our
knowledge, a complete understanding of the connection between the two
models is still lacking. We simply conjecture that an intermediate descrip-
tion in terms of a Boltzmann equation with additional noise terms, as
developed for instance in refs. 8 and 10 for the quantum diffusive case, may
help to bridge the gap between the two classes of systems.

The first open question left at the end of the present paper is whether
one could prove or disprove our conjecture for m in Section 2.5. It would
also be interesting to see the degree of universality of the results obtained
here, i.e., how much they depend on the precise definition of the model. In
particular it would be nice to see whether a more macroscopic approach
could be used to calculate the fluctuations of the current. (21, 22) Another
open question would be to know how our results would be modified by
an asymmetry (18, 36, 37) in the bulk, in particular in the case of a weak
asymmetry. (38)

APPENDIX A. THE GALLAVOTTI–COHEN RELATION

In this appendix we rederive, following Lebowitz and Spohn, (33) the
Gallavotti–Cohen relation for a system with stochastic dynamics in contact
with several reservoirs of particles.

Let us consider an irreducible Markov process for a system with a
finite number of internal configurations C. We assume that this system is in
contact with a reservoir A (or several reservoirs A, B, C) and that during
each infinitesimal time interval dt, there is a probability Wq(CŒ, C) dt of a
jump from C to CŒ with q particles transferred from reservoir A to the
system during this jump. As the system is in general in contact with other
reservoirs, these particles might later on be transferred to other reservoirs,
so that W0(CŒ, C) allows jumps where the number of particles in the system
is not conserved.
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Imagine that the system is in equilibrium with reservoir A, that is the
jumping rates Wq(CŒ, C) satisfy the detailed balance condition

Wq(CŒ, C) Peq(C)=W−q(C, CŒ) Peq(CŒ) (A.1)

where Peq(C) is the steady state probability of the Markov process.
Clearly the detailed balance condition (A.1) implies that the average

current of particles vanishes and that the probability of seeing any given
jump is equal to the probability of its time reversal as it should for a system
at equilibrium.

Now let us modify the dynamics by introducing a field E which
enhances the injection of particles into the system so that Wq(CŒ, C) is
replaced by

eEqWq(CŒ, C). (A.2)

This field E produces a current which of course fluctuates due to the
stochastic nature of the Markov process.

Let us denote by Q(t) the total number of particles transferred from
reservoir A to the system during time t and Rt(C, Q) the probability of
Q(t), given that the system is in configuration C at time t. The evolution of
Rt(C, Q) is clearly

d
dt

Rt(C, Q)=C
q

C
CŒ

eEq[Wq(C, CŒ) Rt(CŒ, Q − q) − Wq(CŒ, C) Rt(C, Q)].

If one introduces the generating functions rt(C, l) defined by

rt(C, l)=C
Q

elQRt(C, Q)

they evolve according to

d
dt

rt(C, l)=C
q

C
CŒ

{e (E+l) qWq(C, CŒ) rt(CŒ, l) − eEqWq(CŒ, C) rt(C, l)}.

This implies that for large t,

OelQ(t)P ’ em(l, E) t

where m(l, E) is the largest eigenvalue of the matrix Ml, E

Ml, E=C
q

e (E+l) qWq(C, CŒ) − d(C, CŒ) C
q

C
Cœ

eEqWq(Cœ, C) (A.3)
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where d(C, CŒ)=1 if C=CŒ and 0 if C ] CŒ. Therefore to obtain m(l, E),
one has to find either the right eigenvector kR(C) of this matrix which
satisfies

m(l, E) kR(C)=C
q

C
CŒ

e (E+l) qWq(C, CŒ) kR(CŒ) − C
q

C
CŒ

eEqWq(CŒ, C) kR(C)
(A.4)

or its left eigenvector kL(C)

m(l, E) kL(C)=C
q

C
CŒ

e (E+l) qWq(CŒ, C) kL(CŒ) − C
q

C
CŒ

eEqWq(CŒ, C) kL(C).
(A.5)

Now if we use the detailed balance condition (A.1) for the first term in
the r.h.s. of (A.5), we get

m(l, E) kL(C)=C
q

C
CŒ

e (E+l) qW−q(C, CŒ)
Peq(CŒ)
Peq(C)

kL(CŒ)

− C
q

C
CŒ

eEqWq(CŒ, C) kL(C). (A.6)

This shows that kL(C) Peq(C) is the right eigenvector of the matrix
M−l − 2E, E defined in (A.3).

