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We calculate exactly the first cumulants of the integrated current and of the activity �which is the total
number of changes of configurations� of the symmetric simple exclusion process on a ring with periodic
boundary conditions. Our results indicate that for large system sizes the large deviation functions of the current
and of the activity take a universal scaling form, with the same scaling function for both quantities. This
scaling function can be understood either by an analysis of Bethe ansatz equations or in terms of a theory based
on fluctuating hydrodynamics or on the macroscopic fluctuation theory of Bertini, De Sole, Gabrielli, Jona-
Lasinio, and Landim.
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I. INTRODUCTION

The symmetric simple exclusion process �SSEP� �1–4� is
one of the simplest lattice gas models studied in the theory of
nonequilibrium systems. It consists of hard-core particles
hopping with equal rates to either of their nearest neighbor
sites, on a regular lattice. At equilibrium, when isolated, the
system reaches in the long time limit an equilibrium where
all accessible configurations are equally likely. Also, when
equilibrium is achieved by contact with one or several reser-
voirs at a single density �, all sites are occupied with this
density � and the occupation numbers of different sites are
uncorrelated.

As soon as the system is maintained out of equilibrium,
by contact with reservoirs at unequal densities, there is a
current of particles and one observes long range correlations
in the steady state �5�. In this out of equilibrium case several
approaches have been developed to calculate steady state
properties, such as the fluctuations or the large deviations of
the density or of the current �6–18�.

A lot of progress has been made in recent years on the
study of the fluctuations and the large deviation functions of
the current in equilibrium or nonequilibrium systems. The
large deviation function of the current can be viewed as the
dynamical analog of a free energy, as discussed by Ruelle in
the early seventies �19�. The idea back then was to build up
a thermodynamic formalism based upon probabilities over
time realizations rather than over instantaneous configura-
tions. Generic properties of these large deviation functions
were later discovered such as the fluctuation theorem, which
determines how the large deviation function of the current is
changed under time reversal symmetry �20–28�.

In the present work, we obtain exact expressions for the
first cumulants of the integrated current and of the activity
�which is the number of changes of configurations� during a
long time t for the SSEP consisting of N particles on a ring of
L sites. For large system sizes, these cumulants and the as-
sociated large deviation functions take universal scaling
forms. We show how these scaling forms can be calculated

for the SSEP by the Bethe ansatz or for more general diffu-
sive systems on a ring by a theory based on fluctuating hy-
drodynamics or on the macroscopic fluctuation theory devel-
oped by Bertini, De Sole, Gabrielli, Jona-Lasinio, and
Landim �9,10,16–18�. In the Bethe ansatz approach these
scaling forms can be extracted from a detailed analysis of
finite-size effects with results similar to those obtained re-
cently for quantum spin chains in the context of string theory
�29,30�. In the fluctuating hydrodynamics approach, it results
from the discreteness of the wave vectors of the fluctuating
modes on the ring.

Universal distributions of the current characteristic of the
universality class of the KPZ �Kardar-Parisi-Zhang� equation
�31–34�, have been calculated in the past �35–38� for the
asymmetric exclusion process �ASEP�. The distributions ob-
tained in the present paper are different and belong to the
Edwards-Wilkinson universality class �39�.

We begin by presenting in Sec. II exact expressions of the
first cumulants of the current and of the activity for the SSEP
on a ring. This is where we see that the cumulants of the
integrated current and of the activity take scaling forms when
the size of the ring becomes large and where emerges the
idea that the large deviation function of the current and of the
activity obey the same universal scaling function. This is
confirmed in Sec. III by Bethe ansatz calculations. By resort-
ing to fluctuating hydrodynamics in Sec. IV we are able to
formulate the particular case of the SSEP within a more gen-
eral framework using the Bertini, De Sole, Gabrielli, Jona-
Lasinio, and Landim approach and to show that the same
universal distribution of the current fluctuations are present
in a larger family of diffusive systems.

II. EXACT EXPRESSIONS OF THE FIRST CUMULANTS

We consider a system of N particles on a one-dimensional
lattice of L sites with periodic boundary conditions. Each site
is either empty or occupied by a single particle. A micro-
scopic configuration C= �ni�i,1,. . .,L can be specified by L oc-
cupation numbers ni �where ni=1 if site i is occupied and
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ni=0 if site i is empty�. In the simple symmetric exclusion
process, SSEP, each particle hops to its right neighbor at rate
1 or to its left neighbor at rate 1, provided the target site is
empty. In the present paper we try to determine the distribu-
tion of the total integrated current Q�t� and of the total num-
ber K�t� of changes of configuration �that we will call the
activity �40�� during a time interval �0, t�. To do so we define
the generating functions of the cumulants of Q and K as

�Q�s� = lim
t→�

ln�e−sQ�
t

, �K�s� = lim
t→�

ln�e−sK�
t

, �1�

where the brackets denote an average over the time evolu-
tions during the time interval �0, t�. As the evolution is an
irreducible Markov process with a finite number of states,
the long time limits in Eq. �1� do not depend on the initial
configuration and the generating functions defined in Eq. �1�
can be calculated as the largest eigenvalue of a matrix
�20,36,41�.

Because the calculations are very similar for both observ-
ables K and Q, we shall first focus on the activity K and
explain how to calculate the cumulant generating function
�K�s� as a perturbation series in powers of s. We will then
present only the results for �Q�s�.

A. Cumulants of the activity K(t)

In order to determine �K, as in �36�, one can write a
master equation for the probability P�C ,K , t� to find the sys-
tem in configurations C at time t, given that the activity at
time t is K �i.e., given that the system has changed K times of
configurations during the time interval �0, t��.

�tP�C,K,t� = − r�C�P�C,K,t� + 	
C�

W�C� → C�P�C�,K − 1,t� ,

�2�

where W�C→C�� is the transition rate from configuration C
to C�, and r�C�=	C�W�C→C�� is the escape rate from con-
figuration C.

If one introduces the generating function P̂�C ,s , t�
=	Ke−sKP�C ,K , t�, its evolution satisfies

�tP̂�C,s,t� = 	
C�

WK�C,C��P̂�C�,s,t� , �3�

where

WK�C,C�� = e−sW�C� → C� − r�C��C,C�. �4�

In the long time limit, P̂�C ,s , t� grows �or decays� exponen-
tially with time, with a rate given by the eigenvalue with
largest real part �36� of the modified matrix WK. Thus �K�s�
can be calculated as this largest eigenvalue of WK. For s=0,
WK reduces to the evolution operator of the master equation
for the symmetric simple exclusion process, and this largest
eigenvalue �which is 0� as well as the related eigenvector are
known. We now present a way of obtaining the large devia-
tion function �K, by a perturbative expansion �41,42� in pow-
ers of s.

The idea is to start from the eigenvalue equation for �K

and its eigenvector P̃,

�K�s�P̃�C,s� = 	
C�

WK�C,C��P̃�C�,s� , �5�

normalized such that 	CP̃�C ,s�=1. One can then define the
average �A�C��s of an observable A�C� in the corresponding

eigenstate, �i.e., �A�C��s=	CA�C�P̃�C ,s� and this is the same
as averaging, in the limit of a long time interval �0, t�, over
all trajectories weighted by a coefficient e−sK�t��. Note that,
though the value of K�t� is defined on trajectories running
from 0 to t, the observable A�C� is evaluated at the final time
t. From the eigenvalue Eq. �5�, one gets

�K�s��A�C��s = e−s
	
C�

W�C → C��A�C���
s

− �A�C�r�C��s,

�6�

where the escape rate r�C� is twice the number of clusters of
adjacent particles in the system

r�C� = 	
C�

W�C → C�� = 2	
j=1

L

nj�1 − nj+1� . �7�

Choosing A�C�=1 in Eq. �6� leads to

�K�s� = �e−s − 1��r�C��s = 2L�e−s − 1��� − Cs�1�� , �8�

where Cs�r�= �nini+r�s is the correlation function �which by
translational invariance does not depend on i� computed

within the eigenstate P̃�C ,s�, and �=N /L is the average den-
sity.

