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Abstract We obtain explicit expressions for the long range correlations in the ABC model
and in diffusive models conditioned to produce an atypical current of particles. In both cases,
the two-point correlation functions allow one to detect the occurrence of a phase transition
as they become singular when the system approaches the transition.
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1 Introduction

A generic property of non-equilibrium systems, maintained in a steady state by contact with
several reservoirs of particles at unequal chemical potentials (or by contact with several
heat baths at unequal temperatures), is the presence of long range correlations [1-6]. In
diffusive systems, these long range correlations and their dependence on the system size
[1, 7] can be related to the non-local nature of the large deviation function of the density [8].
Another generic property of non-equilibrium systems is the possibility of phase transitions
for one dimensional systems with short range interactions [9-16, 18-20], in contrast with
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1014 T. Bodineau et al.

equilibrium systems where such phase transitions are excluded by the well known Landau
argument.

The goal of the present paper is to calculate these long range correlations, for two exam-
ples of diffusive systems, and to show that they become singular at the phase transition, even
when the analytic expression of quantities such as the average current or its large deviation
function has no singularity as one approaches the phase transition.

The paper is organized as follows: in Sect. 2, we analyze the ABC model [12-15, 18],
for which we compute first the correlation functions in the case of equal densities of the
three species, from the known large deviation function of the density. We then obtain the
correlation functions in the general case, i.e. for arbitrary densities, by two methods: a sim-
ple truncation procedure based on the expected scaling on the system size of the various
correlation functions and the macroscopic fluctuation theory which was used recently by
Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim [21-24] in the context of non-equilibrium
systems.

In Sect. 3 we consider the weakly asymmetric exclusion process, for which a phase tran-
sition is expected to occur in the large deviation function of the current. We calculate the
pair correlation functions, conditioned on a current deviation, and show that they become
singular at the transition.

2 The ABC Model

The ABC model [12-15, 18] describes a system of three species A, B, C of particles on a
one dimensional ring of L lattice sites. Each site is occupied by one and only one of these
three types of particles. The dynamics are fully specified by the following exchange rates
between neighboring sites:

AB — BA
1
BC = CB (1
1
q
CA = AC
1

where ¢ <1 (the range ¢ > 1 is related to the case ¢ < 1 by a left-right symmetry). Since
the number of particles of each species is conserved by the dynamics, the properties of the
system depend on the global densities r4, g, rc of the three species and on the parameter
q. As all sites are occupied by one of the three species, one has of course

ra+rg+re=1 2)

When g =1 all allowed configurations are equally likely (and the steady state density pro-
files of the three species are flat) but as g decreases, the different species tend to segregate
and in the limit ¢ — O the steady state consists of three clusters: a cluster of all A’s followed
by a cluster of all B’s which is itself followed by a cluster of all C’s.

Let us first briefly recall some known properties of the ABC model [14]. As g varies,
with the following scaling depending on the size L of the ring,

B
=exp|—— 3
q =exp [ I 3)
one observes (for large L) phase transitions, in the steady state, at some critical value f..
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For equal densities (rp =rg =rc = %), it is known that

B =273 @

and that for 8 < B, the density profiles of the three species are flat, while they become
space-dependent for 8 > ..

A stability analysis of the flat phase leads to the following prediction of 8. in the general
case

_ 2
[1 — 2(1& +r123 +ré)

B. T ®)

which should be the exact expression as long as the transition remains a second order phase
transition. One expects, however, a first order phase transition to occur for some range of
densities at least when rf‘ + rlzg + ré < 2(rf\ + rg + ré), and the precise location of this first
order transition is not known. In the flat phase, the steady state currents have expressions

ra(rc —rp)

Ja=p i3

(and similar expressions for Jp and J¢) which do not show any singularity as § — B_.
In the steady state, the probability of observing macroscopic profiles p4(x), pp(x), pc(x)

(where 0 < x < 1 is a macroscopic coordinate along the ring) has the following large L
dependence

Pro(p4(x), ps(x), pc(x)) ~ exp ( — LF[pa(x), pp(x), pc(x)])~ Q)

The large deviation function F of the density profiles is known for the ABC model when
1
rpa=rp=rc= §

Flpa@). pp(x), pc()]

1
=K+/ dx [pa(x)Inps(x) + pp(x) Inpp(x) + pc(x) Inpe(x)]
0

1 !
+ ,3/ dx/ dzz[pp(x)pc(x +2) + pc(x)pa(x +2) + pa(x)pp(x +2)] (7)
0 0

where « is a normalisation constant, but it is not known for arbitrary r,, rg, rc. So far it has
only been computed in [14] to order 82

