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Abstract – A branching random walk in presence of an absorbing wall moving at a constant
velocity v undergoes a phase transition as v varies. The problem can be analyzed using the
properties of the Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation. We find that the
survival probability of the branching random walk vanishes at a critical velocity vc of the wall
with an essential singularity and we characterize the divergences of the relaxation times for v < vc
and v > vc. At v= vc the survival probability decays like a stretched exponential. Using the F-KPP
equation, one can also calculate the distribution of the population size at time t conditioned by
the survival of one individual at a later time T > t. Our numerical results indicate that the size of
the population diverges like the exponential of (vc− v)−1/2 in the quasi-stationary regime below
vc. Moreover for v > vc, our data indicate that there is no quasi-stationary regime.
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There has been a long-standing interest in problems of
non-equilibrium critical phenomena and phase transition
into absorbing states [1,2] (directed percolation or contact
processes [3,4], reaction diffusion problems [5,6]). The
goal of the present letter is to analyse one such problem,
which has been already considered by several authors in
the mathematical literature [7–10]: a branching random
walk in presence of an absorbing moving wall at a
constant velocity v. For such a problem, there is an
obvious absorbing state (all the particles are absorbed
by the wall) and in this letter we analyse the critical
behaviour of the survival probability as the velocity v
of the wall varies. Our approach is based on an analysis
of the Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP)
equation [11–17] which is known to be related to
branching random walks [10,18]. We also show that the
F-KPP equation allows us to calculate the properties of
the quasi-stationary regime.
In absence of an absorbing wall, a one-dimensional

branching random walk has a number of descendants
which grows exponentially with time and these descen-
dants occupy a region which spreads [10,18] in space at
a known velocity vc (which can be calculated from the
knowledge of the branching and hopping rates of the walk).

(a)E-mail: bernard.derrida@lps.ens.fr
(b)E-mail: damien.simon@lps.ens.fr

In presence of an absorbing wall moving at a constant
velocity v, there is a competition between this exponential
growth of the number of descendants and the absorption
by the wall. One quantity of interest is the survival
probability Q(x, t), for a particle starting at t= 0 at
distance x from the wall, to have at least one surviving
descendant at time t. If v > vc (i.e. if the wall moves
faster than the spreading velocity of the population
in absence of the wall), Q(x, t)→ 0 as t→∞. In this
letter we study the phase transition which takes place at
v= vc when v varies [8]. We will show that for v < vc, the
survival probability Q(x, t) has a non-zero long time limit
which vanishes with an essential singularity as v→ vc.
We will also show that the characteristic time scale τ
(on which Q(x, t) converges exponentially to Q(x,∞))
diverges like |v− vc|− 32 below vc and like |v− vc|−1 above
vc. At v= vc, Q(x, t) decays like a stretched exponential
as already proved by Kesten [7].

Our motivation for the problem in presence of a
moving absorbing wall comes from the interest for simple
models of evolution [19,20] proposed recently to study
the in vitro evolution of a population of DNA molecules
selected according to their ability to bind to some
target proteins [21]. In these models, the position of an
individual represents its adequacy to the environment
(or fitness or ability to bind), meaning that when selection
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Fig. 1: Branching random walk in presence of an absorbing
wall. The circles represent branching events and the crosses
absorption by the wall.

acts, the individuals with lowest x are eliminated first.
The branching random walk has the effect of modeling
the growth of the population and the mutations through
diffusion along the fitness axis. In the models studied in
[22–24], the size of the population is kept fixed: selec-
tion means that whenever new individuals appear in the
population, the ones with lowest x are eliminated in order
to keep the size of the population constant. Here the
role of the wall moving at constant velocity is also to
eliminate the less fitted individuals. Thus the size of the
population can vary and even vanish. Besides, the models
of evolution studied in [19,20] have a broader interest
in physics as they are also related to models that appear
in the theory of disordered systems [25], in reaction-
diffusion problems [26,27] or in particle physics [28–30].
In the first part of this letter, we consider a continuous

branching random walk (see fig. 1) in presence of a
wall moving at constant velocity v (for the simulations
below we will use a discrete space-time version to
facilitate the programming). The diffusion is described
as follows: during dt, the position of an individual is
shifted by an amount η

