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Fluctuations in the Weakly Asymmetric Exclusion
Process with Open Boundary Conditions
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We investigate the fluctuations around the average density profile in the weakly
asymmetric exclusion process with open boundaries in the steady state. We
show that these fluctuations are given, in the macroscopic limit, by a centered
Gaussian field and we compute explicitly its covariance function. We use two
approaches. The first method is dynamical and based on fluctuations around
the hydrodynamic limit. We prove that the density fluctuations evolve macro-
scopically according to an autonomous stochastic equation, and we search for
the stationary distribution of this evolution. The second approach, which is
based on a representation of the steady state as a sum over paths, allows one
to write the density fluctuations in the steady state as a sum over two indepen-
dent processes, one of which is the derivative of a Brownian motion, the other
one being related to a random path in a potential.

KEY WORDS: Exclusion process; stationary non-equilibrium states; fluctua-
tions.

1. INTRODUCTION

Non equilibrium systems such as systems in contact with two thermo-
stats at unequal temperatures or with two reservoirs at unequal densi-
ties are known to exhibit long range correlations in their steady state.(1)

These long range correlations have been calculated from the microscopic

1Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24 rue Lhomond, 75005
Paris, France; e-mails: derrida@lps.ens.fr; enaud@lps.ens.fr

2IMPA, Estrada Dona Castorina 110, CEP 22460 Rio de Janeiro, Brasil and CNRS UMR
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dynamics only in very few cases: mainly in the case of the symmetric
exclusion process(2) and of the asymmetric exclusion process.(3)

In the present paper we focus on the weakly asymmetric exclusion
process (WASEP) (for which the bias scales as the inverse of the sys-
tem size). We show that the fluctuations of density are Gaussian and
that, as for the symmetric case, the direct calculation of the two point
function by fluctuating hydrodynamics agrees with the expression derived
by expanding the large deviation function around the average density
profile. We also show that, as for the asymmetric case,(3) the correla-
tion functions can be expressed in terms of two independent random
processes.

The asymmetric exclusion process describes the stochastic evolution
of a system of particles on a one dimensional lattice of L sites. Each site
of the lattice is occupied by at most one particle at a given time. Thus a
configuration of the system is specified by a series of occupation numbers
{ηi}i=1,...,L, where ηi = 1 if site i is occupied by a particle, ηi = 0 if site i

is empty.
At any given time, each particle independently attempts to jump to

one of its neighboring sites on the lattice with rates which depend on the
direction of the jump. The jump succeeds only if the target site is empty,
otherwise the particle does not move. We choose to scale the time such
that the hopping rate to a right neighbor is 1, and we note by q the hop-
ping rate in the opposite direction. Physically, the asymmetry between left
and right hopping rates mimics the effect of some external field acting on
the particles.

The first and last sites of the lattice, respectively labeled 1 and L, are
in contact with reservoirs of density respectively ρa and ρb. This can be
achieved by adding, to the left of site 1, a site 0 whose probability of
being occupied by a particle is kept constant to ρa independently of the
rest of the system, and, to the right of site L, a site L+ 1 whose proba-
bility of being occupied by a particle is kept constant to ρb independently
of the rest of the system. Another equivalent way of expressing the action
of the left reservoir is to say that particles are added to the site 1 at rate
α =ρa when the first site is empty, and when it is occupied, the particle is
removed from the system at γ =q(1−ρa) (i.e. a particle at site 1 attempts
to jump to the left reservoir (site 0) with a rate q and the jump succeeds
with a rate 1 −ρa). In the same way, if site L is occupied, the particle is
removed at rate β = 1 − ρb, and if it is empty, a particle is added at rate
γ =qρb.

The generator L of the dynamics, acting on a given function g of the
configuration of the system η={ηi}i=1,...,L is given by
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Lg(η) =
L−1∑

i=1

ηi(1−ηi+1)
[
g(ηi,i+1)−g(η)

]

+
L∑

i=2

qηi(1−ηi−1)
[
g(ηi−1,i )−g(η)

]

+[
ρa(1−η1)+q(1−ρa)η1

][
g(η1)−g(η)

]

+[
qρb(1−ηL)+ (1−ρb)ηL

][
g(ηL)−g(η)

]
,

where ηi,i+1 is the configuration obtained from η by exchanging the occu-
pation numbers of sites i and i +1 and ηi is obtained from η by changing
the occupation number of site i.