Fpax), psx), pc )]

1
=K +/ dx[pa(x)Inpa(x) + pp(x)In pg(x) 4+ pc(x) In pe(x)]
0
1 1
48 [ dr [ dzzlontpcts 2+ pelo)pate +2)+ pae)pax + 2]
0 0

1 1
- %/32/ dx/ dz z(1 = 2)[ra(l = 3ra)pp(x¥)pc(x +2)
0 0

+rg(1 = 3rp)pc(x)pa(x +2) +re(1 = 3rc) pa(x) pp(x +2)]
+0(B). ®)
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2.1 The Correlation Function in the Equal Density Case

When the large deviation function is known, as in (7) for the equal density case, the calcu-
lation of the correlation functions in the flat phase can be easily done from the contribution
of the fluctuations of density around the flat profiles. For a small perturbation of the form

1
palx) = 3 + aj cos(2mnx) + a, sin(2wnx)

1
pp(x) = 3 + by cos(Qrnx) + by sin(2rnx)

with n > 1 and pc(x) =1 — pa(x) — pg(x), one gets from (7) at quadratic order in
ay,az, by, by

Pro(pa(x), ps(x), pc(x))

3L 3L
~ exp _—(012 +a1by + b% + a% +ab, + b%) + —'8(611172 — azbl) .
2 dnm
Therefore, the covariances in the steady state of the n-th Fourier coefficients of the densities

pa(x) and pp(x) are

161272
(i) = {a3) = (b1 = (03) = 3 —
(a1az) = (b1b2) =0
. dwimr
3L(12n%m2 —,32)

4
{a1by) = —{azby) = W;ﬁ_ﬂz)

{aiby) = (axhy) =

Then if one sums over all the fluctuations, i.e. over all the wave numbers n on the ring, one
obtains

1672 Z n?cos2mn(y — x))

(PA(X)PA(}’)>¢ = 3L o (12,127.[2 _ /32) (9)
-8 2 2 2 _ 4 in(2 —
(or s = o Y e CTRE ) TR g ISR )

(121272 — B2) 3L & (1207 — B2)

n>1 1

and similar expressions for the other correlation functions (we will see below in (36), (37) a
different way of writing these expressions). Clearly these expressions become singular as 8
approaches the critical value . = 27+/3.

2.2 The Correlation Function for Arbitrary Densities by a Simple Truncation Procedure

Let us introduce the notation A; = 1 when site i is occupied by a A particle, A; = 0 other-
wise, and similarly B; or C; for a B or a C particle, so that on each site i one has

Ai+ B +Ci=1. a1
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One can derive from the dynamical rule (1) the following exact evolution equations:

d(A;)
dt

=q(Ai—1B;) + (BiAiv1) — q(A;iBiy1) — (Bi—14;)
+ (Ai1Ci) + q(CiAiv1) — (AiCip1) — q{Ci1 A}) (12)

where ( ) stands for the expectation with respect to the dynamics. For |j —i| > 2

d{A;Aj)

- q{A;1B;Aj) +(BiAi1A)) —q{A;Bi1A;) — (Bi1A;Aj)
+q{AiA;1B;) +(A;BjAj 1) —q(AiA;Bj1) — (AiBj1A))
+(Ai-1CiA)) +q(CiA11A;) — (A;Ci1Aj) — q(Ci_1AiAj)
+(AiA;1C;) +q(AiCjA ;1) — (AjA;Ci) —q(AiCi1A;)  (13)

d{A;B;)

FT q{A;—1B;B;) + (BiAiy1B;) — q{A;Bi+1B;) — (Bi-1A;B;)

+q(AiB;1Cj) + (AiCjBj1) —q({AiB;Cj1) — (AiCj1 Bj)
+(Ai—1CiBj) +q(CiAi11Bj) — (A;Ciy1Bj) — q{Ci_1 A; Bj)
+(AiB;14;) +q{A;A;Bj1) — (AiBjAj 1) —q{AiA; 1 B;)  (14)

and for j =i + 1:

d{A;Bit1)
—a q(Ai—1B;iBi11) + (BiAiv1) —q(AiBiv1) — (Bi—1A; Biy1)
+ (A;Cit1Bi2) — q(AiBi11Ciy2)
+(A;i1CiBir1) — q{Ci—1A;Biy1) + q(A;j Aiv1 Bi1o) — (Ai Biv1Aiy2)

(15)

and similar expressions for the evolution of the other one or two point functions. In the
steady state, the left hand sides of (12)—(15) vanish.