For the leading contribution as s→0, we can use the fact
that at s=0 the eigenvector is known �this is the equilibrium
distribution, for which all allowed microscopic configura-
tions are equally likely�, so that �K�s�=−2N�1− N−1

L−1 �s
+O�s2�. In order to compute the O�s2� contribution from Eq.
�8�, we need to evaluate Cs�1� at order s, which can be done
by choosing A�C�=ninj in Eq. �6�. This requires the knowl-
edge of the correlation function Cs�r�= �nini+r�s at order
O�s�. For A�C�=ninj in Eq. �6� one gets

Cs�1� − Cs�2� = sAN,L + O�s2� ,

where

AN,L =
N�N − 1��L − N��L − N − 1�

L�L − 1�2�L − 2�
,

Cs�r + 1� + Cs�r − 1� − 2Cs�r� = s
2AN,L

L − 3
+ O�s2�

for 2 � r � L − 2, �9�

which have the following solution:

Cs�r� =
N�N − 1�
L�L − 1�

− sAN,L
6r�L − r� − L�L + 1�

6�L − 3�
+ O�s2� .

�10�

We can therefore extract �K up to O�s2� and �K2�c / t follows.
To obtain higher cumulants, we have repeated the same

procedure, with the observables A�C�=ninjnk and
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A�C�=ninjnknl. The calculations are longer but very similar.
We found that the first cumulants of K, limt→��Kn�c / t

= ��−1�n dn�K

dsn �s=0, when expressed in terms of the system size L
and of

���� = 2��1 − �� =
2N�L − N�

L2 �11�

are given by �in the t→� limit�

�K�
t

= L2 �

L − 1
,

�K2�c

t
=

L2��L2� + 4L − 4�
6�L − 1�2 ,

�K3�c

t
=

L2��− L5�2 + L4��2 + 3�� − 2L3� + 48�L − 1�2�
60�L − 1�3 ,

�K4�c

t
= L2���3L6�10L3 − 70L2 + 175L − 153�

− 4�2L4�L − 1��11L3 − 69L2 + 154L − 126�

+ 16�L2�L − 1�2�3L3 − 17L2 + 46L − 63�

+ 2112�L − 1�3�L − 3���2520�L − 1�4�L − 3��−1.

�12�

When L becomes large, while �=N /L is kept fixed, the
asymptotic behavior of the above cumulants reads

�K�
t


 �L,
�K2�c

t



�2

6
L2,

�K3�c

t

 −

�3

60
L4,

�K4�c

t



�4

252
L6. �13�

One might have expected the derivatives at s=0 of the ei-
genvalue �K to become extensive for a large system size L
�after all, as we shall see it in Sec. III, it is always possible to
view �K as the ground state energy of a short range Hamil-
tonian�. Yet this is not the case since the second and higher
cumulants grow faster than linearly with L at fixed density �.
This suggests that, in the large L limit, �K /L becomes a
singular function of s at s=0.

Also one can guess from Eq. �13� that for n�2,

�Kn�c

t
� �nL2n−2,

and that for L→� and s→0, the eigenvalue �K takes a scal-
ing form

lim
L→�

L2��K�s� + s
�K�

t
� = FK��

2
L2s� , �14�

where the scaling function FK is given by

FK�u� =
1

3
u2 +

1

45
u3 +

1

378
u4 + O�u5� . �15�

We shall see in Secs. III and IV that this scaling function can
be fully determined and written as

FK�u� = − 4	
n�1

�n	�n2	2 − 2u − n2	2 + u� , �16�

or equivalently �see Appendix A� as

FK�u� = 	
k�2

B2k−2

�k − 1�!k!
�− 2u�k, �17�

where the Bernoulli numbers Bn are known to be simply the
coefficients of the expansion x�ex−1�−1=	nBnxn /n!. As a
consequence, the generalization of Eq. �13� will be for n
�2,

�Kn�c

t



B2n−2

�n − 1�!
�nL2n−2. �18�

B. Cumulants of the current

The same procedure can be followed for the total inte-
grated current Q �which can be defined by Q=	 j=1

N xj�t�,
where xj�t� is the total displacement of the jth particle during
the time interval �0, t��. Its cumulant generating function �Q
defined in Eq. �1� is the eigenvalue �with largest real part� of
the matrix

WQ�C,C�� = W�C� → C�e−sj�C�,C� − r�C��C,C�, �19�

where j�C� ,C� is +1 or −1 depending on whether a particle
has moved to the right or to the left when the system jumps
from configuration C� to configuration C. Using an expansion
in powers of s as in Sec. II A we have obtained �in the limit
t→��

�Q2�
t

=
L2�

L − 1
,

�Q4�c

t
=

1

2

L4�2

�L − 1�2 , �20�

�Q6�c

t
= −

L6�2��L2 − L + 2�� − 2�L − 1��
4�L − 1�3�L − 2�

,

�Q8�c

t
=

L8�2��10L4 − 2L3 + 27L2 − 15L + 18��2 − 4�L − 1��11L2 − L + 12�� + 48�L − 1�2�
24�L − 1�4�L − 2��L − 3�

, �21�
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with the corresponding large L behaviors �for �=N /L fixed�

�Q2�c

t

 �L,

�Q4�c

t



�2

2
L2,

�Q6�c

t

 −

�3

4
L4,

�Q8�c

t



5�4

12
L6. �22�

As for K, these results indicate that for n�2,

�Q2n�c

t
� �nL2n−2,

and that �Q takes a scaling form, in the limit L→� and
s→0,

lim
L→�

L2��Q�s� −
s2

2

�Q2�c

t
� = FQ�−

�

4
L2s2� , �23�

where, according to Eq. �22�, the expansion of FQ�u� in
powers of u coincides with the expansion �15� of FK�u�, at
least up to the fourth order in u.

We will see, in Sec. IV, that these two scaling functions
�which appear in Eqs. �14� and in �23�� are in fact the same.
Therefore the formula which generalizes Eq. �22� will be for
n�2,

�Q2n�c

t



�2n�!B2n−2

2n�n − 1�!n!
�nL2n−2. �24�

III. BETHE ANSATZ

It is well known that the Bethe ansatz allows one to cal-
culate the eigenvalues of matrices such as WK�C ,C�� and
WQ�C ,C�� defined in Eqs. �4� and �19� for exclusion pro-
cesses �35–38,43–50�. In this section we show how to obtain
the scaling forms �14� and �23� from the Bethe ansatz equa-
tions.

A. Relation to spin chains

It is possible to write the matrices WK�C ,C�� and
WQ�C ,C�� as quantum spin-chain Hamiltonians �51�. We use
the correspondence in which the z component of a two state
spin operator is up when a particle is present at site i, and is
down otherwise. In this basis one finds that

ĤK =
L

2
−

1

2	
i=1

L

�e−s��i
x�i+1

x + �i
y�i+1

y � + �i
z�i+1

z � = − WK,

ĤQ =
L

2
−

1

2	
i=1

L

�cosh s��i
x�i+1

x + �i
y�i+1

y � + �i
z�i+1

z

− i sinh s��i
x�i+1

y − �i
y�i+1

x �� = − WQ, �25�

where we have resorted to the Pauli matrices �i
x,y,z. In this

language, the quantities �K and �Q are the ground state en-
ergies of these operators. It also suggests that the methods of
one-dimensional exactly solvable models apply in our case,

such as the Bethe ansatz, as was exploited for similar sys-
tems in the past �36,52,53�.