In the following, we consider the weakly asymmetric exclusion pro-
cess, where the asymmetry q scales with the system size L by

q =1− λ

L
·

Of particular interest are the macroscopic properties of the system in
the large L limit. We focus here on the macroscopic density profiles {ρ(x)},
0�x �1, obtained by rescaling by L−1 and smoothening the microscopic
density profiles {ηi}i=1,L. To do that, we may for example divide the sys-
tem into mesoscopic boxes of size Lk, with 1�Lk �L. The macroscopic
density ρL( i

L
) is then simply the number of particles in the box containing

the site i, divided by the size of the box. A more mathematical approach
consists in defining, for each size L, the following distribution acting on
smooth test function

ρL(t, x)= 1
L

L∑

i=1

δ(x − i/L)ηi(L
2t) (1.1)

In spite of the stochastic evolution of the system at the microscopic scale,
it is known that, as L→∞, the macroscopic profile ρL converges almost
surely to a deterministic evolution ρH (t, x) given by the solution of the
hydrodynamic equations of the process.(1,4,5) In the case of the weakly
asymmetric exclusion process, it has been proved(6,7) that this is given by
the viscous Burgers equation:






∂tρ
H = ∂2

xρH −λ(1−2ρH )∂xρ
H ,

ρH (t,0)=ρa, ρH (t,1)=ρb ,

ρH (0, x)=ρ0(x)

(1.2)

where ρ0(x) is the macroscopic limit profile at time t =0.
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At a finer scale, the density profile ρL has random fluctuations of
order L−1/2 around the hydrodynamic trajectory ρH . One defines the den-
sity fluctuation field by

ξL(t, x)=
√

L
[
ρL(t, x)−ρH (t, x)

]
. (1.3)

It is known(6,8) that these fields have a well defined large L limit ξ(x, t)

which is a generalized Ornstein–Uhlenbeck process in the case of WASEP
on an infinite lattice (for such system, the parameter L is not any more
related to the size of the lattice, which is infinite, but only to the rescaling
of time and space, as well as to the asymmetry rate).

For a finite system of size L, after a long time, the system eventu-
ally reaches a steady state where the properties of the system become time-
independent. Except for particular values of the reservoir densities and of
the asymmetry parameter q for which detailed balance is satisfied,(9) this
stationary state is a non-equilibrium steady state, which differs from an
equilibrium state by the presence of a non-zero, site-independent average
current j

j =〈ηi(1−ηi+1)〉−q〈ηi+1(1−ηi)〉 (1.4)

(where the brackets 〈.〉 stands for the average with respect to the steady
state probability denoted by µL).

The system presents almost surely an average macroscopic profile
{ρ̄(x)} such that, for any site i, one has in the large L limit:

〈ηi〉� ρ̄

(
i

L

)
.

Putting ∂tρ to 0 into (1.2) gives the following equation for the steady state
average profile {ρ̄(x)}:






ρ̄′(x)=λρ̄(x)(1− ρ̄(x))−J,

ρ̄(0)=ρa ,

ρ̄(1)=ρb ,

(1.5)

where J is an integration constant solution of

∫ ρb

ρa

dρ

λρ(1−ρ)−J
=1.
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J is related to the steady state average current j (1.4) by

J = lim
L→∞

Lj.

The steady state fluctuation field will be noted ξ st :

ξ st (x)= lim
L→∞

√
L
[
ρL(x)− ρ̄(x)

]

with ρL(x) defined as in (1.1).
In the stationary state the macroscopic limit of the density profile

coincides with the deterministic solution of the stationary Eq. (1.5) with
the steady current J determined by the asymmetry parameter λ and the
boundary conditions ρa, ρb. Actually, there exist(9) explicit expressions for
ρ̄, but we will not use them in this paper. Without loss of generality we
assume that

ρa < ρb

so that we have always ρ̄′(x)�0. The current J can be positive or negative
depending on λ.