For diffusive systems, one expects the long range part of the p-point connected part of
the correlation functions to scale as L'~? in the steady state [1, 7, 8]. This means that, for
large L, in the flat phase of the A BC model,

' o
(AiBj) = (Ai)(Bj) + (AiBj)c =rarp + ZFab (j L l) 1o

where F,;, stands for the rescaled connected two-point function and

A;B;Cy) = +1 Fj_i+Fk_i+Fk_j
(1]k>—rArBrC L rcFap L rprlac L ralpe L

+ LG, ({2 (17)
LZ abc L 5 L

where G, stands for the normalized connected three-point function. Using similar nota-
tions for all the other 2-point and 3-point functions and the relation (11), and replacing the
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various correlation functions in (13), (14), (15) by their scaling forms (16), (17), one gets to
leading orders in L~' (order L3 for (13), (14), and order L~' for (15))

Faa(x)” = ﬂrA[Fha(x), - Fab(x)/]
Fip (x)" = Brg[Fpa(x) — Fap(x)']

Fop(0)" = Blrg Faa(x) +raFpp(x)" — (1 = 2rs — 2rp) Fup(x)'] )
Fpa(0)" = Bl—rpFaa(x)" — raFpp(x) + (1 = 2rg — 2rp) Fpa (x)']
as well as
Fap(0) — Fpa(0) =3Brarpre. 19)

Note that in (18) at leading order in 1/L, the contribution of the functions G’s which appear
in (17) drops out. Note also that

Fab(x) = Fba(l —X).

The general solution of (18) is

Foo(x) = Koq — 2K Br cos <¥(2x — 1))
Fpp(x) = Kpp — 2K Brp cos (—ﬂ\z/z(Zx — 1)) (20)
Fop(x)=Fpo,(1 —x) =Kz + K(1 —2rc)pB cos (%(2)( — 1))

— KB+/Asin (@(u - 1))

where K, K4, K., Kpp are integration constants and

A=1-20r5 +rg+rd). 2D
Relation (19) leads to
3VAI’BVC
K=———7—. (22)
24/ Asin @

The remaining constants can be determined by using the fact that

~

-1
Ny(Ny— 1
<A,-A,«+k>=¥

1

~
Il

and similar sum rules for the other correlation functions which imply that
1 1 1
/ Foa(x)dx = —ra(1—ra), / Fyp(x)dx = —rp(l —rp), / Fap(x)dx =rurp
0 0 0
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and the final result is for 0 < x < 1

BYA A
_ 3r/24r3rc 5\/Z 1n( 2
Faa(x)_—rA(l—rA)— m ﬂCOS (T(ZX_ 1)) - JK (23)
BYA
3rarpre ,3*/_ Sm(T)
Fab(_x)errB—‘,—m (1—2}’(;) IBCOS (—(2 _1)> \/Z
—B+/Asin (@m - 1))] (24)

As f — % the correlation functions diverge and one recovers the expression (5) of the

second order transition.

As starting from (16), (17) we only considered the correlations in the flat phase, our
truncation procedure is unable to distinguish between a stable and a metastable phase and to
predict the occurrence of first order transitions. Thus we cannot exclude that the flat phase
becomes metastable for some values of 8 smaller than . given by (5).

2.3 The Macroscopic Fluctuation Theory

In the ABC model there is always one and only one particle per site. One can then describe
the system on a macroscopic scale and on a diffusive time, i.e. on times which scale as L2,
by only two density profiles p,(x, T), pg(x, T).

The key quantities to the macroscopic description of the system are the typical currents
for given density profiles and their variance in the steady state. Let Q[A (i), Q,B (i) be the
fluxes of A, B particles between sites i and i + 1 during a long microscopic time ¢. Starting
at time 0 from smooth macroscopic profiles p4(x), pg(x), the densities evolve according to
[14]

depa(x, T) =07 pa(x, T) + B (pa(x, T)(p5(x, T) — pc(x, 1)) 03)
dpp(x,T) =0 pp(x, T) + B3 (pp(x, T)(pc(x, T) — palx, 1))

where the macroscopic time 7 scales like #/L?. One can understand (25) from (12) by saying
that for large L, there is a local equilibrium at position x, characterized by the densities
pa(x, ) and pg(x, T). In this local equilibrium, the hydrodynamic currents are given by

dp
qa = __d; — Bpalps — pc)
(26)
dpg
a5==""" Bos(pc — pa).
X

To compute the covariance matrix of the currents, it is enough to consider the system in
equilibrium with 8 = 0 and constant densities p,4, pp. In this case, the A-particles evolve as
a Symmetric Simple Exclusion Process (SSEP) (the B, C particles play the role of holes)
and the variance of the total current QtA = Z{“:l Q,A (i) is given by [17]

1
0aA = tlggo i((Q,A)2> =2p4(1 = pa).
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1020 T. Bodineau et al.