As the number of particles on the ring is fixed, we need to
find the ground state with a fixed particle density �, that is, at
fixed transverse magnetization 	i�i

z. The quantum operators
appearing in Eq. �25� have of course been extensively stud-
ied �54�, including within the framework of stochastic dy-
namics �55�. For instance, following the notations of Baxter

�54� the operator esĤK is the ferromagnetic XXZ chain with

anisotropy parameter 
=es. Similarly, ĤQ corresponds to an
XXZ chain with additional Dzyaloshinskii-Moriya interac-

tions. A study of an operator closely related to ĤQ was car-
ried out by Kim �52� in 1995. His results will be recalled at
the end of the present section.

The Bethe ansatz consists in looking for the ground state

of ĤK or Q in the form of a linear combination of N-particle
plane waves �see �43,52��. We denote by �xj� j=1,. . .,N the po-
sitions of the N particles and we postulate that the right ei-
genvector of WK can be cast in the form

P��xj�,s� = 	
P

A�P��
j=1

N

��p�j��xj , �26�

where P= �p�1� , . . . , p�N�� is a permutation over the first N
integers, and the � j’s are a priori complex numbers. This is
an exact eigenstate provided these parameters satisfy the so-
called Bethe equations. These take different forms for K and
Q. We now discuss how to implement the Bethe ansatz to
calculate �K�s� and �Q�s� defined in Eq. �1�. Technical de-
tails have been gathered in the appendixes.

B. Bethe ansatz for K

For the expression �26� to be an eigenvector of ĤK or ĤQ
the � j’s have to satisfy a number of constraints �56�, the
so-called Bethe �see, for example, �49�� equations

�i
L = �

j=1

j�i

N �−
1 − 2es�i + �i� j

1 − 2es� j + �i� j
� . �27�

The expression of �K�s� is given by

�K�s� = e−s	
j=1

N �� j +
1

� j
� − 2N . �28�

Our goal is to obtain Eq. �14� from Eqs. �27� and �28� in
the double limit s→0 and L→� keeping sL2 and N /L=�
fixed. Because of the particle-hole symmetry the discussion
below is limited to the case ��

1
2 .

For s�0 and L finite it is known �54,56� that the � j’s lie
on the unit circle. In the large L limit, they become dense on
a finite arc of the unit circle with a smooth density �54�. The
calculation which follows is based on the assumption that,
for large L, the � j’s become regularly spaced with distances
between consecutive � j’s of order 1 /L. �The case s
0,
where the � j’s are real can be approached by similar meth-
ods�.
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If one writes

es = cos � , �29�

and

� j = eikj�, �30�

Eq. �27� becomes

ki =
1

L
	
j=1

j�i

N

U�ki,kj� , �31�

where

U�ki,kj� =
1

i�
ln�−

1 − 2eiki� cos � + ei�kj+ki��

1 − 2eikj� cos � + ei�kj+ki��� . �32�

In the limit �→0, one can check that when ki−kj =O�1�,

U�ki,kj� = 2
1 − kikj

ki − kj
+ O��2� . �33�

In the large L limit, however, the distance between consecu-
tive ki becomes of order 1 /L�� and for i− j of order 1, one
should use instead

U�ki,kj� =
1

i�
ln� ki − kj + i��1 − ki

2� + i�ki�ki − kj� − �2ki�1 − ki
2�

ki − kj − i��1 − ki
2� − i�ki�ki − kj� + �2ki�1 − ki

2�� . �34�

Therefore one can rewrite Eq. �31� as

Lki 
 	
i−n0�j�i+n0

j�i

1

i�
ln� ki − kj + i��1 − ki

2� + i�ki�ki − kj� − �2ki�1 − ki
2�

ki − kj − i��1 − ki
2� − i�ki�ki − kj� + �2ki�1 − ki

2�� + 	
j��i−n0,i+n0�

2
1 − kikj

ki − kj
, �35�

where n0 is a fixed large number 1�n0�L, so that one can
use expression �33� for �j− i�
n0 and Eq. �34� for �j− i�
�n0. As shown in Appendix B, the two sums �B4� and �B15�
in Eq. �35� depend on the cutoff n0 but this dependence
disappears when the two terms in the right-hand side of Eq.
�35� are added.

In the large L limit, the ki become dense on an interval
�−� ,�� of the real axis, with some density g�k�. In what
follows we will assume that the ki are regularly spaced ac-
cording to this density, meaning that

L�
ki

kj

g�k�dk = j − i and L�
−�

�

g�k�dk = N . �36�

Replacing the two sums in Eq. �35� by their expressions �B4�
and �B15� obtained in Appendix B, one gets that for k=ki the
density g�k� should satisfy

k = 2P�
−�

�

dk�g�k��
1 − k�2

k − k�
+

1

L
��g��k��1 − k2�

g�k�
− 2k�

�	�1 − k2�g�k�L� coth�	�1 − k2�g�k�L��� . �37�

If we make the change of variable k�=�y, k=�x, and

g�k��1 − k2� = ��x� , �38�

Eq. �37� becomes

P�
−1

1

dy
��y�
y − x

= f�x� , �39�

where

f�x� = −
�x

2
+

	�1 − �2x2����x�
2�

� coth�L�	��x�� + ¯ .

�40�

As explained in Eqs. �C1� and �C2� of Appendix C one
can invert Eq. �39� and express ��x� in terms of f�x�,

��x� =
C

�1 − x2
−

1

	2�1 − x2
P�

−1

1 �1 − y2

y − x
f�y�dy , �41�

where the constant C is so far an arbitrary constant.
For small �, one can write Eq. �28�, using Eqs. �30�, �38�,

and �41�, as

�K�s� 
 	
j=1

N

�2�1 − ki
2� 
 L�2�

−�

�

g�k��1 − k2�dk

= L�2��
−1

1 dx
�1 − x2�C −

1

	2P�
−1

1 �1 − y2

y − x
f�y�dy� ,

which gives, using Eqs. �D5� and �D7�

�K�s� 
 L�2�C	 . �42�

Also, as Eq. �36�,
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�
−�

�

g�k�dk = � ,

one has Eqs. �38� and �41�,

� = ��
−1

1

dx� C

�1 − �2x2��1 − x2

−
1

	2�1 − �2x2��1 − x2
P�

−1

1 �1 − y2

y − x
f�y�dy� ,

which can be simplified using Eqs. �8� and �12�,

� =
C�	

�1 − �2
+

�3

	�1 − �2�
−1

1 f�y�y�1 − y2

1 − �2y2 dy . �43�

C. Leading order in the large L limit

For large L �at fixed L��, Eq. �40� reduces to f�x�=
−�x /2, so that Eq. �41� becomes to leading order using Eq.
�D2�,

��x� =
4	C − �

4	�1 − x2
+

�

2	
�1 − x2 + O� 1

L
� , �44�

whereas Eq. �43� becomes using Eq. �D12�,

� =
C�	

�1 − �2
+

1

2
+

�2 − 2

4�1 − �2
. �45�

Therefore for a fixed density � of particles, the constant C
in Eqs. �41� and �44� and the eigenvalue �42� are given, to
leading order in 1

L , by

C =
1

	�
��� −

1

2
��1 − �2 +

2 − �2

4
� , �46�

and

�K�s� = L�2��� −
1

2
��1 − �2 +

2 − �2

4
� . �47�

So far, the constant C remains undetermined.
The leading order corresponds to using expression �33� in

Eq. �31� even when i and j differ by a few units. For the
continuum description to be valid, we are now going to argue
that ��x� should remain finite as x→ �1, or, in terms of the
original density g, that g�k� remains finite as k→ ��. This
will impose �see Eq. �44�� that

C =
�

4	
.