Our main result is that the macroscopic fluctuation field ξ st (x) is a
centered Gaussian field on [0,1] with covariance given by

〈
ξ st (x)ξ st (y)

〉=χ(ρ̄(x))δ(x −y)+f (x, y) (1.6)

where

χ(ρ)=ρ(1−ρ) (1.7)

and f (x, y) is given by

f (x, y)=
J ρ̄′(x)ρ̄′(y)

∫ x∧y

0
du

ρ̄′(u)

∫ 1
x∨y

dv
ρ̄′(v)

∫ 1
0

du
ρ̄′(u)

, (1.8)

where x ∧y =min{x, y} and x ∨y =max{x, y}.
In terms of the two point correlation function, this result implies that

when x �=y

L
(〈
η[Lx]η[Ly]

〉− 〈
η[Lx]

〉 〈
η[Ly]

〉) −→
L→∞

f (x, y) (1.9)

Some comments are in order.
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• In the symmetric case (λ = 0) we have ρ̄′(x) = ρb − ρa and
J =−(ρb −ρa), so that

f (x, y)=−(ρb −ρa)
2(x ∧y)[1− (x ∨y)]=−(ρb −ρa)

2(−�)−1(x, y) ,

in agreement with the result of Spohn on the 2-point correlation func-
tion.(2)

• In the equilibrium case J =0, the stationary fluctuation field is just
white noise on [0,1], corresponding to the fact that the stationary state
will be given by a product measure.

• The sign of f (x, y) depends on the sign of the current J . If λ is
positive and large enough, J >0 (the weak shock regime) and f (x, y)�0.
In the other cases J and f are negative.

We derive the result (1.6, 1.8) by two different methods. The first
approach is dynamical: we search for the stationary solutions of the mac-
roscopic fluctuations process. The second approach is static and based on
a representation (valid only when J (ρa −ρb)> 0, see ref. 9) of the weights
in the steady state as sums over paths which was used in ref. 9 to calcu-
late the large deviation function of the stationary measure. A priori there
is no reason that the correlation functions should be simply related to the
large deviation functional of the density profile: density fluctuations describe
variations of density of order 1√

L
whereas the large deviation functional

describes variations of order 1. For the symmetric exclusion process, it was
however shown(10) that the expression of correlation functions obtained by
a direct calculation can be recovered by expanding the large deviation func-
tional around the average profile. On the other hand, for the asymmetric
exclusion process, the large deviation functional is non-analytic close to the
average profile and there is no simple connection between the large devia-
tions and the two point correlations.(11) One outcome of the present work
is that the fluctuations of the density are still given, for the WASEP, as the
expansion of the large deviation function around the average profile.

Both methods rely on distinct representations of the kernel f . In
the dynamical approach we proceed as follows. Let L be the differen-
tial operator � + λ(1 − 2ρ̄(x))∇ with Dirichlet boundary conditions on
[0,1]. Since ρ̄ is the solution of (1.5), it is easy to show that L can
be extended to a negative self-adjoint operator on L2(ρ̄′(x)dx). The ker-
nel of the inverse operator (−L)−1(x, y) can be calculated explicitly (cf.
Section 2) and shown to satisfy

f (x, y)=J ρ̄′(x)ρ̄′(y)(−L)−1(x, y) . (1.10)
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In the static approach, one shows that the Gaussian field ξ st (x) can
be decomposed as a sum of two independent processes

ξ st (x)=
√

χ(ρ̄(x))

2
B ′(x)+ 1

2
Y ′(x) , (1.11)

where B(x) is a standard Brownian motion such that

〈
[B(x)−B(x′)]2

〉
=|x −x′| (1.12)

(i.e. B ′(x) is a standard δ-correlated white noise), while Y (x) is a centered
Gaussian process whose distribution is formally given by

dQ({Y })∝ exp

{
−
∫ 1

0
dx

(
−J ρ̄′(x)Y (x)2

2χ(ρ̄(x))2
+ Y ′(x)2

4χ(ρ̄(x))

)}
D[{Y }]

(1.13)

where D[{Y }] is the standard Feynman measure. Writing the distribution
of the centered Gaussian process Y ′(x) as

dQ({Y ′})∝ exp

{
−1

2

∫ 1

0

∫ 1

0
Y ′(u)T (u, v)Y ′(v) dudv

}
D[{Y ′}] , (1.14)

we show in section 4 that its covariance can be written as

〈
Y ′(x)Y ′(y)

〉=T −1(x, y)=2χ(ρ̄(x))δ(x −y)+4f (x, y) (1.15)

where f (x, y) can be explicitly calculated and shown to be given by (1.8).
The covariance (1.6) of the fluctuation field ξ st (x) follows from (1.11) and
(1.15).