In the same way, the variance of Q% = Zle Q32(i) is given by opp = 2pp(1 — pp). Finally,
if we view the C-particles as holes and the species A, B as a single type of particle, then the
evolution is the same as the SSEP at density p4 + pg, so that

Ihm —((Q, + Q, )?) =2(pa + ) (1 — pa — pg) =0as +0pa + 2043

where the covariance between the currents of A and B is then 43 = —20405.

One can adapt the macroscopic fluctuation theory [31, 32] to predict that the probability
of observing density profiles p(x, T), pg(x, T) and (rescaled) currents js(x, T), jp(x, T)
over a (rescaled) time interval 0 < v < T is given (this rescaling is discussed for example in
Sect. 5 of [28])

Pro(pa. ps. ja- jg) ~ exp (=L Zio.11(pa PB ja- jB)) 27

where

1 T
I[O,T](PA,PBJAJB):/ dx/ dtH(pa, P8, ja» jB) (28)
0 0

with

- 1 jA_qA)(UAA UAB>1(jA_qA)
H(pa, PB; jas =" :
(Pa- P5- Ja: J5) 2 (]B —qp ) \0aB OB JB — 4B
UBB(JA —qn)? —2045(jia —qa)(jp — qp) + 0aa(jp — 6]3)2
2(0440B8 —UAB)

(29)
Note that instead of (29), one could write Langevin equations for the currents

. dpa nax, )
Ja=——r Boa(pp — pc) + Nia

. dps ng(x, 7)
Ip=—" Bos(poc — pa) + i

with the following correlations of the white noises n4(x, ) and ng(x, 7)

(na(x, Onp(x, ")) =0ap(palx, 1), pp(x, 7))8(r — ')

and similar expressions for (n4(x, T)na(x, t')) and (ng(x, T)np(x, ).
As always, the currents and the densities are related by the conservation laws

dos _ _djn. dps __djn
dt dx’ dt dx
For a perturbation of the form (which satisfies these conservation laws)
pa(x, ) =ra+ k(a, coslkx + wt] + a; sinlkx + wt])
pp(x,T) =rp + k(b coslkx + wt] + by sinlkx + wt])
Jjalx, )= —=Bra(rg —rc) — w(a; coslkx + wt] + a, sin[kx + wt]) G0

je(x,7) = —PBrg(rc —ra) — w(bycoslkx + wt] + b, sinlkx + wt])
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Long Range Correlations and Phase Transitions in Non-equilibrium 1021

where
2mm
k =2nm, w= = (31)

with n € N and m € Z one expands (28)—(29) to second order in ay, a,, by, b, and the prob-
ability (27) becomes a Gaussian which leads to the following expectations

{araz) = (b1b2) =0

4rA 1

171 (BRI = drmpre = (=20 =)
£ 2Bk(1 = 2r)(re —rg)o — (1 — ) (k* + a)z))

4 1
(arby) = (azby) = — ’LA;B = ( — B [Ararg — 1 — 2rc +8r2] (32)

+28k(rp — o + (K + o))

1 24,3k3rArBrC
b = — b = —
(a1by) (a2b1) IT r,

where A is defined in (21) and
T = B A% — 28 A(KY — 0?) + (K* + D).

In one adds up the contributions of all perturbations of the form (30), one gets for the
correlation functions

(0A(X)pA())e Zk2 ) coslk(y —x)]

(pa(X)pp(¥))e =Y _K*(b}) coslk(y — x)] + k*(arby) sin[k(y — x)].
k,w

In the long time limit the sums over the discrete frequencies (31) can be replaced by an
integral and one gets

(pa(xX)pa(¥))e
1 Z ralB*Bra(l —2ry)* — A2 —5ra)) + 87%n*(1 — ry)] cos@rn(y — 1)
= 4m2n? — B2A
(33)
1 rarg[2B2(A = 3rc + 6rk) — 872n?]
(pa(®)p5 (M) = — 21 T —FA cos(2mn(y — x))
- Z L2pmn rarsre G0 amn(y — x). (34)

4m2n? — BZA
In the particular case of equal densities, one recovers (9), (10).
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1022 T. Bodineau et al.