Indeed if we order the N solutions ki and focus on the ones
closest to � , . . . �kN−1�kN��, then we may estimate using
Eq. �36�, the difference between kN and �, or between kN−1

and kN. If C� �
4	 , then g�k����−k�−1/2 as k→� implies that

kN−kN−1�L−2. This is not compatible with kN

2
L

1−�2

kN−kN−1

�which follows from Eqs. �31� and �33��, where the right-
hand side of this inequality would be O�L� in contradiction
with the fact that kN��. Hence we must have 4	C=�, in

which case kN−kN−1�L−2/3 and there is no contradiction.
The fact that near the boundary the distance between con-
secutive kj’s is larger than 1 /L is due to the vanishing of the
density g�k� at the boundary.

It then follows that

� = 2���1 − �� , �48�

and therefore �K�s�=L�2��1−�� and Eq. �44�,

��x� =
��1 − x2

2	
+ O� 1

L
� . �49�

which agrees with the density given on page 163 of �54�

D. Next order

Once � is known to leading order �49�, one can update the
expression �40�,

f�x� = −
�x

2
−

�1 − �2x2�x
4�1 − x2

� coth�L���1 − x2

2
� + ¯ ,

�50�

and one gets from Eq. �43�,

� =
C�	

�1 − �2
+

1

2
−

�2 − 2

4�1 − �2

−
�3�

4	�1 − �2�
−1

1

y2 coth�L���1 − y2

2
�dy . �51�

Then using the fact that �see Eq. �A2� in Appendix A�

�
−1

1

y2 coth�u�1 − y2�dy =
	

2u
+

	

2u3F�−
u2

2
� , �52�

we get

� =
C�	

�1 − �2
+

1

2
+

�2 − 2

4�1 − �2
−

�2

4L�1 − �2

−
1

L3�2�1 − �2
F�−

L2�2�2

8
� , �53�

and this gives Eq. �42�,

�K�s� = L�2C	� = L�2��� −
1

2
��1 − �2 +

2 − �2

4
+

�2

4L

+
1

L3�2F�−
L2�2�2

8
�� . �54�

The leading order �the first two terms of Eq. �54�� has a
minimum for � given by Eq. �48�. Therefore to obtain �K�s�
at first order in 1

L one can simply replace � by Eq. �48� in Eq.
�54� and one gets

�K�s� =
L�2�2

4
�1 +

1

L
� +

1

L2F�−
L2�2�2

8
� , �55�

which is equivalent �see Eqs. �29� and �48�� to Eq. �14�.
It is shown in Eq. �A7� of Appendix A that for large

negative u,

APPERT-ROLLAND et al. PHYSICAL REVIEW E 78, 021122 �2008�

021122-6



FK�u� 

27/2

3	
�− u�3/2, u → − � . �56�

This implies that Eq. �14� becomes for small negative s �but
large negative L2s�,

�K�s� 
 L�− 2s��1 − �� +
27/2

3	
�− s��1 − ���3/2 + ¯ � .

�57�

So for s small, but L2s large, the extensivity of �K�s� is
recovered and Eq. �57� gives the beginning of the small s
expansion in the large L limit.

One can also notice that the function F�u� �Eq. �16�� be-
comes singular as u→ 	2

2 . This indicates the occurrence of a
phase transition discussed at the end of Sec. IV: for u


	2

2
the optimal profile to reduce K is no longer flat and the
system adopts a deformed profile as in �16�. In fact in the
limit s→ +� the configurations which dominate are those
formed of a single cluster of particles and the activity is
limited to the two boundaries of this cluster.

The result �55� or equivalently, Eq. �14� with F given by
Eq. �16�,

FK�u� = − 4	
n�1

�n	�n2	2 − 2u − n2	2 + u� �58�

gives the leading finite-size correction to �K�s�. These finite
corrections have been calculated recently, starting from the
Bethe ansatz equations, for several spin chains in the context
of string theory, and expressions very similar to our F have
been obtained �29�. Note also that a more systematic ap-
proach has been developed to calculate the next finite-size
correction �30�.

Bethe ansatz for Q

The eigenvector corresponding to the largest eigenvalue
of WQ can be written as in Eq. �26�, with the Bethe equations
�27� replaced by

�i
L = �

j=1

j�i

N �−
es − 2�i + e−s�i� j

es − 2� j + e−s�i� j
� . �59�

Given the solutions � j to Eq. �59�, the expression of �Q
reads

�Q�s� = − 2N + e−s��1 + ¯ + �N� + es� 1

�1
+ ¯ +

1

�N
� .

�60�

By a method following closely the steps of the Bethe ansatz
for K, the basic ingredients of which are provided in Appen-
dix E, we arrive at the following result for �Q:

�Q�s� =
1

2
����s2�L + 1� + L−2F�−

L2s2����
4

� , �61�

which leads to the asymptotic behavior as L→�,

�Q�s�
L



1

2
����s2 +

21/2

3	
�3/2�s�3. �62�

The Bethe equations �59� are very close to the ones consid-
ered by Kim �52� who worked out the asymmetric exclusion
process case. As outlined in Appendix E, the SSEP is not in
the range of validity of Kim’s results and so there is no
discrepancy between our expression �62� and Kim’s results.
There is, however, a discrepancy between Eq. �62� and ex-
pression �A.12� of �20� because we think that in �20� Kim’s
results were used outside their range of validity.

Before concluding this section devoted to the Bethe an-
satz, let us mention that, both for the current or the activity,
one can obtain �Q�s� or �K�s� in the s→� limit by directly
solving Eq. �59� or Eq. �27�. We do not give these expres-
sions here because they are out of the universal regime,
which is our main concern.

IV. FLUCTUATING HYDRODYNAMICS AND THE
MACROSCOPIC FLUCTUATION THEORY

In this section we are going to show that the expressions
�14� and �23� can be recovered by a macroscopic theory
based on hydrodynamical large deviations �1,2,4�.

A. Calculation of �Q for a general diffusive system and
derivation of Eq. (23)

The macroscopic fluctuation theory developed by Bertini,
De Sole, Gabrielli, Jona-Lasinio, and Landim �6–10� is
based on the fact that, for a large system of size L, the den-
sity and the current of a diffusive system take scaling forms.
If one defines �̂i�t�, the density averaged in the neighborhood

of site i at time t, and Q̂i�t�, the total flux between site i and
i+1 during time t, these quantities take scaling forms �17,18�

�̂i�t� = �� i

L
,

t

L2� , �63�

Q̂i�t� = LQ� i

L
,

t

L2� . �64�

This allows one to define a rescaled current j�x ,�� as

j�x,�� =
�Q�x,��

��
= L

d

dt
Q̂Lx�L2�� .

The average microscopic current between site i and i+1 is
related to the rescaled current j by

dQ̂i�t�
dt

=
1

L
j� i

L
,

t

L2� .

The probability of observing a rescaled current j�x ,�� and
a density profile ��x ,�� over a time t=TL2 is given by
�6–8,17,18�
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Pro����x,��, j�x,����

� exp�− L�
0

T

d��
0

1

dx
�j�x,�� + D„��x,��…���x,���2

2�„��x,��… � ,

�65�

where the current j�x ,�� and the density profile ��x ,�� satisfy
the conservation law

d�

d�
= −

dj

dx
, �66�

and the diffusive system under study is characterized by the
two functions D��� and ����. For the SSEP, these functions
are known: D���=1 and ����=2��1−�� �see �2��.