2. DYNAMICAL APPROACH

Consider the time dependent fluctuation field ξL(t, x) defined by (1.3).
Under proper assumptions on the initial distribution, it is proved in ref. 12
that the law of ξL converges, as L→∞, to the solution ξ(t, x) of the lin-
ear stochastic partial differential equation:

∂t ξ = ∂2
x ξ −λ∂x{[1−2ρH (t, x)]ξ}− ∂x

(√
2χ(ρH (t, x))W(t, x)

)
, (2.1)
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where W(t, x) is the standard space time white noise, i.e., the Gaussian
process on R+ × (0,1) with covariance

〈
W(t, q)W(t ′, q ′)

〉= δ(q −q ′)δ(t − t ′) ,

and χ is given by (1.7).
Since ξ(t, x) and W(t, x) are distribution-valued processes, Eq. (2.1)

should be interpreted in the weak form: for any smooth test function G

with compact support in (0,1), denoting by ξt (G)= ∫ 1
0 G(x)ξ(t, x)dx,

ξt (G)− ξ0(G) =
∫ t

0
ξs(G

′′) ds + λ

∫ t

0
ξs

(
[1−2ρH (s, ·)]G′)ds

+
∫ t

0

∫ 1

0
G′(x)

√
2χ(ρH (s, x))W(s, x)dsdx. (2.2)

To investigate the asymptotic behavior of ξt , consider the weakly
asymmetric exclusion process starting from a local Gibbs state associated
to the steady state density profile ρ̄. In this case, the solution of the
hydrodynamic Eq. (1.2) is constant in time and equal to ρ̄. In particular,
the density fluctuation field ξL converges, as L → ∞, to the Ornstein–
Uhlenbeck process (2.2) with ρ̄(·) in place of ρH (s, ·). Let L be the differ-
ential operator defined by

L=�+λ(1−2ρ̄(x))∇ (2.3)

with Dirichlet conditions at the boundary. An elementary computation
shows that for any smooth function G with compact support on (0,1)

ξt (G)= ξ0(e
tLG)+

∫ t

0

∫ 1

0

(
∇e(t−s)LG

)
(x)

√
2χ(ρ̄(x))W(s, x)dsdx .

(2.4)

Since we imposed Dirichlet boundary conditions for L, etLG converges to
0 as t →∞. The second term of the right hand side of (2.4) is a Gaussian
variable with zero mean and variance given by

2
∫ t

0
ds

∫ 1

0
dx

[
∇
(
e(t−s)LG

)
(x)

]2
χ(ρ̄(x)).
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Integrating by parts the previous expression with respect to x, recalling the
explicit formula (2.3) for the operator L and Eq. (1.5) for the stationary
density profile, we obtain that the previous integral is equal to

∫ 1

0
G(x)2χ(ρ̄(x)) dx −

∫ 1

0
(etLG)(x)2χ(ρ̄(x)) dx

+2J

∫ t

0
ds

∫ 1

0
dx

(
e(t−s)LG(x)

)2
ρ̄′(x).

Since etLG→0 as t →∞, the second term of the previous equation van-
ishes as t → ∞. On the other hand, since ρ̄ is solution of the stationary
Eq. (1.5), the operator L is symmetric in L2(ρ̄′(x)dx). In particular, the
last term of the previous equation can be rewritten as

2J

∫ t

0
ds

∫ 1

0
dx G(x) [e2(t−s)LG](x) ρ̄′(x)

which converges, as t →∞, to

J

∫ 1

0
G(x)[(−L)−1G](x) ρ̄′(x) dx.

In conclusion, the generalized Ornstein–Uhlenbeck process ξt con-
verges, as t →∞, to a Gaussian field ξ st with covariance given by

〈
ξ st (G), ξ st (F )

〉 =
∫ 1

0
G(x)F (x)χ(ρ̄(x)) dx

+J

∫ 1

0
G(x)[(−L)−1F ](x) ρ̄′(x) dx. (2.5)

This Gaussian field is also the stationary state for the Ornstein–Uhlenbeck
process (2.2) and the limit of the density fluctuation field under the sta-
tionary measure.