Using the identities

ZZCOS[Znn(x —V]=—1+8x—y)

n>1

cos[a(% —x)] cos(ax) +cos(a(l —x)) 2

———cos2nmw
asin § asino a2 ; 4m2n? — o nrx (35)
sin[(x(% —x)] _cos(ax) —cos(e(l —x)) Z 8nm sin2nox
sin § - 1 —cosa _n>1 4202 2

(1 —=2r4)* + A =drpre
one can rewrite (33), (34) as
(Pa(x)pa(¥))e

| i cos (21 -2y +20)) 5
=7 ra(l—ra)@(y —x) —1) =3Bryrgre - =

«/Zsin% BA
(36)
1 3
(pa(x)pp(¥))e = I [—rArB(S(y —x)—D+ Eﬁmrsrc(l —2rc)
cos(ﬂ@(l —2y+2x)) 2
- ﬂsin% - ﬂ_A
3 1n(¥(l—2y+2x))
+§ﬁVAVBI’C 37

which are totally equivalent to the expressions (23), (24).

As mentioned before, the large deviation function (6) of the density is only known (8)
at order B2 for the ABC model. The knowledge (36), (37) imposes constraints on the large
deviation function. Trying to generalize (8), we found the following expression for the large
deviation functional (6)

Flpa). pu(), pex)]

1
=K +/ dx[pa(x)Inpa(x) + pp(x)In pg(x) 4+ pc(x) In pe(x)]

sm(c( —2))
-7 / / ~ 2sin(5)
X [,OA(X),OB(X +2) +pp(x)pc(x +2) + pc(x) palx + Z)]

3 / dx / COZ(C( (1= 3r)pae)pm(x +2)
csm( )

+ra(l =3ra)pp(x)pc(x +2) +rp(l = 3rg)pc(x)palx +Z)] (38)
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Long Range Correlations and Phase Transitions in Non-equilibrium 1023

where

c =B A—=9rarprc

was compatible both with (8) at order 82 for arbitrary density fluctuations and with the exact
expressions of the correlation functions (36), (37), i.e. for arbitrary 8 but small deviations of
the density from the flat profiles. What this expression becomes for general 8 and arbitrary
deviations of the density is an open question.

The macroscopic fluctuation theory developed by Bertini et al. [21, 22] (see also [26])
relates the steady state large deviation functional (6) to the dynamical large deviation func-
tional (27)—(28). One can try to apply this general procedure to the ABC model. We fix
0 < B < B. such that the steady state profiles are flat (equal to r4, rg) and such that the
hydrodynamic equations (25) relax to r4, rp for any initial density profiles (this property
excludes situations with metastable profiles). Then the density large deviation functional (6)
is given by

Flpa(x), pp(x), pc(x)] = iﬁnjf{z-[*oo,O](ﬁ» D} (39)

where the infimum of the functional Z;_ ¢ (28) is taken over the trajectories (O(x, 1),
Jx, 1) ={palx, 1), pp(x,1), Ja(x, 1), Ja(x,t)} starting at time —oo from the steady state
configurations (r4, rp) and ending at time ¢ = O at the configuration (p4(x), pp(x)) (with
pc(x) =1— pas(x) — pp(x)). To recover the large deviation functional in the steady state,
there is no other constraint on the currents j besides the conservation law 9,0 = —0,J.
Finding the optimal trajectory is in general an open problem which has been solved only in
rare instances [22, 27]. For the sake of completeness, the equations satisfied by the optimal
trajectories are presented in Appendix 2.

A perturbative analysis of the variational problem (39) leads to an expansion of F in the
vicinity of the steady state. For example (38) can be obtained as the second order expansion
of F and the two-point correlations can then be recovered by inverting the quadratic form in
(38). Expanding F at the second order is essentially equivalent to the mode decomposition
implemented in this section (30). To see this, we first note that (39) can be rewritten as a
variational principle on the time interval [—oo, co] with the constraint that the trajectory o
is equal to (p4(x), pp(x)) at time O

Floa @), o500, pe (01 = inf (T 1, )} (40)

This identity comes from the fact that the contribution for positive times is null as one can
choose p which relaxes to equilibrium according to (25). For small deviations, Zj_ oo, 00} (0, J)
can then be expanded with respect to the Fourier modes (30). The different modes decou-
ple and we recover a quadratic form with coefficients related to the correlations (32). The
constraint on the density at time O is then achieved by optimizing this quadratic form over
the temporal modes . This leads to a second order expansion of F (in terms of the spatial
Fourier modes) from which the steady state two-point correlation functions (33)—(34) can
be obtained.