Note that Eq. �65� can be seen as the fact that the macro-
scopic density ��x ,�� and the macroscopic current j�x ,�� sat-
isfy, in addition to the conservation law �66�, a Langevin
equation of the form �5�

j�x,�� = − �x��x,t� + ��x,�� , �67�

where ��x ,�� is a Gaussian white noise

���x,����x�,���� = L−1�„��x,��…��x − x����� − ��� . �68�

The contribution of a small time dependent perturbation
to a constant profile �0 and a constant rescaled current j0,

��x,�� = �0 + ���x,�� ,

j�x,�� = j0 + �j�x,�� ,

to the quadratic form in Eq. �65� is

�j�x,t� + D„��x,t�…���x,t��2

2�„��x,t�…
=

j0
2

2�
+

j0

�
�j −

j0
2��

2�2 �� +
j0D

�
��� +

�j2 + 2D�j��� + D2���2 + 2j0D������

2�

−
j0����j�� + D������

�2 + j0
2� ��2

2�3 −
��

4�2���2, �69�

where the functions D ,� ,� ,�� are evaluated at the density
�0.

If one considers a fluctuation of the form

�� = k�ak,�ei��+ikx + a
k,�
* e−i�t−ikx� , �70�

one has

��� = ik2�ak,�ei��+ikx − a
k,�
* e−i�t−ikx� ,

and due to Eq. �66�,

�j = − ��ak,�ei��+ikx + a
k,�
* e−i�t−ikx� .

The ring geometry �x�x+1� imposes that the wave numbers
k are discrete

k = 2	n with n � 1.

Also, because one considers a finite time interval T, the fre-
quencies � are also discrete and

� =
2	m

T
with m � Z .

Integrating over the time interval 0���T and over
space, one gets

���2� = 2k2�ak,��2T ,

����2� = 2k4�ak,��2T ,

��j2� = 2�2�ak,��2T ,

��j��� = − 2k��ak,��2T ,

������� = ��j���� = 0.

Therefore the superposition of all the fluctuations �70� leads
to

Pro�j0,�ak,��� � exp�−
j0
2

2�

t

L
−

t

L
	
�,k

�ak,��2

�� ��� + j0��k�2

�3 +
D2k4

�
−

j0
2��k2

2�2 �� ,

where some terms independent of j0 have been forgotten
�they will be fixed later by normalization�. After integrating
over the Gaussian fluctuations and if one replaces the sum
over � by an integral one gets

Pro�j0� � exp�−
j0
2

2�

t

L
−

t

2	L2 	
1�k�kmax

�
−�max

�max

d�

�ln� ��� + j0��k�2

�3 +
D2k4

�
−

j0
2��k2

2�2 �� , �71�

where we have introduced cutoffs kmax and �max. The reason
for these cutoffs is that the macroscopic fluctuation theory
�65� is valid only on hydrodynamic space and time scales.
For x=O�L−1� or �=O�L−2� it has no validity at all, meaning
that the cutoffs should satisfy kmax�L and �max�L2.

For large L, i.e., for large kmax and �max, one can see by
integrating over � that only the constant term and the term
proportional to j0

2 depend on the cutoffs so that
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1

2	
	

1�k�kmax

�
−�max

�max

d� ln� ��� + j0��k�2

�3 +
D2k4

�
−

j0
2��k2

2�2 �

 A�kmax,�max� + B�kmax,�max�j0

2

+ 	
n=1

� ��D2�2	n�4 −
j0
2��

2�
�2	n�2 − 4	2n2D +

j0
2��

4D�
�

= A�kmax,�max� + B�kmax,�max�j0
2 − DF� j0

2��

16D2�
� , �72�

where we have used the definition �16� of F.
If the averaged rescaled current is j0 over a macroscopic

time T, the sum of the microscopic flux over all the bonds is
Q=TL2j0= tj0. Thus as limt→�

�Q2�
t = L2

L−1� �see Eq. �21�� one
can determine the cutoff-dependent constants and get

Pro�j0� � exp�−
j0
2�L − 1�t
2�L2 +

t

L2DF� j0
2��

16D2�
�� , �73�

where F is defined in Eq. �16�. This becomes, at order 1 /L2,
using the fact that �Q�s�=maxj0

�−j0s+ t−1 ln Pro�j0��,

�Q�s� −
s2�Q2�

2t
=

1

L2DF� ���

16D2L2s2� . �74�

This formula is, in principle, valid for arbitrary diffusive sys-
tems, i.e., for arbitrary functions ���� and D���. As �
=2��1−��, D=1, ��=−4 for the SSEP this leads to the an-
nounced results �23� and �16�.

For a general diffusive system the expressions of the cu-
mulants �22� would therefore become

lim
t→�

�Q2n�c

t
= B2n−2

�2n�!
n!�n − 1�!

D�− ���

8D2 �n

L2n−2, �75�

where ���� and D��� are the two functions which appear in
Eq. �65� and the Bn’s are the Bernoulli numbers.

B. Calculation of �K for the SSEP and derivation of Eq. (14)

To obtain Eq. �14�, one can first write the activity K as

K = 2L3�
0

T

d��
0

1

dx��x,���1 − ��x,��� .

Then one has

K − �K� 
 2L3�
0

T

d��
0

1

dx����2� − ���x,��2� .

Then one can proceed as above �Eqs. �69�–�74�� and get,
up to terms constant or proportional to s, in the exponential

�e−s�K−�K��� � � dj0� dak,� exp�−
j0
2

2�

t

L
−

t

L
	
�,k

�ak,��2

�� ��� + j0��k�2

�3 +
D2k4

�
−

j0
2��k2

2�2

+ 4k2sL2�� .

The rest of the calculation is the same as Eqs. �72�–�74�, with
a maximum over j0 achieved at j0=0, and one finally gets

�K�s� = − s
�K�

t
+ L−2FK��

2
L2s� , �76�

which is exactly the same as Eq. �14�.

C. Calculation of �Q in the case of a weak asymmetry

One can also repeat the above calculation in the case of
weakly driven systems, i.e., for systems where there is an
additional driving force of strength 1 /L. In particular, this
would be the case for the weakly asymmetric exclusion pro-
cess �WASEP� �16� for which the hopping rates to the right
and to the left are, respectively, exp �

L and exp�− �
L �.

For such systems, Eq. �65� becomes

Pro����x,��, j�x,���� � exp�− L�
0

T

d��
0

1

dx

�
�j�x,�� + D„��x,��…���x,�� − ��„��x,��…�2

2����x,��� � .

�77�

Following exactly the same steps as before, one gets an ad-
ditional term �2��

4 ��2 in Eq. �69�, with everything else re-
maining the same. Then Eq. �73� becomes in this case

Pro�j0� � exp�−
�j0 − ���2�L − 1�t

2�L2

+
t

L2DF� �j0
2 − �2�2���

16D2�
�� , �78�

where we have adjusted as in Eq. �73� the terms linear and
quadratic in j0 which are cutoff dependent.

D. Phase transitions

The function F�u� becomes singular as u→ 	2

2 �see Eq.
�16��. For systems for which ���0, this implies the occur-
rence of a phase transition in the expression �76� of �K�s� or
in the large deviation function �78� of the current in the case
of a weak asymmetry. These phase transitions are exactly the
same as the one discussed in �9,10,16,17�: beyond the tran-
sition the system does not fluctuate anymore about a flat
density profile, but the profile becomes deformed on a mac-
roscopic scale. For systems such as the Kipnis Marchioro
Presutti model �57,58� which have ��
0, a similar phase
transition occurs in �Q even in the absence of a weak asym-
metry.

