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We propose a phenomenological description for the effect of a weak noise on the position of a front
described by the Fisher-Kolmogorov-Petrovsky-Piscounov equation or any other traveling-wave equation in
the same class. Our scenario is based on four hypotheses on the relevant mechanism for the diffusion of the
front. Our parameter-free analytical predictions for the velocity of the front, its diffusion constant and higher
cumulants of its position agree with numerical simulations.
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I. INTRODUCTION

The Fisher Kolmogorov-Petrovsky-Piscounov �FKPP�
equation �1�

�th = �x
2h + h − h2 �1�

describes how a stable phase �h�x , t�=1 for x→−�� invades
an unstable phase �h�x , t�=0 for x→ +�� and how the front
between these two phases builds up and travels �2�. This
equation was first introduced in a problem of genetics, but
equations similar to Eq. �1� appear in much broader contexts
like reaction-diffusion problems �3,4�, optimization �5�, dis-
ordered systems �6,7�, and even particle physics �8–10�. A
remarkable example is the problem of the high-energy scat-
tering of a projectile consisting of a small color dipole on a
target in the framework of quantum chromodynamics
�QCD�: in Ref. �8� it was recognized that the Balitsky-
Kovchegov �BK� equation �9�, a mean-field equation for
high-energy scattering in QCD, is in the same class as the
FKPP equation with h being the scattering amplitude, t the
rapidity of the scattering, and x the logarithm of the inverse
projectile size.

It is well known �2,11� that equations like Eq. �1� have a
family of traveling-wave solutions of the form h�x , t�=h�z�
with z=x−vt. There is a relation between the exponential
decay of each solution �h�z��exp�−�z� for large z� and its
velocity: v=v���. For example, v���=�+1/� for the FKPP
equation �1�. Other front equations would give different ex-
pressions of v���. See, for example, Sec. IV or Refs. �12,13�.

If one starts with a steep enough initial condition, the
front converges to the traveling wave with the minimal ve-
locity. Therefore,

vdeterministic = min
�

v��� = v��0� where v���0� = 0,

hdeterministic�z� � Aze−�0z. �2�

�The multiplicative factor z in hdeterministic is present only for
this slowest moving solution.�

There is a large class �the FKPP class� of equations de-
scribing the propagation of a front into an unstable state
which select the minimal velocity, as described by �2�.
�There exist also equations of fronts propagating into an un-
stable state, called “pushed” or “type II,” for which the ve-
locity selected by the front is not the slowest one and equa-
tions of fronts propagating into a stable state. The properties
of these fronts are quite different �2,14,15� from the proper-
ties of Eq. �1�, and we will not consider them in the present
paper.�

Deterministic front equations such as Eq. �1� usually oc-
cur as the limit of a stochastic reaction-diffusion model �16�
when the number of particles �or bacterias or reactants� in-
volved becomes infinite. In a physical situation, all numbers
remain finite and a small noise term should be added to Eq.
�1� to represent the fluctuations at the microscopic scale. One
might write, for instance �17�,

�th = �x
2h + h − h2 + �h�1 − h�/N��x,t� , �3�

where ��x , t� is a normalized Gaussian white noise and N is
the number of particles involved.

The effect of such a noise is to make the shape of the
traveling-wave fluctuate in time �4�. It affects also its veloc-
ity and makes the front diffuse �2,16,18�.

For a chemical problem, N might be of the order of the
Avogadro number and one could think that such a small
noise term should give small corrections, of order 1 /�N, to
the shape and position of the front. However, because the
front motion is extremely sensitive to small fluctuations in
the region where h�1/N, this is not the case. In the presence
of noise as in Eq. �3�, the front has an exponential decay if
h�x , t��1/N, but it vanishes much faster than this exponen-
tial in the region where h�x , t� is of order 1 /N �4�. �This is
obvious in a particle model, as there cannot be less than one
particle at a given place.� As an approximation to understand
the effect of the microscopic stochastic details of the system,
it has been suggested to replace the noise term by a deter-
ministic cutoff which makes the front vanish very quickly
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when h�1/N �12�. For instance, for the FKPP equation �1�,
one way of introducing the cutoff is

�th = �x
2h + �h − h2�a�Nh� ,

with a�r� = 1 for r � 1 and a�r� → 0 for r → 0. �4�

In the presence of such a cutoff, the velocity and shape �2�
become, for any equation in the FKPP class,

hcutoff�z� � A
L

�
sin	�z

L

e−�0z where L =

1

�0
ln N ,

�5a�

vcutoff � v��0� −
�2v���0�

2L2 . �5b�

�The shape �5a� is valid only in the linear region, where h is
small enough for the nonlinear term h2 to be negligible but
still larger than 1/N. Note that for z�L, the shape coincides
with �2�. A way to interpret the sine is to say that the front
moves slower than the minimal velocity vdeterministic=v��0�
and that the decay rate becomes complex: �=�0± i� /L.
Then, the expression of vcutoff results from an expansion of
v��� for large L.�

The prediction �5� does not depend on the details of the
microscopic model. It only depends on the deterministic
equation and on the existence of a microscopic scale. This
cutoff picture is also present in the mean field QCD context
in �19�, where it was introduced to avoid unitarity violating
effects in the BK equation at intermediate stages of rapidity
evolution. In this context, N is 1 /	QCD

2 where 	QCD is the
strong-coupling constant.