An elementary computation permits to rewrite the covariance as fol-
lows

〈
ξ st (G), ξ st (F )

〉 =
∫ 1

0
G(x)F (x)χ(ρ̄(x)) dx

+
∫ 1

0
dx

∫ 1

0
dy F(x)f (x, y)G(y), (2.6)
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where f is given by (1.8). Indeed, for F =G, the second term on the right
hand side of (2.5) can be written as

J sup
H

{
2
∫ 1

0
dx G(x)H(x) ρ̄′(x) −

∫ 1

0
dx H(x) (−LH)(x) ρ̄′(x)

}
,

where the supremum is carried over all smooth functions H vanishing at
the boundary. Since ρ̄ is the solution of the Eq. (1.5), an integration by
parts gives that

∫ 1

0
dx H(x) (−LH)(x) ρ̄′(x)=

∫ 1

0
dx [H ′(x)]2ρ̄′(x).

On the other hand, since H vanishes at the boundary, an integration by
parts permits to rewrite the linear term as

2
∫ 1

0
dx G(x)H(x) ρ̄′(x)=−2

∫ 1

0
dx

(∫ x

0
dy ρ̄′(y)G(y)−A

)
H ′(x)

for any constant A. In view of the previous two expressions, it is not diffi-
cult to show that the supremum in H is equal to

∫ 1

0
dx

1
ρ̄′(x)

(∫ x

0
dy ρ̄′(y)G(y)−A

)2
(2.7)

with A given by

A =
∫ 1

0 dx 1
ρ̄′(x)

∫ x

0 dy ρ̄′(y)G(y)
∫ 1

0 dx 1
ρ̄′(x)

·

It remains to develop the square and to recall the factor J in front of the
variational formula to obtain the second term on the right hand side of
(2.6) with f given by (1.8).

Notice that in the symmetric case (when q = 1, i.e. λ = 0), L is the
usual Laplacian �, ρ̄′(x)=ρb −ρa =−J , and (2.5) becomes

〈
ξ st (G), ξ st (F )

〉

=
∫ 1

0
G(x)F (x)χ(ρ̄(x)) dx − (ρb −ρa)

2
∫ 1

0
G(x)[(−�)−1F ](x) dx

in accordance with the covariance formula obtained by Spohn in ref. 2.
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3. STATIC APPROACH

The idea of the derivation is similar to the one in the totally asym-
metric case.(3) In ref. 9 under the assumption that

J (ρa −ρb) � 0 ,

(which holds, for example, when ρa < ρb and q > 1), it was showed that
the probability dP

({ρ(x)}) of observing a given macroscopic profile ρ(x)

in the steady state can be written in the large L limit as

dP({ρ}) ∼D[{ρ}]
∫

{y}
e−LG({ρ},{y})D[{y}] (3.1)

where the sum is over all positive continuous functions {y(x),0 � x � 1}.
We will call such a function {y(x)} a path. The expression (3.1) is written
there as a path integral, but it is nothing more than the large L limit of a
sum over discrete paths y(i/L)= ni

L
, and the measure (3.1) can be simply

thought as the weight of these discrete paths.
The function G({ρ(x)}, {y(x)}) was given in ref. 9, Eq. (3.22):

G({ρ(x)}; {y(x)}) = −Kλ(ρa, ρb)+y(0) log
ρa

1−ρa

+y(1) log
1−ρb

ρb

+
∫ 1

0
dx

[
−log

1−e−λy

λ
+ρ log ρ+(1−ρ) log (1−ρ)

+(1−ρ+y′) log (1−ρ +y′)+(ρ−y′) log (ρ−y′)
]

where Kλ(ρa, ρb) is a normalization constant. The quantity e−LG({ρ},{y})
D[{y}]D[{ρ}] can be thought as the joint probability of the profile {ρ} and
the path {y}.

One can rewrite (3.1) as

dP({ρ}) =D[{ρ}] ∫{y} r({ρ}|{y})dQ({y})

where dQ({y}) is the probability measure of the positive walk {y}

dQ({y})=D[{y}]
∫

{ρ}
e−LG({ρ},{y})D[{ρ}] ∼ D[{y}]e−LQ({y})
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with Q({y})= inf
{ρ(x)}

G({ρ}, {y}), i.e.