V. CONCLUSION

In the present paper we have obtained exact expressions
�12� and �21� of the first cumulants of the activity K and of
the integrated current Q for the SSEP. In the large L limit,
these cumulants take scaling forms �13� and �22�.

We have shown in Sec. III that these scaling forms can be
understood starting from the Bethe ansatz equations �27� and
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�59�, by calculating the leading finite-size corrections. These
finite-size corrections are similar to the ones calculated re-
cently for spin chains in the context of quantum strings
�29,30�.

We have also shown in Sec. IV that they can also be
understood starting from the macroscopic fluctuation theory
�65� of Bertini, De Sole, Gabrielli, Jona-Lasinio, and Lan-
dim. This enabled us to extend Eqs. �73�–�75� our results for
the SSEP to arbitrary diffusive systems and to see that the
occurrence of phase transitions can be predicted from the
scaling form of the cumulants of the current. In order to
better understand these phase transitions it might be interest-
ing to characterize the eigenstate of the s-dependent evolu-
tion operator by, e.g., determining correlation functions in
those states.

We have discussed here systems governed by diffusive
dynamics with a single conserved field. How the universal
scaling forms would be modified for systems with several
conserved fields is an interesting open question.

Furthermore, there has recently been some progress made
in the study of exclusion processes by Bethe ansatz methods,
both with periodic and open boundary conditions �49–60�. It
would be interesting to see whether our approach of Sec. III,
which tries to extract the finite-size contribution due to the
discreteness of the roots, could be extended to other cases,
such as driven diffusive systems or systems with open
boundaries.
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APPENDIX A: SEVERAL REPRESENTATIONS OF THE
FUNCTION F

In this appendix we show the equivalence between several
representations �Eqs. �16�, �17�, and �52�� of the function F
defined in Eq. �16�,

F�u� = − 4 	
n�1

�n	�n2	2 − 2u − n2	2 + u� . �A1�

To do so consider the integral I

I =
2u3

	
�

−1

1

y2dy coth�u�1 − y2� .

Then by using the fact that

coth z =
1

z
+ 	

n=1

�
2z

z2 + n2	2 ,

and by integrating over y, one gets

I =
2u3

	
�

−1

1

y2dy coth�u�1 − y2�

= u2 + 	
n�1

�2u2 + 4n2	2 − 4n	�n2	2 + u2�

= u2 + F�−
u2

2
� . �A2�

This establishes Eq. �52�. Now as

x

ex − 1
= 	

n�0

Bn

n!
xn = 1 −

x

2
+

x2

12
−

x4

720
+

x6

30240
+ ¯ ,

�A3�

which is simply the definition of the Bernoulli numbers Bn

�so that B2= 1
6 , B4=− 1

30 B6= 1
42 , . . .�, one can show that

coth x =
1

x
+ 	

k�2
22k−2x2k−3 B2k−2

�2k − 2�!
. . �A4�

Therefore

I =
2u3

	
�

−1

1

y2dy coth�u�1 − y2�

=
2u2

	
�

−1

1 y2

�1 − y2
dy

+ 	
k�2

22k−1

	

B2k−2

�2k − 2�!
u2k�

−1

1

y2�1 − y2��2k−3�/2dy ,

i.e.,

I = u2 + 	
k�2

B2k−2

��k���k + 1�
u2k. �A5�

Comparing Eqs. �A2� and �A5�, one gets

F�u� = 	
k�2

B2k−2

��k���k + 1�
�− 2u�k

=
u2

3
+

u3

45
+

u4

378
+

u5

2700
+ ¯ , �A6�

so that Eqs. �17� and �15� are consistent with Eq. �16�.
For large negative u, one gets, by replacing in Eq. �A1�

the sum over n by an integral,

F�u� 

27/2�− u�3/2

3	
. �A7�

APPENDIX B: CALCULATION OF THE TWO SUMS
APPEARING IN EQ. (35)

In this appendix we calculate the two sums which appear
in Eq. �35� when �→0 and L→� keeping L� fixed.

1. First sum in Eq. (35)

If the ki are distributed according to a density g�k� on the
real axis and regularly spaced one can write that
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L�
ki

ki+n

g�k��dk� = n . �B1�

Therefore for fixed n and large L, one has

L�ki+n − ki�g�ki� + L�ki+n − ki�2g��ki�
2

+ ¯ = n ,

so that

ki+n − ki =
n

g�ki�L
−

n2g��ki�
2g�ki�3L2 + ¯ . �B2�

Replacing kj by expression �B2� into the first sum in Eq. �35�
one gets

	
j=i−n0

i−1

+ 	
j=i+1

i+n0

U�ki,kj�


 	
n=1

n0 �4ki −
2g��ki��1 − ki

2�
g�ki�

� n2

n2 + �1 − ki
2�2g�ki�2L2�2 .

Using the fact that for n0�1 �and b�O�1��,

	
n=1

n0 1

n2 + b2 = −
1

2b2 +
	

2b
coth 	b , �B3�

the first sum in Eq. �35� can be replaced by

	
j=i−n0

i−1

+ 	
j=i+1

i+n0

U�ki,kj�


 �4ki −
2g��ki��1 − ki

2�
g�ki�

�n0 − �2ki −
g��ki��1 − ki

2�
g�ki�

�
��− 1 + 	�1 − ki

2�g�ki�L� coth�	�1 − ki
2�g�ki�L��� .

�B4�

2. Second sum in Eq. (35)

Let us consider the following integral:

I = P�
−�

�

g�k��dk�
1 − kik�

ki − k�
. �B5�

We are now going to compare this integral with the sum

S = 	
j��i−n0,i+n0�

1 − kikj

ki − kj
.

We assume �Eq. �B1�� that the kj are given by

L�
−�

kj

g�q�dq = j − � , �B6�

and for the moment � is arbitrary. Therefore

kj+1 − kj 

1

g�ki�L
. �B7�

One can decompose the integral I as

I = P�
ki−n0

ki+n0

g�q�dq
1 − kiq

ki − q
+ 	

j=1

i−n0−1 �
kj

kj+1

g�q�dq
1 − kiq

ki − q

+ 	
j=i+n0

N−1 �
kj

kj+1

g�q�dq
1 − kiq

ki − q
+ �

−�

k1

g�q�dq
1 − kiq

ki − q

+ �
kN

�

g�q�dq
1 − kiq

ki − q
. �B8�

As kj+1−kj is small and of order 1 /L and because of Eqs.
�B6� and �B7�,

�
kj

kj+1

g�q�dq
1 − kiq

ki − q



1

L

1 − kikj

ki − kj
+

g�kj��kj+1 − kj�2

2

d

dkj
�1 − kikj

ki − kj
�



1

L

1 − kikj

ki − kj
+

1

2L2g�kj�
d

dkj
�1 − kikj

ki − kj
�



1

L

1 − kikj+1

ki − kj+1
−

1

2L2g�kj+1�
d

dkj+1
�1 − kikj+1

ki − kj+1
� .