Extensive numerical simulations of noisy fronts have
been performed over the years �3,18�, and the large correc-
tion �5b� to the velocity found in the cutoff picture seems to
give the correct leading correction to the velocity of noisy
fronts. �See �20� for rigorous bounds.� Being a deterministic
approximation, the cutoff theory gives, however, no predic-
tion for the diffusion constant of the front.

In the present paper, we develop a phenomenological de-
scription which leads to a prediction for this diffusion con-
stant. This description tries to capture the rare relevant events
which give the dominant contribution to the fluctuations in
the position of the front. The prediction is that the full sta-
tistics of the front position in the noisy model depends only
on the amplitude 1/N of the noise at the microscopic scale
and on v���, a property of the deterministic equation. For
large N, all the other details of the underlying microscopic
model do not contribute to the leading order. Our description
leads to the following prediction for the velocity and for the
diffusion constant of the front for large N:

v − vcutoff = �2�0
3v���0�

3 ln ln N

�0ln3 N
+ ¯ , �6a�

D = �2�0
3v���0�

�2/3

� 0
2ln3 N

+ ¯ . �6b�

Actually, our phenomenological approach also gives a
prediction to the leading order for all the cumulants of the
position of the front. For n
2,

�nth cumulant�
t

= �2�0
3v���0�

n ! ��n�
� 0

nln3 N
+ ¯ , �6c�

where ��n�=�k
1k−n.
The 1/ ln3 N dependence of the diffusion constant was al-

ready observed in numerical simulations �18�. In the QCD
context, it was proposed in �21� to identify the full QCD
problem with a stochastic evolution, such as Eq. �3�, and the
dependence of the diffusion constant was used to suggest a
new scaling law for QCD hard scattering at, perhaps, ultra-
high energies.

We do not have, at present, a mathematical proof of the
results �6�. Rather, we believe that we have identified the
main effects contributing to the diffusion of the front. We
present our scenario in Sec. II where we state a set of four
hypotheses from which the results �6� follow. We give argu-
ments to support these hypotheses in Secs. III A–III D. Fi-
nally, to check our claims, we present numerical simulations
in Sec. IV for the five first cumulants of the position of the
front. These simulations match very well the predictions �6�.

II. PICTURE AND ITS QUANTITATIVE
CONSEQUENCES

To simplify the discussion, we consider, in this section,
more specifically a microscopic particle model rather than a
continuous stochastic model such as Eq. �3�. This is merely a
convenience to make our point clearer, but the discussion
below could be rephrased for other models in the stochastic
FKPP class.

We consider models where particles diffuse on the line
and, occasionally, duplicate. If one takes, for h�x , t�, the den-
sity of particles or, alternatively, the number of particles on
the right of x, it is clear that it is not yet described by a front
equation, because it grows exponentially fast with time; one
needs to introduce a saturation rule. For instance, one can �i�
keep the number of particles fixed by removing the leftmost
particles if necessary, or �ii� remove all the particles which
are at a distance larger than L behind the rightmost particle,
or �iii� limit the density by allowing, with a small probability,
that two particles meeting recombine into one single particle
�4�.

A. Scenario for the propagation of the front

The main picture of our phenomenological description is
the following. The evolution of the front is essentially deter-
ministic, and its typical shape and velocity are given by Eq.
�5�. But from time to time, a fluctuation sends a small num-
ber of particles at some distance � ahead of the front. At first,
the position of the front, determined by where most of the
particles are, is only modified by a negligible amount of
order 1 /N by this fluctuation. However, as the system re-
laxes, the number of wandering particles grows exponen-
tially and they start contributing to the position of the front.
Meanwhile, the bulk catches up and absorbs the wandering
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particles and their many offsprings; finally, the front relaxes
back to its typical shape �5a�. The net effect of a fluctuation
is therefore to shift the position of the front by some amount
R��� which depends, obviously, on the size � of the fluctua-
tion. A useful quantity to characterize the fluctuations is the
width of the front. It can easily be defined as the distance
between the leading particle �where h�1/N� and some po-
sition in the bulk of the front—for instance, where h=0.5.
�Changing this reference point would change the width by a
finite amount, independent of N.� This width is typically of
order L, where L is given by the cutoff theory �5a�. During a
fluctuation that sends particles at a distance � ahead of the
front, the width of the front increases quickly to L+� and
then relaxes slowly back to L.