So the matrices Ml, E and M−l − 2E, E have exactly the same eigenvalues.
In particular this shows that

m(l, E)=m(−l − 2E, E) (A.7)

which is the Gallavotti–Cohen relation.
In the symmetric exclusion process, as described in Section 2.1, we

know (20) that detailed balance is satisfied whenever

a

a+c
=

d

b+d
. (A.8)

If we fix b and d and vary a and c, the detailed balance condition (A.8) is
no longer verified. However, one can always think of the variation of a and
c as the effect of an external field E trying to enhance the number of par-
ticles transferred from the left reservoir to site 1. If one writes

a=aŒeE and c=cŒe−E
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with

aŒ=
d

b
cŒ==acd

b

and

e2E=
ab

cd
,

one sees that the system satisfies detailed balance for aŒ, cŒ, b, d. Therefore
the Gallavotti–Cohen symmetry implies (2.9) for the SSEP.

APPENDIX B. THE ANALOGY WITH A MULTI-PARTICLE RUIN

PROBLEM

In this appendix, we show the similarity between the equations one has
to solve at each level of the hierarchy and the equations which one can
write in a multi-particle ruin problem.

Consider first a single particle which diffuses on a chain of N sites
with open boundary conditions. If the particle is at site i at time t, it jumps,
during an infinitesimal time interval dt, to site i+1 with probability dt (for
1 [ i [ N − 1) and to site i − 1 with probability dt (for 2 [ i [ N). More-
over, a particle at site 1 is absorbed at the left boundary with probability
a dt and a particle at site N is absorbed at the right boundary with proba-
bility b dt. In the usual ruin problem, (39) one asks the following question:
what is the probability Ti that a particle starting at site i will escape at the
left boundary. Clearly Ti satisfies for 2 [ i [ N − 1

Ti+1+Ti − 1 − 2Ti=0

and at the boundaries

a+T2 − (1+a) T1=0

TN − 1 − (1+b) TN=0.

These are precisely the equations (4.7)–(4.9) we had to solve in Section 4, if
one takes c=d=0 and z=1 (which implies that m=0 see (4.6)).

The solution of this ruin problem is of course linear in i

Ti=
N+1

b
− i

N+1
a+

1
b

− 1
. (B.1)
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Let us now generalize the ruin problem to two particles (the general-
ization to more particles is straightforward). Consider two particles ini-
tially at sites i < j which diffuse in the same way as in the one-particle ruin
problem, except that the two particles are not allowed to occupy the same
site. As time goes on, one of the two particles will escape at one of the two
boundaries, then the other particle will diffuse until it also escapes.

Now we want to calculate the probability Ui, j that both particles will
escape through the left boundary. One can write down the equations
satisfied by Ui, j

Ui − 1, j+Ui+1, j+Ui, j − 1+Ui, j+1 − 4Ui, j=0 (B.2)

Ui, i+Ui+1, i+1=2Ui, i+1 (B.3)

(3+a) U1, i=aTi+U2, i+U1, i+1+U1, i − 1 (B.4)

(3+b) Ui, N=Ui, N − 1+Ui+1, N+Ui − 1, N (B.5)

and they are identical to (4.12)–(4.15) when c=d=0 and z=1 (implying
that m=0). It is not obvious a priori that the solution of these equations is
simple. However the solution turns out to be linear in i and j

Ui, j=
(N+1

b
− 1 − i)(N+1

b
− j)

(N+1
a+

1
b

− 1)(N+1
a+

1
b

− 2)
. (B.6)

We also see in (B.1), (B.6) that the correlation between the two particles is
weak

u i, j=Ui, j − TiTj=O 1 1
N
2

when i and j are of order N. This weak correlation, (34) which are similar to
those seen in (6.8), (6.9), is however responsible for the non-Poissonian
character of the fluctuations of the integrated current.