√
dt, where η is a random variable

of zero mean and of variance 2. For an initial individual
at distance x> 0 from the wall at t= 0, one defines the
survival probability Q(x, t) that at least one of its
descendants is still living at t (i.e. 1−Q(x, t) is the
probability that all the descendance of the individual
initially at position x ahead of the wall has been absorbed
by the wall). To write the evolution of the probability
Q(x, t), it is convenient to decompose the time interval
[0, t+dt] into the first time interval dt and a remaining
time interval [dt, t+dt]. During the first interval dt,
while the wall moves by vdt, the single particle initially
at position x diffuses and can branch with probability
βdt into two particles, as expressed by the two terms of
the following equation:

Q(x+ vdt, t+dt) =

∫
e−η

2/4dη√
4π

Q(x+ η
√
dt, t)

+βdt(Q(x, t)−Q(x, t)2), (1)

which becomes, by taking the limit dt→ 0
∂tQ= ∂

2
xQ− v∂xQ+β(Q−Q2), (2)

with the boundary conditions Q(0, t) = 0 and Q(x, 0) = 1.
It is important to notice that (2) is exact. The origin of
the term Q(x, t)2 is that after a branching event, the two
offspring have independent evolutions and therefore their
survival probabilities are uncorrelated.
All the x and t dependence of Q(x, t) can be extracted

from the analysis of (2) which is, up to the boundary
conditions, the Fisher-KPP equation [11,12] in a moving
frame at velocity v.
Q(x, t) is obviously a monotonic function (increasing

with x and decreasing with t: it increases if one starts
further from the wall and it can only decrease with time).
Therefore its t→∞ limit Q∗(x) exists and satisfies

∂2xQ
∗− v∂xQ∗+β(Q∗−Q∗2) = 0, (3)

which is the usual equation for the shape of a front solution
of the F-KPP equation moving at velocity v on the infinite
line [16].
On the infinite line [16], for every velocity v, there is

(up to a translation) a solution Qv(x) of (3) such that
Qv(x)→ 0 as x→∞ and Qv(x) = 1 as x→∞. These
solutions are monotonic functions of x for v > vc ≡ 2

√
β

whereas for v < vc they have damped oscillations Qv(x)�
Ae

v
2 x cos[

√
v2c − v2(x−x0)/2] as x→−∞. The relation

between the decay of Qv(x) as x→−∞ and the velocity is
easy to obtain: one assumes that Qv(x)∼ eγx in the region
where Qv(x)� 1 and one gets from (3) that v is related
to γ by

v(γ) = γ+
β

γ
. (4)

The monotonic decay for v > vc or the damped oscilla-
tions v < vc are simply due to the fact that the solutions
γ of the equation v(γ) = v are real or complex conjugate
γ = γR± iγI . It is also known that, at v= vc, the asymp-
totic decay has the form

Qvc(x)� (−A(x−x0)+B)eγc(x−x0), (5)

where x0 is arbitrary and γc =
√
β is the value of γ for

which v(γ) is minimum (and where v(γc) = vc).
With the boundary condition Q∗(0) = 0 the solution

of (3) is obviously Q∗(x) = 0 for v > vc as the wall moves
faster than the spreading velocity vc of the population.
On the other hand, for v < vc, the solution is the right-
most positive arch of the solution on the infinite line.
As v approaches vc, the region where Q

∗ is small and
where the quadratic term in (3) can be neglected becomes
larger and larger. For 0< vc− v� 1 the solutionQ∗ can be
decomposed into two parts: a region x>L, where Q∗(x)
is of order 1 and resembles the solution Qvc(x) on the
infinite line for v= vc (whose asymptotics decay is (5))
and a region 0<x<L, where Q∗(x) is small and of the
form Q∗(x) =Csin(γIx)eγRx. To match the asymptotic
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Table 1: Critical behaviour (7), (12), (13), (15) near vc of the survival probability Q(x, t) at large time t for an arbitrary v(γ).