We emphasize that, in this scenario, the effect of noise is
so weak that, most of time, it can be ignored and the cutoff
theory describes accurately the evolution of the front. It is
only occasionally, when a rare sequence of random micro-
scopic events sends some particles well ahead of the front
that the cutoff theory is no longer valid. The way this fluc-
tuation relaxes is, however, well described by the determin-
istic cutoff theory.

We shall encode this scenario in the following quantita-
tive assumptions.

�i� If we write the instantaneous fluctuating width of the
front as L+�, then the probability distribution function for �
is given by

p���d� = C1e−�0�d� , �7�

where C1 is some constant. Note that we assume this form
only over some relevant range of values: � large enough
�compared to 1� but much smaller than L �typically of order
ln L�. Fluctuations where � is “too small” are frequent but do
not contribute much to the front position. Fluctuations where
� is “too large” are so rare that we do not need to take them
into account. Only for “moderate” values of � do we assume
the above exponential probability distribution function.

�ii� The long-term effect of a fluctuation of size � �assum-
ing that there are no other fluctuations in between� is a shift
of the front position by the quantity

R��� =
1

�0
ln	1 + C2

e�0�

L3 
 , �8�

where C2 is another constant.
�iii� The fluctuations of the position of the front are domi-

nated by large and rare fluctuations of the shape of the front.
We assume that they are rare enough that a given relevant
fluctuation has enough time to relax before another one oc-
curs.

From these three hypotheses alone, one can derive our
results �6� up to a single multiplicative constant. This con-
stant can be determined with the help of a fourth hypothesis.

�iv� For the aim of computing the first correction to the
front velocity obtained in the cutoff theory �5�, one can sim-
ply use the expression �5b� with L replaced by Leff where

Leff =
1

�0
ln N +

3

�0
ln ln N + ¯ . �9�

It is important to appreciate that the typical width of the
front is still L and not Leff. The latter quantity is just what
should be used in �5b� to give the correct velocity.

A similar scenario was used by Kloster �22� to obtain the
ln ln�N� / ln3 N correction to the cutoff velocity of Eq. �6a�.
However, his prefactor differs from ours: in our notations,
Ref. �22� would give a “2” in the numerator of the right-hand
side of Eq. �6a� instead of our “3.”

B. How Eqs. (6) follow from these hypotheses

We are now going to see how the results �6� follow from
these four hypotheses.

First, we argue that the probability to observe a fluctua-
tion of size � during a time interval 
t can be written as
p���d� 
t /�, where p��� is the distribution �7� of the in-
crease of the width of the front and where � is some typical
time characterizing the rate at which these fluctuations occur.
Indeed, during a fluctuation of a given size, the width of the
front increases to that size and then relaxes back. For a large
�, observing a front of size L+� is very rare, but when it
happens, the most probable is that one is observing the maxi-
mum expansion of a fluctuation with a size close to �; the
contribution from fluctuations of sizes significantly larger
than � is negligible as they are much less likely.

Second, as a fluctuation builds up at the very tip of the
front where the saturation rule �see beginning of Sec. II� can
be neglected, we argue that the typical time � introduced in
the previous paragraph and the time it takes to build a fluc-
tuation of a given size do not depend on N. �However, the
relaxation time of a fluctuation depends on N as the bulk of
the front is involved in the relaxation.�

Let Xt be the position of the front, �0 the minimal size of
a fluctuation giving a relevant contribution to the position of
the front, and 
t a time much smaller than the time between
two relevant fluctuations, but much larger than the time it
takes to build up such a fluctuation and have it relax. �This is
authorized by the third hypothesis.� We have

Xt+
t

=�Xt + vcutoff
t + R��� prob .

t

�
p���d� for � � �0,

Xt + vcutoff
t prob . 1 −

t

�



�0

�

p���d� . �
�Note that 
t

� ��0

� p���d� is the probability of observing a rel-
evant fluctuation during the time 
t. By definition of 
t, this
is much smaller than 1.�

One can then compute the average, denoted �·�, of
exp��Xt+
t�. One gets, for � small enough,

�tln�e�Xt� = �vcutoff +
1

�

 p����e�R��� − 1�d� . �10�

Expanding in powers of �, one recognizes on the left-hand-
side the cumulants of Xt. Therefore, one gets
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v − vcutoff =
1

�

 p���R���d� ,

�nth cumulant�
t

=
1

�

 p���Rn���d� for n 
 2. �11�

At this point, one can notice from the expressions of p���
and R��� that the values of � such that e�0��L3 have a
negligible contribution to the integrals giving the velocity
and the cumulants. Thus appears naturally a �max
= �3/�0�ln L which is exactly the effective correction to the
width of the front appearing in Eq. �9�.