3 Diffusive Systems on a Ring

The second example we analyze is the phase transition [16, 28, 29] which is expected to
occur in the large deviation function of the current in some diffusive systems such as the
weakly asymmetric exclusion process (WASEP).
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1024 T. Bodineau et al.

The WASEP on a ring is defined as follows: one considers a fixed number N = Lr of
particles on a ring of L sites, with at most one particle per site. Each particle hops to its
neighboring site on its right with rate ¢~! and to its neighboring site on its left with rate g,
provided that the target site is empty. As for the ABC model, we consider here the diffusive
regime where ¢ scales with the system size L as in (3)

=oo[ 1]
q=exp|— |

For general diffusive systems with one species of particles on a ring, one can write an expres-
sion very similar to (27), (29) for the probability of observing a density profile p(x, ) and a
(rescaled) current j (x, T) over a (rescaled) time interval T (the microscopic time t = T L?)

Pro(p. j) ~exp (—L Zyo.(p. J)) 41
where
1 T
I[oi,n(p,j)=/ dX/ dTtH(p, j), 42)
0 0
with
. , + D , dp(x,7) _ , 2
Hip. ) = [j(x,7) (p();;();(—xd);)) Bo (p(x,1))] 43)

and the current j and the density p are related, as usual, by the conservation law

d_,o =— d—] (44)
dt dx

We refer to [28, 29] for further details on the derivation of (42). The functions D(p) and
o (p) in (43) are two functions characteristic of the diffusive system. For the WASEP, as
defined above, these two functions are D(p) =1 and o(p) = 2p(1 — p). In general their
ratio is related to the compressibility at equilibrium by the Einstein relation (see [30], (4.6.1)
or [31]).

If one considers the flux Q, (i) of particles between sites i and i + 1 during a long micro-
scopic time 7, the large deviation function G (jjy) of the current describes the distribution of
Q,(i), in the long time limit

o g\ [ ...
Pro(T_L) exp|: LG(]O)] 45)

(the L dependence which appears in (45) can be understood because the system is diffusive
[28, 29]). For systems with conservative dynamics such as the WASEP, which are irreducible
Markov processes with a finite number of states, the large deviation function G(jo) depends
neither on the initial condition at time O nor on the final configuration at time ¢ nor on the
section i chosen.

In what follows we consider (instead of the flux Q, (i) through a section) the total flux Q,

L
Q=Y 0.) (46)
i=1
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which has the same large deviation function
0, . t .
Pro - = Jo | ~exp —ZG(]O) . 47)

According to the macroscopic fluctuation theory, one can calculate this large deviation
function G(jy) by looking at the time evolution of the density and of the current which
maximizes (41) with the constraint that

1 T 1
—/ dr/ dxj(x,7) = jo (48)
T Jo 0
so that
1
= lim . 7 . 4
G(jo) Am o {p(x,lg)l,lf}x,w [O,T](p7])} (49)

When the optimal density and current profiles in (49) are constant in time and in space
[29], the expression of G (jy) follows immediately

. 2
I L f(c;)(r)]

(50)
where r = N/L is the density of particles along the ring.

By analyzing the neighborhood of the flat profile solution, it was shown in [16] that this
profile is locally unstable when

87 D*(r)o (r) + [B20*(r) — jilo"(r) <0 (51)

and the optimal profiles becomes space or space and time dependent. (Note that, as for
the ABC model, (51) is obtained by a local stability analysis. Thus the optimal profiles
might already be space or space and time dependent even when (51) is not satisfied with the
occurrence of first order transitions).

We are now going to see that, although there is no trace of the second order phase transi-
tion (51) in the expression (50), the correlation functions become singular along the stability
line (51). There are several ways of defining the correlation functions, conditioned on the
current: if the flux is conditioned to be Q; = jot over a time interval —¢/2 < ¢’ < t/2, one
expects the correlation {(p(x,t")p(y,t')). to depend on whether ¢’ is close or far from the
boundaries of the time interval (—¢/2,¢/2). We are now going to calculate two of these
correlation functions

(p(x)p(y))intermediate = tl—i>nolc<p(x’ 0),0(}% 0)| Qt = jOt)c (52)
(PPN fina = Hm (p(x,2/2)p (v, 1/D|Q1 = jol)e- (53)

During the macroscopic time interval [—7"/2, T /2], one considers a small perturbation
of the flat profile r of the form

p(x, ) =r+k[fi(r)cos(kx) + fo(r)sin(kx)]

(54)
J e, 1) = Io(t) + f5(7) cos(kx) — f(r) sin(kx)
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where f1(t) and f,(7) are a priori two arbitrary functions and k = 2z n with n > 1, integer.
The parameter /y(t) takes into account the constraint on the current in the time interval
[-T/2,T/2]

Iy(7) = Jjo, if —T/2<t<T/2,
Ip(t) = Bo(r), otherwise.