Velocity v� vc v= vc v� vc
Q∗(x) ∼ exp

(
− γc
√
π2v′′(γc)
2(vc−v)

)
0 0

Relaxation ∼ e−t/τ ∼ e−γc
(
3π2v′′(γc)/2

)1/3
t1/3 ∼ e−t/τ̃

Times τ , τ̃ τ � 12
√
π2v′′(γc)

2 (vc− v)− 32 τ̃ � 1
γc
(v− vc)−1

decay of (5) near x=L, one should take L= π/γI =
2π/
√
v2c − v2 and C =Ae−γRL/γI such that

Q∗(x)�AL sin
(πx
L

)
eγR(x−L). (6)

This implies that as v→ v−c , the survival probability
vanishes with an essential singularity

Q∗(x)∼ exp
[
− π

√
γc√

vc− v + γcx
]
. (7)

One can remark that a shape of Q∗(x) made up of two
parts is almost exactly the same as the shape of a moving
front on the infinite line, in presence of a cut-off [17].
To obtain the long time dependence of Q(x, t) we

assume that one can still decompose Q(x, t) into two parts:
a region 0<x<Lt, where Q(x, t) is small with a solution
of the form

Q(x, t) =ALt sin
(πx
Lt

)
eγc(x−Lt) (8)

(this assumption will be tested in fig. 2 below) and a
region x>Lt, where Q(x, t) is not small and resembles (5).
One can check that (8) is indeed solution of (3) in the
range 0<x<Lt to leading non-vanishing order in L

−1
t

and v− vc provided that Lt satisfies

∂tLt = v− vc+ π2

γcL
2
t

. (9)

As one expects (at least for v < vc) that Lt/L∼Lt
× (vc− v)1/2→ 0 as t→ 0, this determines Lt and one gets
that for 0< vc− v� 1,

Lt =
π√

γc(vc− v)
F

(√
γc

π
(vc− v)3/2t

)
, (10)

where the function F (z) satisfies ∂zF =−1+F−2 whose
solution (given that F (0) = 0) is

−2F + ln 1+F
1−F = 2z, i.e. F = tanh(F + z). (11)

For large z, one gets F � 1− 2e−2z−2. Therefore (10)
implies that for v→ v−c the convergence time τ of
the exponential decay of Q(x, t) towards the fixed
profile Q∗(x) is

τ ∼ (vc− v)−3/2π/(2√γc). (12)

For small z, one can expand the solution of (11)
F (z) = (3z)1/3− 3z/5+O(z5/3). This leads to Lt �
(3π2/γc)

1/3t1/3+O((v− vc)t) and therefore to a stretched
exponential decay of Q(x, t) at v= vc

Q(x, t)∼ exp[−(3π2/γc)1/3t1/3]. (13)

At any finite t, one can notice (eqs. (10), (11)) that Lt can
be expanded in powers of v− vc and one can get the whole
time dependence for v > vc by an analytic continuation
of the case v < vc. In particular, the scaling function F̃
which replaces (10) for v− vc > 0 is related analytically to
the function F obtained for v− vc < 0 and (10), (11) are
replaced by

Lt =
π√

γc(v− vc)
F̃

(√
γc

π
(v− vc)3/2t

)
,

F̃ (z) = tan(F̃ (z)− z).
(14)

Clearly F̃ (z) = z+π/2− 1/z+O(1/z2) for large z. Thus
for 0< v− vc� 1 and (v− vc)3/2t� 1, one has Lt �
(v− vc)t and for fixed x

Q(x, t)∼ exp[γc(x− (v− vc)t)]. (15)

Both (13) and (15) agree with earlier results by Kesten [7]
and Harris and Harris [8].
To study numerically the time evolution of the survival

probability Q(x, t), it is more convenient to use a discrete
space time version of the problem. Here we consider
the case where x takes only integer values. At every
time step, t→ t+1, each individual has k offspring and
each offspring has a probability py of being produced at
position x+ y. Then the time evolution of Q(x, t) which
generalizes (2) is given by

Q(x+ v, t+1) = 1−
(
1−
∑
y

pyQ(x+ y, t)

)k
(16)

and by looking at the region where Q(x, t)∼ eγx is small,
the expression (4) of the velocity v(γ) becomes

v(γ) =
1

γ
log

[
k
∑
y

pye
γy

]
.