The integrals in Eq. �11� can be evaluated, and one gets


 p���Rn���d� =
C1C2

� 0
n+1L3


0

L3/C2
lnn	1 +

1

x

dx , �12�

with x= �L3 /C2�exp�−�0��. For n=1, this integral gives
ln�L3 /C2�. For n
2, one can integrate from 0 to � �the
correction is at most of order 1 /L6� and one recognizes
n !��n�. Finally,

v − vcutoff =
C1C2

��0

3 ln L

�0L3 ,

�nth cumulant�
t

=
C1C2

��0

n ! ��n�
� 0

nL3 . �13�

Everything is determined up to one numerical constant
C1C2 /�. As the fourth hypothesis gives the velocity, one can
easily determine that constant and recover Eqs. �6�.

All the cumulants �except the first one� are of the same
order of magnitude, as the fluctuations are due to rare big
events.

III. ARGUMENTS TO SUPPORT THE HYPOTHESES

A. First hypothesis

This first hypothesis is not very surprising if one consid-
ers that exp�−�0�� is the natural decay rate of the determin-
istic equation. A more quantitative way to understand Eq. �7�
is that building up a fluctuation is an effect which is very
localized at the tip of the front, where saturation effects can
be neglected. We present in Appendix A a calculation using
this property.

Moreover, numerical simulations �23� of that probability
distribution function give evidence that for large enough N,
the decay is exponential with the rate �0 as in Eq. �7�.

B. Second hypothesis

To obtain Eq. �8�, we need to compute the response of the
deterministic model with a cutoff �4� to a fluctuation at the
tip of the front. This is a purely deterministic problem: start-
ing with a fluctuation �i.e., a configuration slightly different
from the stationary shape�, we let the system evolve with a
cutoff and relax back to its stationary shape �5a�, and we
would like to compute the shift in position due to this fluc-
tuation.

Although the evolution is purely deterministic, the prob-
lem remains a difficult one. For simplicity, we discuss here
the case of the FKPP equation �4�. The extension to other
traveling wave equations in the FKPP class is straightfor-
ward.

There are two nonlinearities in Eq. �4�: one is the −h2

term, which is important when h is of order 1, and the other
one is the cutoff term a�Nh�, which is important when h is of
order 1 /N. Between these two points, there is a large length
of order L=ln N where one can neglect both nonlinearities.
This means that, for all practical purpose, one can simply use
the linearized version of the FKPP equation for the whole
front except for two small regions with a size of order 1 at
both ends of the front.

Let Xt be the position of the front and Lt its length. There
are many equivalent ways of defining precisely these quan-
tities; for instance, we can take Xt such that h�Xt , t�=10−5 and
Lt such that h�Xt+Lt , t�= 1

N . We expect that Xt−vcutofft and
Lt−L, which are quantities of order 1, have a relaxation time
of order L2, as for the shape of the front �14,24�.

For Xt�x�Xt+Lt, the problem is linear:

�th = �x
2h + h . �14�

Using the ansatz

�15�

with vcutoff=2− �2

L2 �see �5b� for v���=�+1/�� and keeping
only the dominant terms in L, the function G�y ,�� evolves
according to

��G = �y
2G + �2G , �16�

with the boundary conditions

G�0,�� � 0, G�1,�� � 0. �17�

�More precisely, G�0,�� and G�1,�� would be nonzero only
at the next order in a 1/L expansion.�

The problem reduces to a diffusion problem with absorb-
ing boundary conditions. The stationary configuration is the
sine shape �5a�, as expected.

If at time t=0 the shape is different from this stationary
configuration, it will relax back to it in the long-time limit up
to a multiplicative constant:

G�y, � � =
B

�
sin��y� . �18�

As the stationary shape for h�x , t� must be of the form given
by �5a�, we obtain, using Eq. �15� that the final shift in po-
sition is given by

R��� = lim
t→�

�Xt − vcutofft� = ln
B

A
. �19�

To compute the value of B, one simply needs to project
the initial condition on the sine shape:
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B = AeR��� = 2�

0

1

dy sin��y�G�y,0� . �20�

We now proceed to use this expression for the perturba-
tions we are interested in: perturbations localized near the
cutoff.