Another quantity which has a simple expression (i.e., for which the
solution is linear in i and j) is the probability Ui, j that one particle escapes
at the right and the other particle escapes at the left, without specifying on
which side the first particle to escape leaves (starting with two particles at
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positions i and j). In this case the equations to solve are again (B.2), (B.3)
with boundary conditions (B.4), (B.5) replaced by

(3+a) U1, i=a(1 − Ti)+U2, i+U1, i+1+U1, i − 1 (B.7)

(3+b) Ui, N=bTi+Ui, N − 1+Ui+1, N+Ui − 1, N (B.8)

and the solution is

Ui, j=
N(i+j) − 2ij − 2N+2i+1

a (2N − i − j)+1
b

(i+j − 2)+ 2
ab

(N − 1+1
a+

1
b
)(N − 2+1

b
+1

a)
.

If one asks however a slightly more precise question, namely what is
the probability Ui, j that (starting with a particle at i and a particle at j), the
first particle to escape leaves at the right boundary, and then the remaining
particle escapes at the left boundary, the equations to solve are still (B.2),
(B.3) but with the boundary conditions (B.4), (B.5) replaced by

(3+a) U1, i=U2, i+U1, i+1+U1, i − 1 (B.9)

(3+b) Ui, N=bTi+Ui, N − 1+Ui+1, N+Ui − 1, N. (B.10)

These new boundary conditions make the problem much harder and one
can check that the solution is no longer linear (or even polynomial) in i
and j.

So the same problem (B.2), (B.3) with the boundary conditions (B.4),
(B.5) or (B.7), (B.8) is easy (the solution is linear in i and j) whereas it is
hard with boundary conditions (B.9), (B.10). The main reason which made
possible the calculation of the cumulants in the present paper is that each
time we had to solve equations of the type (B.2), (B.3), the boundary con-
ditions were such that the solution was polynomial in the coordinates i
and j.

APPENDIX C. THE HIERARCHY

C.1. The Hierarchy for the Correlation Functions

The hierarchy of Section 4 can be summarized as follows:

The equation for m

m=a(z − 1) −
(az+c)(z − 1)

z
T1. (C.1)

Current Fluctuations in the 1D Symmetric Exclusion Process 743



The bulk equations

mTi=a(z − 1) Ti −
(az+c)(z − 1)

z
U1, i+Ti − 1+Ti+1 − 2Ti (C.2)

mUi, j=a(z − 1) Ui, j −
(az+c)(z − 1)

z
V1, i, j

+Ui − 1, j+Ui+1, j+Ui, j − 1+Ui, j+1 − 4Ui, j (C.3)

mVi, j, k=a(z − 1) Vi, j, k −
(az+c)(z − 1)

z
W1, i, j, k+Vi − 1, j, k+Vi+1, j, k

+Vi, j − 1, k+Vi, j+1, k+Vi, j, k − 1+Vi, j, k+1 − 6Vi, j, k. (C.4)

The left boundary equations

a(z − 1) T1 −
(az+c)(z − 1)

z
U1, 1+T0 − T1=az − (az+c) T1 (C.5)

a(z − 1) U1, i −
(az+c)(z − 1)

z
V1, 1, i+U0, i − U1, i=azTi − (az+c) U1, i

(C.6)

a(z − 1) V1, i, j −
(az+c)(z − 1)

z
W1, 1, i, j+V0, i, j − V1, i, j=azUi, j − (az+c) V1, i, j.

(C.7)

The right boundary equations

d − (b+d) TN=TN+1 − TN (C.8)

dTi − (b+d) Ui, N=Ui, N+1 − Ui, N (C.9)

dUi, j − (b+d) Vi, j, N=Vi, j, N+1 − Vi, j, N. (C.10)

The equations for adjacent particles

Ui, i+Ui+1, i+1=2Ui, i+1 (C.11)

Vi, i, j+Vi+1, i+1, j=2Vi, i+1, j (C.12)

Vi, j, j+Vi, j+1, j+1=2Vi, j, j+1. (C.13)
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When one solves this hierarchy up to order 3 in ra and rb, one obtains

m=
(raz − rb)(z − 1)

zN1
+(z − 1)2 5(a − 3a2+2a3+b − 3b2+2b3)(raz − rb)2

6z2N3
1(N1 − 1)

−
(raz − rb)2

6z2N2
1(N1 − 1)