Q({y}) = −Kλ(ρa, ρb)− log 4+y(0) log
ρa

1−ρa

+y(1) log
1−ρb

ρb

+
∫ 1

0
dx

[
− log

1− e−λy

λ

+ (1+y′) log (1+y′)+ (1−y′) log (1−y′)
]

(3.2)

(as for a given y, the optimal profile is ρy = 1+y′
2 ) and r({ρ}|{y}) is the

conditional probability of the profile ρ given the path {y} given by the
Radon–Nikodym derivative

r({ρ}|{y})= e−LG({ρ},{y})D[{y}]
dQ({y})

so

log
(
r({ρ}|{y}))

L
= − log 4+

∫ 1

0
dx

{−ρ log ρ − (1−ρ) log (1−ρ)

+(1+y′) log (1+y′)+ (1−y′) log (1−y′)
−(1−ρ+y′) log (1−ρ+y′)−(ρ −y′) log (ρ−y′)

}

The fluctuations of ρ(x) in (3.1) have thus two contributions: one
coming from the choice of the path y(x), and the other one from the ran-
domness of the profile ρ(x) once the path y(x) is chosen. We shall see that
for small fluctuations, these two contributions are uncorrelated, leading to
(1.11).

The optimal path yopt(x), which maximizes the expression (3.2) of
dQ({y}), is solution of

y′
opt(0) = 2ρa −1

y′
opt(1) = 2ρb −1

2y′′
opt

1−y′2
opt

= − λe−λyopt

1− e−λyopt
. (3.3)

By expanding (3.2) up to the second order, we get for a path y close to
yopt:

y(x) =yopt(x)+ δy(x)
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that its probability measure is given by

dQ(y) ∼ exp

(
−L

∫ 1

0
dx

[
λ2

2
e−λyopt(δy)2

(1− e−λyopt)2
+ (δy′)2

1−y′2
opt

])
D[{y}]

As yopt(x)>0 and δy ∼ 1√
L

, the condition that

y(x)=yopt(x)+ δy(x) >0

is automatically satisfied.

The optimal density profile ρy(x) for a given {y} (i.e. the one which
maximizes r({ρ}|{y})) is given by

ρy = 1+y′

2
. (3.4)

Given the fluctuation δy(x) = y(x) − yopt(x) of the walk {y}, the proba-
bility of a small fluctuation of density δb(x) = ρ(x) − ρy(x) around ρy is
obtained by expanding r({ρ}|{y}) up to the second order in δb and δy:

r({ρ}|{y}) ∼ exp

(
−L

∫ 1

0
dx(δb)2 4

1−y′2
opt

)
. (3.5)

As r({ρ}|{y}) does not depend of δy at order (δb)2, the choice of δb=ρ −
ρy is independent of the choice of the fluctuation of the path δy.

The total density fluctuation δρ is then given by

δρ = δb+ρy − ρ̄ (3.6)

= δb+ δy′

2
(3.7)

where we used (3.4). Thus, by rewriting in (3.7) δy = Y√
L

and δb =
Ḃ

√
ρ̄(1−ρ̄)√

2L
, and using (3.3), (3.4), (3.8), and the fact that

ρ̄ = 1+y′
opt

2
, (3.8)

one gets (1.11).
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We now make the link between the small fluctuations and the large
deviation functional of the density. From (3.7), we see that the probability
of a fluctuation δρ of order 1√

L
around the optimal profile ρ̄ is given by

the sum over all path fluctuations δy of the probability of having a path
fluctuation δy and a density fluctuation δb= δρ − δy′

2 around ρy , i.e.

dP({δρ})∼D[{δρ}]
∫

{δy}
D[{δy}]e

−L
∫ 1

0 x



 λ2
2

e
−λyopt (δy)2

(1−e
−λyopt )2

+
(δy′)2+4

(
δρ− δy′

2

)2

1−y′2
opt





.