We do not have a full information on the initial condition
h�x ,0� or, equivalently, G�y ,0�. However, as we expect a
perturbation to grow at the very tip of the front, we expect
that h�x ,0� is identical to its stationary shape, except in a
region of size of order 
x�1 near the tip. On the scale we
consider, this means that G�y ,0� is perturbed over a region
of size 
y�1/L—in other words,

G�y,0� = A� 1

�
sin��y� + p�1 − y�� , �21�

where the perturbation p�y�� is nonzero only for y�=1−y of
order 1 /L. Therefore, from Eq. �20�,

eR��� = 1 + 2�

0

b/L

dy��y�p�y�� , �22�

where b is a number of order 1 representing the extent over
which a perturbation initially affects the shape of the front.
�p�y���0 if y��b /L.�

The precise shape of p�y�� is not known, but its amplitude
can be easily understood in a stochastic particle model: if
some particles are sent at a distance ��L ahead of the front,
h�x , t� increases by 1/N at position x=Xt+L+�. Because of
the exponential factor in Eq. �15�, this translates to an in-
crease of order p�y���exp��� /L for the reduced shape
G�y ,��. Combining everything, one finally gets

eR��� = 1 + C2
e�

L3 , �23�

where C2 is some number of order 1 which depends on the
precise shape p�y��. Expression �23� is just our second hy-
pothesis, up to factors �0, which can be put back by dimen-
sional analysis.

One consequence of the argument above is that C2 is of
order 1 compared to L. However, it gives no information
about the dependence of C2 on � or on the shape of the
fluctuation. We think that if C2 depends on �, it is a weak
dependence that we can ignore. A simple situation where this
can be checked is when � is large: if a particle jumps suffi-
ciently far ahead, it will start a front of its own that will
completely replace the original front. For such a front, it is
well known �12,25� that the position for large t is given at
first �while the cutoff is not relevant� by �+2t− 3

2 ln t. When
the velocity 2− 3

2t matches vcutoff, that is, at a time t0�L2, a
crossover occurs and the position becomes R���+vcutofft.
Matching the two expressions for the position at time t= t0,
one obtains R�����−ln L3, as predicted by Eq. �8�. This
indicates that, at least for large �, the number C2 has no �
dependence.

C. Third hypothesis

From Sec. II and Eq. �8�, the size � of the fluctuations that
contribute significantly to the diffusion of the front is such
that exp��0���L3. From Eq. �7�, the typical time between
two such fluctuations is therefore L3. On the other hand, from
Sec. III B, the relaxation time of a fluctuation is of order L2.
It is therefore safe to assume that a relevant fluctuation has
enough time to relax before another one occurs.

D. Fourth hypothesis

The fourth hypothesis states that, to compute the shift in
velocity, one should use a front width Leff that is larger than
what is predicted by the cutoff theory by an amount
3
�0

ln ln N. The hypothesis is plausible as this length is pre-
cisely the distance � at which the relevant fluctuations occur:
the main effect of the fluctuations would then be to increase
the effective width of the front that enters the cutoff theory
�5�. We present in Appendix B a simplified model to support
this claim.

Remarkably, the front width Leff emerges naturally in the
QCD context �19�.

IV. NUMERICAL SIMULATIONS

We consider here a reaction-diffusion model with satura-
tion which was introduced in �13� as a toy model for high-
energy scattering in QCD. Particles are evolving in discrete
time on a one-dimensional lattice. At each time step, a par-
ticle may jump to the nearest position on the left or on the
right with respective probabilities pl and pr and may divide
into two particles with probability �. We also impose that
each of the n�x , t� particles piled up at x at time t may die
with probability �n�x , t� /N.

Between times t and t+1, nl�x , t� particles out of n�x , t�
move to the left and nr�x , t� move to the right. Furthermore,
n+�x , t� particles are replaced by their two offsprings at x and
n−�x , t� particles disappear. Hence the total variation in the
number of particles on site x reads

n�x,t + 1� − n�x,t� = − nl�x,t� − nr�x,t� − n−�x,t� + n+�x,t�

+ nl�x + 1,t� + nr�x − 1,t� . �24a�

The numbers describing a time step at position x have a
multinomial distribution:

P��nl,nr,n+,n−�� =
n!

nl ! nr ! n+ ! n− ! 
n!
pl

nlpr
nr�n+��n/N�n−

��1 − pl − pr − � − �n/N�
n, �24b�

where 
n=n−nl−nr−n+−n− and all quantities in the previ-
ous equation are understood at site x and time t. The mean
evolution of u�n /N in one step of time reads

�u�x,t + 1���u�x,t���

= u�x,t� + pl�u�x + 1,t� − u�x,t��

+ pr�u�x − 1,t� − u�x,t�� + �u�x,t��1 − u�x,t�� . �25�

When N is infinitely large, one can replace the u’s in Eq. �25�
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by their averages. One obtains then a deterministic front
equation in the FKPP class with

v��� =
1

�
ln�1 + � + pl�e−� − 1� + pr�e� − 1�� , �26�

and �0 is defined by v���0�=0; see �2�.
For the purpose of our numerical study, we set

pl = pr = 0.1 and � = 0.2. �27�

From Eq. �26�, this choice leads to

�0 = 1.3521 . . . , v��0� = 0.25538 . . . ,

v���0� = 0.16773 . . . . �28�

Predictions for all cumulants of the position of the front are
obtained by replacing the values of these parameters in Eqs.
�6�.