+
r2

az2+r2
b

2z2N1(N1 − 1)
−

r2
az2+ra rbz+r2

b

3z2(N1 − 1)
6

+(z − 1)3 5(a − 3a2+2a3+b − 3b2+2b3)2 (raz − rb)3

9z3N5
1(N1 − 1)(N1 − 2)

+
(−7a+30a2 − 50a3+45a4 − 18a5 − 7b+30b2 − 50b3+45b4 − 18b5)(raz − rb)3

45z3N4
1(N1 − 1)(N1 − 2)

+
[(2+15a − 45a2+30a3+15b − 45b2+30b3)(r2

az2+r2
b) − 4ra rbz](raz − rb)

45z3N3
1(N1 − 1)(N1 − 2)

−
(a − 3a2+2a3+b − 3b2+2b3)(r3

az3 − r3
b)+3(r2

az2+r2
b)(raz − rb)

9z3N2
1(N1 − 1)(N1 − 2)

+
7(r3

az3 − r3
b)

9z3N1(N1 − 1)(N1 − 2)
−

(raz − rb)(2r2
az2+3ra rbz+2r2

b)
3z3(N1 − 1)(N1 − 2)

+
2(raz − rb)(4r2

az2+7ra rbz+4r2
b) N1

45z3(N1 − 1)(N1 − 2)
6 (C.14)

where N1=N+a+b − 1, ra=a/(a+c), rb=d/(b+d), a=1/(a+c), and
b=1/(b+d).

C.2. The Hierarchy for Connected Correlation Functions

If one introduces the connected functions u i, j, vi, j, k,... defined by

Ui, j=TiTj+ui, j (C.15)

Vi, j, k=TiTjTk+ui, jTk+u i, kTj+uj, kTi+vi, j, k (C.16)

Wi, j, k, l=TiTjTkTl+ui, jTkTl+ui, kTjTl+uj, kTiTl+ui, lTjTk

+uj, lTiTk+uk, lTiTj+ui, juk, l+ui, kuj, l+ui, luj, k+vi, j, kTl

+vi, j, lTk+vi, k, lTj+vj, k, lTi+wi, j, k, l (C.17)
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the hierarchy becomes

The equation for m (obtained by combining (C.1), (C.2), and (C.5))

m 51 −
z − 1

z
T1
6=

z − 1
z

(T1 − T2). (C.18)

The bulk equations

Eu1, i=Ti − 1+Ti+1 − 2Ti (C.19)

Ev1, i, j=u i − 1, j+ui+1, j+ui, j − 1+ui, j+1 − 4u i, j (C.20)

Ew1, i, j, k=vi − 1, j, k+vi+1, j, k+vi, j − 1, k

+vi, j+1, k+vi, j, k − 1+vi, j, k+1 − 6vi, j, k (C.21)

where E is defined by

E=
(az+c)(z − 1)

z
. (C.22)

The left boundary equations

(az+c) T1 − az+T0 − T1=Eu1, 1 − mT1 (C.23)

(a+c) u1, i+u0, i − u1, i=Ev1, 1, i − 2mu1, i (C.24)

(a+c) v1, i, j+v0, i, j − v1, i, j=E[w1, 1, i, j+u1, iu1, j] − 2mv1, i, j. (C.25)

The right boundary equations

d − (b+d) TN=TN+1 − TN (C.26)

− (b+d) u i, N=u i, N+1 − u i, N (C.27)

− (b+d) vi, j, N=vi, j, N+1 − vi, j, N. (C.28)

The equations for adjacent particles

u i, i+ui+1, i+1 − 2ui, i+1=−(Ti − Ti+1)2 (C.29)

vi, i, j+vi+1, i+1, j − 2vi, i+1, j=−2(Ti − Ti+1)(ui, j − u i+1, j) (C.30)

vi, j, j+vi, j+1, j+1 − 2vi, j, j+1=−2(Tj − Tj+1)(ui, j − u i, j+1) (C.31)

wi, i, j, k+wi+1, i+1, j, k − 2wi, i+1, j, k=−2(Ti − Ti+1)(vi, j, k − vi+1, j, k)

− 2(ui, j − u i+1, j)(ui, k − u i+1, k) (C.32)

etc.
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(As already discussed right after (4.15), the (unphysical) values
T0, u i, i,... are obtained by using the explicit (polynomial) expressions of Ti,
u i, j for i=0, j=i).
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