One can rewrite (43) to quadratic order

Hp, ) =A@+ D)+ B@O S+ 1)+ COfifs — Hof) + E@fifi + o f))

(55
where
D2k4 2k20.// kza/zl T 2 kzo.//l T 2
A= +F 8 4003( - 8002( )
(56)
Bo=L.  cm=-t0 ey P8
40’ 202 20

with the functions D, o,0’, ¢” evaluated at p =r = N/L.
When T goes to infinity, the expectations ( flz(O)), (f1(0) £1(0)), ( f22(0)) can then be
computed in the following two situations (see Appendix 1):

e in the case (52), one has Iy(t) = jj for all times 7. One gets from (64)

o

(f100) = (f2(0)) = — (57)
B%k*00” 07
L\/D 2kt + 2 20 .
and by summing the contributions of all the modes, this gives
2no ncosQmrn(y — x))
<p(x)p(y))intermediate = T . (58)
n>1 \/47.[2”21)2 + @ _ 02;0

e in the case (53), one has Iy(t) = jo for t <0 and Iy(r) = Bo(r) for T > 0

2 2 20
(F0) = (H0)) = — (59)
L|:Dk2+\/D2k4+ﬂk% _ %]
and the sum over all the modes leads to
4o ncos2rn(y — x))
(PP ()i =~ D - —. (60)
nz1 2xnD + \/4n2n2D2 + Boon T

We see in expressions (58), (60) that the correlation functions become singular along the
transition line (51), where the n = 1 mode becomes unstable. Note that only the intermediate
correlation function (58) diverges at the transition.

Let fo = fBo (r) be the mean current; then one can rewrite the correlation function (58) as

(:0 (X) 14 (y ) ) intermediate
1

=D ZZcos(Znn(y -x) |1+ — — 1] ].(61)
= 1= g8 G = (o))

o
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When there is no constraint on the current then jo = jo and (61) reduces (see (35)) to
(o2

(:0 (x)p (y))imermediatc = 2LD

Z 2cos2rn(y —x)) =

n>1

7 5 1

5D (Bx—y»—1),

which are the correlations for the (micro-canonical) invariant measure. This was already
emphasized in [6, 25]. On the other hand, if the system is conditioned to an atypical current
deviation, the term in the bracket in (61) does not vanish. It is interesting to note that all the
modes have the same sign which depends on jo2 - ]_02 and o”. One can check that depending
on the sign of jg - j_g the correlations for x — y small are either positive or negative: the
particles tend to cluster or to spread according to the constraint on the current. We interpret
this clustering phenomenon as a precursor of the macroscopic clustering which occurs after
the transition.

Instead of the perturbation (54), one could also have used a space/time decomposition
over the Fourier modes as in (30). However this would have led to extra difficulties to treat
the fluctuations at the final time. In the latter case, the functional depends on the current
constraint which is not uniform in time so that the contributions of the modes at different
frequencies would be coupled (unlike the case of intermediate fluctuations). In the particular
case of the WASEP, a microscopic approach based on a truncation procedure as in Sect. 2.2
would also have led to the correlations (58).

In [19], it was shown recently that a very similar phase transition occurs in the SSEP (the
symmetric exclusion process) when one considers the large deviation function of the activity
K, (which is the total number of changes of configurations during time #). A calculation
almost identical to the one presented in this section can be done to calculate the correlation
functions, conditioned on the value of K. The nature of the singularities of the correlation
functions are then very similar to those found in (58), (60).

4 Conclusion

In the present work, we have calculated, using two different approaches, the long range
correlation functions in the A BC model and shown that they become singular at the second
order phase transition (9), (10), (33), (34), (36), (37). We have also calculated, for general
diffusive systems, the two point correlation functions, conditioned on the current (58), (60)
and seen that they become singular at a second order phase transition. Similar calculations
can be done, when conditioned on other quantities such as the activity [19].

It would be interesting to try to extend our results to other phases than the flat phase
or to other situations than the ring geometry, like open systems. The large scale Gaussian
fluctuations of the density, which here are at the origin of the long range correlations, allow
one also to calculate all the cumulants of the current [19] for diffusive systems. It would
be interesting to see whether one could establish more direct or more general relations be-
tween the long range correlations and the distribution of the current, and to know how these
relations are modified in the case of open systems.