Technically, in order to be able to go to very large values
of N, we replace the full stochastic model by its deterministic
mean-field approximation u→ �u�, where �u� is given by Eq.
�25�, in all bins in which the number of particles is larger
than 103 �that is, in the bulk of the front�. Whenever the
number of particles is smaller, we use the full stochastic
evolution �24�. We add an appropriate boundary condition on
the interface between the bins described by the determi-
nistic equation and the bins described by the stochastic
equation so that the flux of particles is conserved �26�. This
setup will be called “model I.” Eventually, we shall use the
mean-field approximation everywhere except in the right-
most bin �model II�: at each time step, a new bin is filled
immediately on the right of the rightmost nonempty site with
a number of particles given by a Poisson law of expectation
�=N�u�x , t+1� � �u�x , t���. In the context of a slightly differ-
ent model in the same universality class �18�, this last ap-
proximation was shown numerically to give indistinguish-
able results from those obtained with the full stochastic
version of the model, as far as the front velocity and its
diffusion constant were concerned. We shall confirm this ob-
servation here.

We define the position of the front at time t by

Xt = �
x=0

�

u�x,t� . �29�

We start at time t=0 from the initial condition u�x ,0�=1 for
x�0 and u�x ,0�=0 for x�0. We evolve it up to time
t=ln2 N to get rid of subasymptotic effects related to the
building of the asymptotic shape of the front, and we mea-
sure the mean velocity between times ln2 N and 16� ln2 N.
For model I �many stochastic bins�, we average the results
over 104 such realizations. For model II �only one stochastic
bin�, we generate 105 such realizations for N�1050 and 104

realizations for N�1050. In all our simulations, models I and
II give numerically indistinguishable results for the values of
N where both models were simulated, as can be seen on the
figures �results for model I are represented by a circle and for
model II by a cross�.

First, we check that the effective width of the front is Leff
given by Eq. �9�. We extract the latter from the measured
mean velocity v using the formula

Leff = �� v���0�
2�v��0� − v�

. �30�

We subtract from Leff the width of the front obtained in the
cutoff theory L= �ln N� /�0 and compare the numerical result
with the analytical formula

Leff − L =
3 ln �ln N�

�0
+ c + d

ln�ln N�
ln N

. �31�

The first term on the right-hand side is suggested by our
fourth assumption �see Eq. �9��. We have added two sublead-
ing terms which go beyond our theory: a constant term and a
term that vanishes at large N. The latter are naturally ex-
pected to be the next terms in the asymptotic expansion for
large N. We include them in this numerical analysis because
in the range of N in which we are able to perform our nu-
merical simulations, they may still bring a significant contri-
bution.

We fit Eq. �31� to the numerical data obtained in the
framework of model II, restricting ourselves to values of N
larger than 1030. In the fit, each data point is weighted by the

FIG. 1. Measured Leff, defined by Eq. �30�,
from which we have subtracted the width L in the
cutoff theory, as a function of N. The dotted line
represents the leading terms 3 ln ln N /�0; see Eq.
�9�. The subleading terms �31� of the solid line
have been determined by a fit.
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statistical dispersion of its value in our sample of data. We
obtain a determination of the values of the free parameters
c=−4.26±0.01 and d=5.12±0.27, with a good quality of the
fit ��2 /NDF�1.15�. The numerical data together with the the-
oretical predictions are shown in Fig. 1. We see a clear con-
vergence of the data to the predicted asymptotics at large N
�dotted line in the figure�, but subleading corrections that we
have accounted for phenomenologically here are sizable over
the whole range of N.

We now turn to the higher-order cumulants. Our numeri-
cal data are shown in Fig. 2 together with the analytical
predictions obtained from Eqs. �6� �dotted lines in the fig-
ure�. We see that the numerical simulations get very close to
the analytical predictions at large N. However, like in the
case of Leff, higher-order corrections are presumably still im-
portant for the lowest values of N displayed on the plot.

We try to account for these corrections by replacing the
factor �ln N� /�0=L in the denominator of the expression for
the cumulants in Eqs. �6� by the ansatz for Leff given in Eq.
�31�, without retuning the parameters. The results are shown
in Fig. 2 �solid lines� and are in excellent agreement with the
numerical data over the whole range of N. We could also
have refitted the parameters c and d for each cumulant sepa-
rately, as, a priori, they are not predicted by our theory. We
observe that this is not required by our data.