�B9�

Therefore, using Eq. �B9� in the sum 1� j� i−n0−1 and
in the sum i+n0� j�N−1, one can rewrite Eq. �B8� as

I 
 P�
ki−n0

ki+n0

g�q�dq
1 − kiq

ki − q
+

1

L
	
j=1

i−n0−1
1 − kikj

ki − kj

+
1

L
	

j=i+n0+1

N
1 − kikj

ki − kj
+

1

2L2 	
j=1

i−n0−1
1

g�kj�
d

dkj
�1 − kikj

ki − kj
�

−
1

2L2 	
j=i+n0+1

N
1

g�kj�
d

dkj
�1 − kikj

ki − kj
�

+ �
−�

k1

g�q�dq
1 − kiq

ki − q
+ �

kN

�

g�q�dq
1 − kiq

ki − q
.

This becomes

I 
 P�
ki−n0

ki+n0

g�q�dq
1 − kiq

ki − q
+

1

L
	
j=1

i−n0−1
1 − kikj

ki − kj

+
1

L
	

j=i+n0+1

N
1 − kikj

ki − kj
+

1

2L�1 − kiki−n0−1

ki − ki−n0−1

+
1 − kiki+n0+1

ki − ki+n0+1
−

1 − kik1

ki − k1
−

1 − kikN

ki − kN
�

+ �
−�

k1

g�q�dq
1 − kiq

ki − q
+ �

kN

�

g�q�dq
1 − kiq

ki − q
,

which can be rewritten as
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I 
 P�
ki−n0

ki+n0

g�q�dq
1 − kiq

ki − q
+

1

L
	
j=1

i−n0−1
1 − kikj

ki − kj

+
1

L
	

j=i+n0+1

N
1 − kikj

ki − kj
+

1

2L�1 − kiki+n0+1

ki − ki+n0+1
+

1 − kiki−n0−1

ki − ki−n0−1
�

+
1 − kik1

ki − k1
�−

1

2L
+ �

−�

k1

g�q�dq�
+

1 − kikN

ki − kN
�−

1

2L
+ �

kN

�

g�q�dq� . �B10�

From Eq. �B2� one can show that

P�
ki−n0

ki+n0

g�q�dq
1 − kiq

ki − q



2kin0

L
−

kin0�1 − ki
2�g��ki�

Lg�ki�
,

�B11�

and that

1 − kiki+n0

ki − ki+n0

+
1 − kiki−n0−1

ki − ki−n0−1

 2ki − �1 − ki

2�
g��ki�
g�ki�

+ O� 1

L
� .

�B12�

Lastly, because one expects the symmetry kj =−kN+1−j and
because L�−�

� g�q�dq=N, one gets that �=1 /2 in Eq. �B6�
and therefore the last two terms of Eq. �B10� vanish.

Then, using Eqs. �B11� and �B12� in and �B10�, one gets
that

1

L
	
j=1

i−n0−1
1 − kikj

ki − kj
+

1

L
	

j=i+n0+1

N
1 − kikj

ki − kj


 I −
1

L
�2ki − �1 − ki

2�
g��ki�
g�ki�

��n0 +
1

2
� , �B13�

where the integral I is defined in Eq. �B5�. Lastly using the
fact that g�k�=g�−k�, one can rewrite the integral I in Eq.
�B5� as

I = P�
−�

�

g�k��dk�
1 − k�2

ki − k�
, �B14�

so that Eq. �B13� becomes

1

L
	
j=1

i−n0−1
1 − kikj

ki − kj
+

1

L
	

j=i+n0+1

N
1 − kikj

ki − kj


 P�
−�

�

g�k��dk�
1 − k�2

ki − k�
−

1

L
�2ki − �1 − ki

2�
g��ki�
g�ki�

�
��n0 +

1

2
� . �B15�

Note that Eq. �B6� is not accurate for i close to 1 or N, i.e.,
near the singularities of g�k�. A more detailed analysis of
these two neighborhoods would only contribute to higher
orders in the 1 /L expansion �30�.

APPENDIX C: SOLUTION OF THE AIRFOIL
EQUATION (39)

In this appendix we show, in the spirit of �61�, that the
solution ��x� of

f�x� = P�
−1

1

dy
��y�
y − x

�C1�

is

��x� =
C

�1 − x2
−

1

	2P�
−1

1

dy�1 − y2

1 − x2

f�y�
y − x

. �C2�

This solution is used to obtain Eq. �41� as the solution of Eq.
�39�.

Let us choose

��x� =
�1 − x2

x − �
. �C3�

Then for x� �−1,1� and �� �−1,1� one can see, using Eq.
�D3�, that

�
−1

1

dy
��y�
y − x

= 	���2 − 1

� − x
−

�x2 − 1

� − x
− 1� , �C4�

and therefore

f�x� = P�
−1

1

dy
��y�
y − x

= 	���2 − 1

� − x
− 1� . �C5�

Now the following integral of this function f�x� can be com-
puted �using Eqs. �D1� and �D3�� for x� �−1,1�:

−
1

	2�
−1

1

dy
�1 − y2

y − x
f�y� = ��2 − 1���2 − 1

� − x
−

�x2 − 1

� − x
− 1�

+ �x2 − 1 − x , �C6�

so that

−
1

	2P�
−1

1

dy
�1 − y2

y − x
f�y�

=
�2 − 1

� − x
− ��2 − 1 − x

= � − ��2 − 1 −
1 − x2

� − x
. �C7�

Comparing with Eq. �C3� we see that

−
1

	2P�
−1

1

dy�1 − y2

1 − x2

f�y�
y − x

=
� − ��2 − 1

�1 − x2
+

�1 − x2

x − �

=
� − ��2 − 1

�1 − x2
+ ��x� . �C8�

Therefore Eq. �C2� is the solution of Eq. �C1� with a constant
C which depends through � on ��x� when one chooses Eq.
�C2� for ��x�.

As the inversion formula �C2� is valid for arbitrary �, it
would also be valid when f�x� is any polynomial in x, and as
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the polynomials are dense in the set of continuous functions
on �−1,1�, one can consider that Eqs. �C1� and �C2� are valid
for “arbitrary functions” f�x�.

APPENDIX D: USEFUL INTEGRALS

In this appendix we list a few integrals which are used in
various places of the paper.

First, for x� �−1,1� one has

1

	
�

−1

1 �1 − y2

y − x
dy = �x2 − 1 − x , �D1�

so that

1

	
P�

−1

1 �1 − y2

y − x
dy = − x . �D2�

As a consequence of Eq. �D1� one has for x� �−1,1� and
�� �−1,1�,

1

	
�

−1

1 �1 − y2

y − x

dy

y − �
=

��2 − 1

� − x
−

�x2 − 1

� − x
− 1, �D3�

and thus for x� �−1,1� and �� �−1,1�,

1

	
P�

−1

1 �1 − y2

y − x

dy

y − �
=

��2 − 1

� − x
− 1. �D4�

One can also show that

�
−1

1 dx
�1 − x2

= 	 , �D5�

and that for y� �−1,1�,

�
−1

1 dx
�1 − x2

1

y − x
=

	

�y2 − 1
. �D6�

As a consequence of Eqs. �D4� and �D6�, one has

�
−1

1 dx
�1 − x2

P�
−1

1 dy

y − x
F�y� = 0 �D7�

for an arbitrary function F�y� as it is valid for any polyno-
mial.