(3.9)

In fact, this expression follows directly from (3.1). Integrating it over δy

leads to a gaussian form for the density fluctuations δρ of order 1√
L

which
is another way of writing (3.7). On the other hand, considering (3.9) for δρ

small but of order 1 (i.e. of order L0 in L), and performing a saddle point
evaluation over δy leads to leading order in δρ to a deviation functional
quadratic in δρ which is identical to the Gaussian. The fact that this qua-
dratic form of the large deviation functional (for δρ small but of order 1 in
L) is equivalent to the expression of the Gaussian fluctuations (for δρ ∼ 1√

L

shows that for the WASEP the fluctuations of order 1√
L

can be calculated
by expanding the large deviation functional to leading order around the
most likely profile. Mathematically, this is simply due to the fact that the
saddle point calculation is exact when one deals with Gaussian variables
(here the δy).

4. DERIVATION OF 1.15

Let us define

a(x)= −ρ̄′(x)J

2χ(ρ̄(x))2
·

Writing Y (x) = Y (0) + ∫ x

0 Y ′(s)ds and performing the Gaussian integral
over Y (0) in (1.13), one obtains the following expression for T (u, v) in
(1.14):

T (u, v)= δ(u−v)

2χ(ρ̄(x))
+2

∫ 1
u∨v

a(z)dz
∫ u∧v

0 a(z′)dz′
∫ 1

0 a(z)dz
(4.1)

We show now that when one writes T −1(x, y) as in (1.15), one gets expres-
sion (1.8) for f (x, y).
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Firstly, the symmetry of T −1(x, y) implies the symmetry of f (x, y):

f (x, y)=f (y, x) .

Then, by definition of the inverse of an operator, we have

δ(u−v) = ∫ 1
0 T (u, t)T −1(t, v)dt. (4.2)

Inserting (4.1) and (1.15) in (4.2) gives the following integral equation for
f (x, y):

f (x, y)

4χ(ρ̄(x))
+ 1

∫ 1
0 a(t)dt

[∫ 1

x

dt

∫ 1

t

a(z)dz

∫ x

0
a(z′)dz′f (t, y)

+
∫ x

0
dt

∫ t

0
a(z)dz

∫ 1

x

a(z′)dz′f (t, y)

+�(y −x)χ(ρ̄(y))

2

∫ 1

y

a(z)dz

∫ x

0
a(z′)dz′

+�(x −y)χ(ρ̄(y))

2

∫ 1

x

a(z)dz

∫ y

0
a(z′)dz′

]
=0 (4.3)

(4.3) implies that for 0<y <1, one has

f (0, y)=f (1, y)=0. (4.4)

Furthermore, when one applies the operator ∂x

{
∂x(.)
a(x)

}
to (4.3), one gets the

following differential equation:

∂x

∂x

{
f (x,y)

4χ(ρ̄(x))

}

a(x)
−f (x, y)− δ(x −y)

χ(ρ̄(x))

2
=0 (4.5)

This equation can be written as

∂2
xf (x, y)+λ∂x {(2ρ̄(x)−1)f (x, y)}+ δ(x −y)J ρ̄′(x)=0 (4.6)

The δ(x −y) function simply means that the ∂xf (x, y) is discontinuous in
x =y, i.e.

∂1f (x−, x)− ∂1f (x+, x) =J ρ̄′(x) (4.7)

This differential equation with boundary condition (4.4) is equivalent to
Eq. (1.10) and its solution is given by (1.8) (using Eq. (1.5) and the sym-
metry of f (x, y)).
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5. CONCLUSION

We have proved that the density fluctuations in the stationary state
of the weakly asymmetric exclusion process with open boundaries are dis-
tributed like a Gaussian field. We have obtained a simple expression (1.6),
(1.8) of the two point function of the weakly asymmetric exclusion pro-
cess which extends the result of Spohn(2). This correlation function is long
ranged and is a signature of the non-locality of the large deviation func-
tion. As for the symmetric case, expanding the large deviation functional
of the density around the optimal profile leads to the right expression.
Our results have also some similarity with those of the totally asymmetric
case (TASEP)(3). There too, the fluctuations of density can be written as a
sum of two terms. However for the TASEP one of the two processes (the
Brownian excursion) is non-Gaussian. It is to be noted that this Brown-
ian excursion is not the large λ limit of the process Y (x) (1.13), and, more
generally, the correlation function (1.6) does not converge in the large λ

limit to the correlation function of the totally asymmetric case, meaning
that the large L limit and the large λ limit can not be inverted.
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