This last observation suggests that all the cumulants can
be computed, with a good accuracy, with the effective width
Leff as the only parameter. We check this in Fig. 3, which
represents the ratio of the n th cumulant �divided by time� by
the correction to the velocity vdeterministic−v to the power 3/2.
If one supposes that the correction to the velocity varies like
1/Leff

2 and the cumulants like 1/Leff
3 for some effective width

Leff, this width disappears from the ratio plotted and one can
compare the numerical results to our analytical prediction
with no free parameter or unknown subleading terms. Within
statistical error, the data seem to agree for N large enough
with our prediction, suggesting that, indeed, all the cumu-
lants can be described with a good accuracy with only the
effective width Leff.

Simulations, not shown here, for the model introduced in
�18� support also our predictions �6�.

V. CONCLUSION

The main idea that we have put forward in the present
work is that all the fluctuations of the front position, and in
particular the diffusion constant, are dominated by large but
rare fluctuations at the tip of the front.

Under some more precise assumptions �hypotheses of
Sec. II� on these fluctuations, we were able to obtain explicit

FIG. 2. From top to bottom, the correction to
the velocity given by the cutoff theory and the
cumulants of orders 2–5 of the position of the
front in the stochastic model. The numerical data
are compared to our parameter-free analytical
predictions �6�, represented by the dotted line.
The subleading terms of the solid lines are nu-
merically the same as in Fig. 1; no further fit has
been performed for the present figure.

FIG. 3. The ratio of cumulants 2–5 divided by
the correction to the velocity to the power 3/2.
The dotted lines are the analytical prediction as-
suming only the cutoff theory �5b� for the veloc-
ity and the predictions �6� for the cumulants.
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expressions �6� of the cumulants of the position of the front.
We checked these predictions in our numerical simulations
of Sec. IV. In Sec. III, we gave some arguments in support of
the four hypotheses of Sec. II. None of these arguments can
be regarded as a mathematical derivation, and we can imag-
ine that some details, such as the precise shape of the distri-
bution of fluctuations �7� or the explicit expression �8�, could
be slightly modified by a more precise analysis. We believe,
however, given the good agreement of the predictions �6�
with the numerical simulations, that our picture is very close,
if not identical, to the actual behavior of the front for large
values of N.

An alternative picture to explain the 1/ ln3 N scaling of the
diffusion constant was proposed in �16�. So far, we have not
been able to relate the two approaches. One of the claims of
the present work is that all the cumulants have the same
1/ ln3 N dependence; it would be interesting to know if this is
also predicted by Panja’s theory �16�.

To conclude, we would like to point out the remarkable
similarity between the predictions �6� and the exact results
obtained recently �27� in the context of directed polymers.
Basically, the results of �27� are the same, mutatis mutandis,
as our present results �6�, for all the cumulants. The only
significant change is that the 3 ln ln N for the velocity and
the 1/ ln3 N dependence for all the cumulants in Eqs. �6�
corresponds, in �27�, to a ln ln N for the velocity and a
1/ ln N for all the cumulants �see Eq. �23� of �27� with L
=ln N and where the term L+ln L in the velocity corresponds
to vcutoff, as seen from Eq. �28� of �27��. What is interesting is
that our scenario of Sec. II for FKPP fronts applies also for
the system studied in �27�: Indeed, the fluctuations of the
position are mainly due to the rare big events taking place at
the tip of the “front” �see the last paragraph before the con-
clusion of �27��, the position of the rightmost particle is
given by Eq. �7� �see Eq. �32� of �27� with �=−ln q and Xt
=ln Bt�, the effect of a large fluctuation can be written as Eq.
�8� with the L3 term replaced by L �the logarithm of Eq. �34�
of �27� can be written as in Xt+1−Xt=L+ln L+R����, relevant
fluctuations �of size ln L instead of 3 ln L� appear every L
time steps �instead of every L3 time steps� and the relaxation
time is 1 instead of L2. This similarity may add a further
piece of evidence for our results.
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APPENDIX A: LIMIT N\�

In this appendix, we try to provide an argument for the
exponential decay �7� of the distribution for the width of the
front. To this aim, we consider a very simple model of
reaction-diffusion: particles diffuse on the line, and during
each time interval dt, each particle duplicates with a prob-
ability dt. The motions of all the particles are uncorrelated.

If one added a saturation rule as described at the begin-
ning of Sec. II, the density of particles �or the number of
particles on the right of x, depending on the precise satura-

tion rule� would be described by a stochastic FKPP equation.
However, the saturation affects only the motion of particles
in the bulk of the front, where the density is high. As the
fluctuations develop in the low-density region, it is reason-
able to assume that the distribution of the size of the fluctua-
tions are well described by the model without any saturation.