Lastly we have obtained an improved expression (38) of the large deviation functional
of the density for the ABC model. This expression is still an approximation. It would be
interesting to go further, for example by calculating higher correlations using the truncation
procedure (16), (17).
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Appendix 1

In this appendix, we establish the expressions (57), (59). Let us consider two Gaussian
functions 4 (t), h,(7) of the time 7 distributed according to the following distribution

Pro({h;(t), hy(7)}) ~ exp [ - L/ dt[A(T)(h? +h3) + B(t) (W} +hD)
+ C(v) (i — hihy) + E(7) (bl +h2h,2)j| (62)

Here we are interested in situations where the functions A(t), B(t), C(t), E(7) take some
constant values A_, B_,C_, E_ for t < 0 and other constant values (possibly the same)
A ,B.,Cy,E, fort >0.

If we fix 2;(0) and h,(0), and one integrates (62) over h(t) and h,(t) for all times
T # 0 one gets

Pro({i (0), h2(0)}) ~ exp [—L (a+B+ Vo B+ %) (10 + h2<0>2)]

where

o0y =—; o
* 2B,

4A. B, —C2 JAA_B_ —C?
- - 2B_ '

In fact it can be shown that the functions which maximize (62) for t > 0 are, at fixed
h1(0), h2(0)

hi(7) = e **"[h1(0) cos(B+T) + h2(0) sin(B17)]

(63)
hy(7) = e **" [h2(0) cos(B1T) — hi(0) sin(B,7)]
where
_ G
B+ = 2B,

Similar expressions with o, and B, replaced by —«a_ and B_ give these optimal functions
for T < 0. This leads to

1
2\ 2\
O = (ha(0F) = oo (64)

and (1 (0)h(0)) = 0.

Appendix 2

In this appendix, we study the variational problem (39). We set

A 2040 —pa)  —2paps ~ [ palpa+2pp—1)
Z(p)_< —20408 2p3(1—p3))’ F(p)_<ps(1—2m—p3))'
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The trajectories are denoted by p = (p4, pp) and the currents J = (ja, jp). It will be conve-
nient to rewrite the currents in terms of the new variables H = (Hy, Hp)

JOe, 1) ==0xp(x, 1) = BF(p(x, 1)) + Z(p(x, 1)) H(x, 1), (65)

with H(0,t) = H(1,t) =0. In particular

050, 1) = 0260, 0) + Bo (F(50x.1)) = 80 (Z (3, )3 H (x,1)).

Thus the functional (28) reads
N ! H,
Tiweor(pr 7)) =5 / di / dx (Hy, Hy)Z(o(x, ) (4 ) (66)
2 —00 0 H B
where H),, Hy stand for the spatial derivatives. Optimizing the functional implies that the
optimal trajectories satisfy

304 = Ao+ B3 (pa(oa+205 = 1)) =20, (pa(l = o H} = papsHly)

005 = Aop + B (ps(1 =204 = p)) =20 (s (1 = pu) Hy = papsHy) 67)

0Hy = —AHy+ BQpa+2p5 — DH} = 2p5Hy — ((1 = 200 (H})* = 205 H} H )

0 Hy = —AHp +2Bps H), — BQop +204 = DHj — ((1 = 200) (H,)* = 204 H} Hy )
with the constraint on the densities at time 0, (p4(x,0), pp(x,0)) = (pa(x), pp(x)) and

(ra,rp) at time —oo.

Solving (67) amounts to knowing the functional F (see [22], (2.16))
- oF He— oF
AT Bpa’ P dps

In the case r4 = rp = 1/3, the optimal drifts can be guessed from the explicit expression (7)
of the functional F

HA(x>=log( Pa(x) )+ﬁ</ du ps(u) — pau)
I — pa(x) — pp(x) 0

1

1
+/ du(l—p3<u>—pA<u>)+f du(u—x)(spg(m—l))
x 0

and

_ (pp(x) = 1)}y (x) = pa(x) pp (x)

H/
A= oA + pa(0) — 1)

+ (3050~ 1).
A similar expression holds for Hp leading to

pa = —ApaCx.1) = B (pa(pa+205 = 1))

0.0n = = App(x.0) = 0. (05 (1 =204 = p1) ).
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Thus the optimal trajectories are the time reversed of the hydrodynamic equations (25).
This could have been guessed from the microscopic reversibility derived in [14]. Under the
assumption that the hydrodynamic equations (25) relax to the flat densities ry =rp = 1/3,
the expression (7) of F can be recovered from the optimal trajectories by integrating (66)
over the time.
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