As before, the spreading velocity vc of the population
in absence of the wall is vc =minγv(γ). In this case one
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Fig. 2: Shape of the rescaled survival probability
Q(x, t)e−γc(x−Lt)/Lt in the linear domain at different
times t= 105 (dashed), 5 · 105 (circle), 11 · 105 (line). The
corresponding lengths are Lt = 1.05 · 102, 2.01 · 102, 2.93 · 102
for v− vc � 10−4 > 0 (δ= 15

2 ln 4
(vc− v) at first order for this

particular model). The length Lt is measured directly as the
point where Q(Lt, t) = 0.5 by linear interpolation between the
sites of the lattice. The observed shape agrees with (8).
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Fig. 3: The points represent the logarithm of the survival prob-
ability Q(x, t) at x= 1 for different values of v− vc both below
and above the critical velocity, obtained by iterating (16). The
lines are the theoretical predictions (8), (10).

can generalize the above calculations to an arbitrary v(γ)
and the results (7), (12), (13), (15) are replaced by the
expression of table 1.
To facilitate the analysis and avoid periodic or aperiodic

dependence due to the commensurability of v, we decided
to fix v= 1 for the velocity of the wall and to vary vc
by changing py. In all the figures below, we show the
case where p2 = 1/18+ δ, p1 = 1/18, p0 = 16/18− δ. Then
by varying δ we can vary vc and therefore the difference
vc− v (which vanishes for δ = 0). More precisely, for
small vc− v, one has the first-order relation δ � 15
× (vc− v)/(2ln4) in the present case.
In fig. 2 we test our assumption (8). For an initial

individual at x= 1, i.e. for Q(x, 0) = δx,1, we computed
Q(x, t) by iterating (16). We plot Q(x, t)e−γ(x−Lt)/Lt
which according to (8) should depend on x/Lt only.
In fig. 3, we compare the values of Q(1, t) obtained by

iterating (16) with the theoretical predictions (8), (10).
The agreement is excellent.
At t=∞, the size of the population is either zero

(with probability 1 if v� vc and 1−Q(x,∞) if v < vc)
or infinite. At large but finite final time T , there are
however events corresponding, for example, to having
exactly one survivor. One can then try to understand
which strategy leads to such events. For v < vc, t� 1
and T − t= t′� 1, the system adopts a quasi-stationary
regime during which its properties do not depend on
the initial conditions (number and positions of the
individuals at t= 0). In particular, the average population
size at time t conditioned by the survival of only one
individual at final time T = t+ t′, do not depend on t as
long as t� 1 and t′� 1.
We are now going to sketch how the properties of this

quasi-stationary regime can be computed from (2) or (16).
Details will be published in a future work [31]. Let us
introduce the generating function

G(x, t; f) =

〈
Nt∏
i=1

e−f(x
(t)
i )

〉
, (17)

where f is an arbitrary function, Nt is the size of the

population at time t and x
(t)
1 , ..., x

(t)
Nt
are the positions of

individuals at time t. By analysing what happens during
the very first instant dτ , as in (1), one finds that

G(x+ vdt, t+dt; f) = βdt
(
G(x, t; f)2−G(x, t; f)

)
+

∫
e−η

2/4dη√
4π

G(x+ η
√
dt, t; f). (18)

Therefore 1−G(x, t; f) satisfies the F-KPP equation (2)
with the boundary conditions G(x= 0, t; f) = 1 and
G(x, t= 0; f) = e−f(x). In the discrete spacetime case, a
similar reasoning shows that 1−G satisfies (16).
One can also consider generating functions at two (or

more) different times 0< t< t+ t′ defined as

H(x, t, t′; f1, f2) =

〈
Nt∏
i=1

e−f1(x
(t)
i )

Nt+t′∏
j=1

e−f2(x
(t+t′)
j )

〉
.

(19)

Like in (18), one can show that 1−H(x, t, t′; f1, f2) as
a function of x and t satisfies (1) or (16) with boundary
conditions H(x= 0, t, t′; f1, f2) = 1 and H(x, 0, t′; f1, f2) =
e−f1(x)G(x, t′; f2) which, as we have just seen, can also be
determined from (1) or (16).
If one chooses f1 = λ and f2 = µ, thenH(x, t, t

′; f1, f2) =
〈e−λNt−µNt+t′ 〉 is the generating function of the sizes of
the population at two different times. If one expands H to
first order in powers of e−µ and of λ

H(x, t, t′;λ, µ) � H00(x, t, t′)+ e−µH10(x, t, t′)
+λH01(x, t, t

′)+λe−µH11(x, t, t′), (20)
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Fig. 4: On the left side: average size of the population at 0� t� T conditioned by the existence of a unique survivor at T = 250000
for different values of v− vc < 0. The results are obtained using (16), (20), (21). On the right side, the ratio 〈N2t 〉T /〈Nt〉2T is
represented for 0� t� T for the same values of v− vc < 0. In both cases, the initial individual at t= 0 is at x= 1. A quasi-
stationary regime (with constant 〈Nt〉T and 〈N2t 〉T /〈Nt〉2T ) is observed as soon as T is much larger than the relaxation time τ .