For this model without saturation, let Pt�x� the proba-
bility that, at time t, no particles are present on the right of x
given that, at t=0, there is a single particle at the origin:
P0�x�=��x�. During the first “time step” dt, the only particle
in the system moves by a quantity ��dt where � is a Gauss-
ian number of variance 2 and duplicates with a probability
dt. If it duplicates, the probability Pt+dt�x� is the probability
that the offsprings of both particles are on the left of x. As
the particles have uncorrelated motion, this is the product of
the probabilities for each offspring. Finally, one gets �28�

Pt+dt�x� = �Pt�x − ��dt��1 − dt� + Pt
2�x − ��dt�dt� ,

where the average is on �. After simplification,

�tP = �x
2P − P + P2. �A1�

One notices that 1− Pt�x� is solution of the deterministic
FKPP equation �1�. Therefore, for large t and x �2,12,25�,

1 − Pt�x� � ze−z−z2/4t for z = x − 2t +
3

2
ln t .

Let Qt�x� be the probability that there are no particles on the
right of x when the initial condition is a given density of
particles �0�x�. Using the fact that all the particles are inde-
pendent, one gets easily

Qt�x� = exp�−
 dy�0�y��1 − Pt�x − y��� . �A2�

�0�y� needs to reproduce the shape of the front seen from the
tip. Starting from �5a�, we write ��y�=Nhcutoff�L+y� and take
the large-N limit. One gets �0�y�=−y exp�−y� for y�0 and
�0�y�=0 for y�0. Evaluating the integral in Eq. �A2�, one
gets, for large t and x−2t��t,

Qt�x� � exp�− Ce−�x−2t�� . �A3�

�Notice that the �3/2�ln t factor canceled out.�
The probability distribution function of the rightmost par-

ticle is clearly �xQt�x�. We see that in this stochastic model,
the front moves at a deterministic velocity equal to 2 and that
the position of the rightmost particle around the position of
the front is given by a Gumbel distribution.

From �A3�, the distribution �xQt�x� gives our first hypoth-
esis �7� for large fluctuations ��=x−2t�1�. Our attempts to
check numerically �A3� by simulating fronts with a large but
finite number of particles confirmed this exponential decay
for large �, but showed some discrepancy for ��0, which
we do not understand. This, however, does not affect the
hypothesis �7�.

APPENDIX B: MOVING WALL

We consider again the reaction-diffusion model intro-
duced in Appendix A. As we said, one needs to add a satu-
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ration effect to obtain a propagating front equation for the
density, but doing so introduces correlations in the motions
of the particles that make the model hard to solve. In this
appendix, we introduce an approximate way of adding a
saturation effect which does not introduce any such correla-
tion.

In a real front, the tip is subject to huge fluctuations
happening on short time scales. On the other hand, the bulk
of the front moves smoothly and adjusts very slowly to the
fluctuations happening at the tip. Therefore, we believe that,
for times not too large, it is a reasonable approximation
to assume that the bulk of the front moves at a constant
velocity.

To implement this idea, our model is the following: a wall
starting at the origin is moving to the right at a constant
velocity v. Particles are present on the right of the wall. The
particles are evolving as in Appendix A, except that when-
ever a particle crosses the wall, it is removed.

We first consider a single particle starting at a distance z
of the wall. After a time t, either all the offsprings of this
particle have been caught by the wall or some have survived.
We want to compute the probability Et�z� that all the par-
ticles have been caught at time t. The original particle, after
a time dt, is at a distance z−vdt+��dt from the wall, and it
might have duplicated with probability dt. Using the same
method as in Appendix A, one gets

�tEt = �z
2Et − v�zEt − Et + Et

2, �B1�

with the conditions

E0�z� = 0 for z � 0 and Et�z� = 1 for z � 0. �B2�

In the long-time limit, Et�z� converges to the stationary so-
lution E��z� and one recognizes that h�z�=1−E��−z� is the
stationary solution of the FKPP equation �1� if z=x−vt. In
other words, 1−E��−z� is the shape of a traveling front. As
this shape reaches 0 for z=0, it must be a front with a sine
arch and a velocity v smaller than 2, as in �5�. So if v�2, the
probability 1−E��−z� is the shape of the front with a cutoff:

1 − E�z� � Le−Lsin	�
z

L

ez where v = 2 −

�2

L2 . �B3�

�The extra factor e−L comes from the fact that z=0 is the
tip of the front in �B3� while it is the bulk of the front in
�5a�. If v�2, all the particles eventually die and Et�z� con-
verges to 1.�

If one starts with a density ��z� of particles at time t=0,
the probability Et

* that everybody dies is given, similarly to
Eq. �A2�, by

Et
* = exp�− 


0

+�

dz ��z��1 − Et�z��� . �B4�

We consider, as an initial condition, the situation in the real
front with ��z�=Nh�z��NLsin��z /L�exp�−z� for z�L as in
�5a�. One gets, for long times,

Et
* → exp�− CNL3e−L� . �B5�

We see that the system survives if

NL3e−L � 1 or L � ln N + 3 ln ln N , �B6�

which, given �0=1, is exactly Eq. �9�.
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