For ��1 one can show using Eq. �D6� that

�
−1

1 dx

�1 − �2x2��1 − x2
=

	

�1 − �2
. �D8�

One can also show

�
−1

1 �1 − x2

�1 − �2x2�
dx = 	

1 − �1 − �2

�2 , �D9�

and that

�
−1

1 y2�1 − y2

1 − �2y2 dy = 	� 1

�4 −
1

2�2 −
�1 − �2

�4 � , �D10�

and for y� �−1,1�,

�
−1

1 1

�1 − �2x2��1 − x2

dx

y − x
=

	

�1 − �2y2��y2 − 1

−
	�2y

�1 − �2y2��1 − �2
,

�D11�

and therefore for any function F�y�,

�
−1

1 dx

�1 − �2x2��1 − x2
P�

−1

1 dy

y − x
F�y�

= −
	�2

�1 − �2�
−1

1 yF�y�
1 − �2y2dy . �D12�

APPENDIX E: BETHE ANSATZ CALCULATION FOR THE
CURRENT LARGE DEVIATION FUNCTION �Q(s)

This appendix describes how a Bethe ansatz calculation of
�Q�s�, similar to the one conducted for �K, can be imple-
mented. The operator WQ whose largest eigenvalue is �Q
reads, in the spin language already used in Eq. �25�,

WQ�s� = 	
i=1

L ��i
z�i+1

z − 1

2
+ e−s�i

+�i+1
− + es�i

−�i+1
+ � . �E1�

The Bethe ansatz equation analogous to Eq. �27� takes the
form Eq. �59�,

�i
L = �

j=1

j�i

N �−
1 − 2e−s�i + e−2s�i� j

1 − 2e−s� j + e−2s�i� j
� . �E2�

In terms of the � j’s, we have that

�Q�s� = − 2N + e−s��1 + ¯ + �N� + es� 1

�1
+ ¯ +

1

�N
� .

�E3�

Kim �52� has studied the spectrum of H=−WQ / �cosh s /2�
by means of a Bethe ansatz calculation: in the notations of

his Eq. �1�, the parameters 
̃ and S are given by


̃ =
1

cosh s
, S = tanh s , �E4�

but unfortunately his results do not apply to our particular
case, which turns out to correspond to a critical point of the
related six-vertex model. The defining parameters of the lat-

ter, denoted by 
, H, and �, are related to Kim’s by 
̃
=
 /cosh�2H�, S=tanh�2H�, 
=cosh �. Thus, in terms of our
original parameters, we get that


 = 1, 2H = s, � = 0, �E5�

a limiting case specifically excluded in Eq. �7� of Kim �52�,
which lies at the critical point of the six-vertex model.

We choose to write that � j =e−is�kj+2i��. The two main dif-
ferences with the calculation of �K is that the � j’s depen-
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dence in s is different. We have also shifted them by 2i� for
convenience. Just as was the case previously, the kj’s will be
densely distributed on a connected curve C of the complex
plane that is invariant upon complex conjugation. Given that
the equations for the � j’s are invariant under complex conju-
gation, we expect the contour C to be symmetric with respect
to the vertical axis in the complex k plane. We shall denote
the end points of C by −�* and �.

Given that Eq. �E2� becomes

− i�ki + i2�� =
1

L
	

j=1,j�i

N

U�ki,kj� ,

where

U�ki,kj� =
1

s
ln�−

1 − 2e−s�i + e−2s�i� j

1 − 2e−s� j + e−2s�i� j
� . �E6�

For �i− j��1 we have that

U�ki,kj� =
2i�ki + i���kj + i��

ki − kj
, � = 2� − 1, �E7�

while for i− j of order 1, s will be of the order 1 /L and ki
−kj as well. We define g�k� as the root density along contour
C, so that

L�
ki

kj

g�k�dk = j − i

�note that g�k� is in general complex but along the contour
g�k�dk, is real�. If kj and ki are n roots apart, we have that

kj −ki=
n

g�ki�L
−

n2g��ki�
2g�ki�3L2 +¯. Expanding U at fixed sL in pow-

ers of L−1 leads to

U�ki,kj� =
1

s
ln

n − ig�ki��ki + i��2sL

n + ig�ki��ki + i��2sL

− i�ki + i���2 +
g��ki��ki + i��

g�ki�
�

�
n2

n2 + �g�ki��ki + i��2�sL��2 . �E8�

Equations �E7� and �E8� play a role analogous to Eqs. �33�
and �32� in the study of K. After using the methods of Ap-
pendixes B and C we arrive at the following equation for g
which we express in terms of ��x�= ��x+ i��2g��x� and r
=�* /�:

��x + i
� + 1

�
� = 2P�

−r

1

dy

��y� − �y − x��y + i
�

�
�−1

��y�

y − x

−
�

L
�x + i

�

�
�2���x�

��x�
�	��x��sL��

�coth�	��x��sL�� . �E9�

Let us denote �0�x� the solution of the above equation, in the
L→� limit

�x/2 + h = P�
−r

1

dy
�0�y�
y − x

, �E10�

where h= i��+1� /2+�dy�0�y��y+ i� /��−1 is a density-
dependent constant to be determined. The general solution of
Eq. �E10� can be written �see �C1� and �C2�� as

�0�x� = −
C

��1 − x��r + x�
−

��r + 1�2

16	��1 − x��r + x�

+
�x2

2	��1 − x��r + x�
+

2h�r − 1 + x�
2	��1 − x��r + x�

+
�x�r − 1�

4	��1 − x��r + x�
. �E11�

The four unknowns C, �, r, and h are determined by requir-
ing that �0 remains finite as x→1 and as x→−r, and by
noting that by definition

�
−r

+1

dx
�0�x�

�x + i
�

�
�2 = �� , �E12�

while �0 must verify the self-consistency equation h
= i��+1� /2+�dy�0�y��y+ i� /��−1. After explicitly evaluat-
ing the latter integral and that appearing in Eq. �E12�, we
arrive at r=1, h=0, and 4	C=�=2���1−��, which leads to

�0�x�=−�
�1−x2

2	 . Up to a sign, this is exactly the same func-
tion as that found in the study of K, and this is the same end
point �=2���1−�� for the contour on which the kj’s lie.

We may now simplify Eq. �E9� into

��x + i
� + 1

�
� = 2P� dy

��y� − �y − x��y + i�/��−1��y�
y − x

+
1

�L

x�x + i�/��2

1 − x2 ����1 − x2�sL�/2�

�coth���1 − x2�sL�/2�� , �E13�

whose solution reads ��x�=�0�x�+���x�,

���x� = −
�C

�1 − x2
+

2�hx

2	�1 − x2

−
1

	2

1
�1 − x2

P� dy
�1 − y2

y − x
�F�y� . �E14�

We have denoted by �F�x� the function

�F�x� = −
�

2L

x�x + i�/��2

1 − x2

����1 − x2�sL�/2�coth���1 − x2�sL�/2�

= −
�

2L

x�x + i�/��2

1 − x2 �	
p�2

Bp

p!
��sL�p�1 − x2�p/2 + 1� .

�E15�

The new constants �C and �h are determined by � ��

�x+i�/��2

=0 and �h=� ��
�x+i�/�� . After performing explicit integrations
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along the lines of Appendix D, we obtain the final result
through the following equality:

�Q�s�/L = − s2�� dx��x� =
�2

4
s2 + s2�C�	

+ s2�
1

	2 � dx
1

�1 − x2
P� dy

�1 − y2

y − x
�F�y� ,

�E16�

where

�C�	 =
�2

2	L
�

−1

1

dxx2�	
p�2

Bp

p!
��sL�p�1 − x2��p−1�/2

+
1

�1 − x2� =
1

L3s2F�− L2s2�2/8� +
�2

4L
. �E17�

After noting that, as before, we have

1

	2 � dx
1

�1 − x2
P� dy

�1 − y2

y − x
�F�y� = 0, �E18�

it only remains to substitute the value of �C into Eq. �E16�.
This allows us to conclude that

�Q�s� =
�2

4
s2�L + 1� + L−2F�− L2s2�2/8� , �E19�

which is the announced result of Eq. �61�.
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