one gets that the average size of the population 〈Nt〉T=t+t′
at time t conditioned on having a single survivor left at
time T = t+ t′ is given by

〈Nt〉T=t+t′ =−H11(x, t, t′)/H10(x, t, t′). (21)

Numerical values obtained by iterating the equations
satisfied by H00, H10, H01 and H11 (derived by replacing
H by its expansion (20) into (16)) are shown in fig. 4. By
pushing further the expansion (20) in powers of λ, one can
have access to higher moments of the population size Nt.
In fig. 4, we see that for v < vc both 〈Nt〉T and

〈N2t 〉T /〈Nt〉2T become constant over a very long time
interval, indicating that there is a quasi-stationary regime.
As v→ vc, the size of the population in this quasi-
stationary regime diverges and the ratio 〈N2t 〉T /〈Nt〉2T
seems to converge to a value close to 2. This indicates
that the fluctuations of the population sizeNt in the quasi-
stationary regime are of the same order as 〈Nt〉 itself.
For v < vc in fact, the whole distribution of Nt at

0� t conditioned on the survival of a single individual
at T = t+ t′ > t is independent of the position x of the
initial individual and reaches a quasi-stationary regime [9]
before a final relaxation to the final state containing only
one individual. In this quasi-stationary regime one can
show from (2) and (20), (21) that the average size of the
population 〈Nt〉qs can be calculated for v→ vc (details will
be published in [31]) and one finds

〈Nt〉qs ∼ exp
[
γc

√
π2v′′(γc)
2(vc− v)

]
. (22)

For v > vc, no quasi-stationary state is observed (see
fig. 5). Instead, the evolution of the system conditioned

on having a single survivor at a later time T can be
divided into two parts. The first one corresponds to a
rapid growth of the population, which can be described
by the modified dynamics introduced in [7], followed by
a regular absorption of individuals by the wall leading
to the survival of exactly one individual at T . Numerical
results obtained from (16) and (20), (21) are presented
in fig. 5: they indicate that 〈Nt〉T takes a scaling form
〈Nt〉T ∼ exp[Tf(t/T )].
In this article, we have seen how a branching random

walk in presence of a moving absorbing walk undergoes
a phase transition at a critical velocity vc with a survival
probability which vanishes with an essential singularity (7)
and decays with time like a stretched exponential (13) at
the transition. We have also seen how the properties of the
quasi-stationary regime [9] can be computed ((17)–(21))
from the travelling-wave equation.
It is interesting to notice that several of our results

are very reminiscent of what is known of noisy F-KPP–
like equation [17,26]. First the relation (22) between
the size N of the population in the quasi-stationary regime
and the velocity can be rewritten as

v− vc �−π
2v′′(γc)
2γ2c

1

ln2N
, (23)

which is exactly the prediction of the cut-off approxima-
tion [17,26,32]. Moreover, for v < vc, the relaxation time
τ ∼ (vc− v)−3/2 can be rewritten as

τ ∼ ln3N, (24)

which is exactly what was observed recently for the coales-
cence times in the genealogies of evolution models [20,33]
related to these noisy travelling-wave equations.
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Fig. 5: The logarithm of the average size of the population
divided by T at 0� t� T conditioned by the existence of
a unique survivor at T is plotted as a function of the
rescaled time t/T for v− vc = 10−2 and different final times
T = 62500, 125000, 250000. Unlike fig. 4, no quasi-stationary
regime is observed.

Our results on the quasi-stationary regime presented
here (eq. (22) and figs. 4 and 5) are preliminary and will
be developed in a forthcoming work [31].
Beyond the understanding of this quasi-stationary

regime, it would be interesting to see whether our main
results which are based on our guess (8) for the shape of
the solution of (2) could be recovered by more standard
methods like the renormalization group approach [5] or
the phenomenological picture [32] of noisy fronts. Among
other possible extensions of the present work, one could
try to study how our results would be modified when the
position of the wall has a more complicated evolution
than a constant velocity [34].
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