
Universal tree structures in directed polymers and models of evolving populations

Éric Brunet,* Bernard Derrida,† and Damien Simon‡

Laboratoire de Physique Statistique, École Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France
�Received 10 June 2008; published 2 December 2008�

By measuring or calculating coalescence times for several models of coalescence or evolution, with and
without selection, we show that the ratios of these coalescence times become universal in the large size limit
and we identify a few universality classes.

DOI: 10.1103/PhysRevE.78.061102 PACS number�s�: 05.40.�a, 75.50.Lk, 89.75.Hc, 87.23.Kg

Random trees appear in many contexts in biology, math-
ematics, and physics. In evolutionary biology, they represent
the genealogies of reproducing populations. In physics, ran-
dom trees appear in many systems such as diffusion limited
aggregation �DLA� �1�, coarsening, river networks �2,3�, dia-
grams in perturbation theory, ultrametric structure of pure
states in mean-field spin glasses �4,5�, directed polymers in a
random medium �6,7�, shocks in one-dimensional turbulence
�8–10�, etc.

From a mathematical point of view, one of the simplest
examples of random trees is Kingman’s coalescent �11,12�: it
describes the coalescence tree of particles, where each pair of
particles has a probability �t of coalescing into a single par-
ticle during every infinitesimal time interval �t. The random
tree structures of Kingman’s coalescent are identical to the
genealogies obtained in simple mean field models of neutral
evolution such as the Wright-Fisher model �13,14�. In such
models, each individual of a population of fixed size N at a
given generation gives birth to a random number of offspring
and the population at the next generation is obtained by
choosing N survivors at random among all these offspring. If
one follows the evolution over a large enough number of
generations for the initial condition to be forgotten, a steady
state is reached where the statistics of the genealogical tree
of a large population are identical to those of Kingman’s
coalescent.

Other random trees have been considered in the math-
ematical literature, such as the � coalescents �15–17�, which
generalize Kingman’s coalescent and describe a wider class
of mean-field coalescence models �18�. In the � coalescent,
each subset of k particles among n particles has a probability
�n,k�t of coalescing into a single particle during an infinitesi-
mal time �t. As a set of n particles can be considered as a
subset of a larger set of n+1 particles, the rates �n,k have to
satisfy some consistency relations: the coalescence of k par-
ticles in the subset of size n happens in two cases: either
these k particles coalesce in the set of size n+1 �rate �n+1,k�
or they coalesce together with the �n+1�-th particle �rate
�n+1,k+1�. Therefore

�n,k = �n+1,k + �n+1,k+1. �1�

This recursion leads to the following general expression for
the coalescence rates �15,16�:

�n,k = �
0

1

xk−2�1 − x�n−k��x�dx , �2�

where � is some positive measure on the interval �0,1�. With
these notations, Kingman’s coalescent corresponds to ��x�
=��x�. Another particular case, which has been studied, in
the context of spin glasses, is the Bolthausen-Sznitman coa-
lescent �19� for which ��x�=1. Trees in the Kingman’s coa-
lescent and in the Bolthausen-Sznitman coalescent have dif-
ferent statistical properties.

In order to compare different models of physical or bio-
logical systems which generate random trees and to try to
identify universality classes, we consider here simple quan-
tities characteristic of these random tree structures. For a tree
with a large number of end points, we define Tp as the dis-
tance one has to go up into the tree to find the most recent
common ancestor of p given points �see Fig. 1�.

For models of evolving populations, the distance Tp is the
age of the most recent common ancestor of p individuals
chosen at random in the population. In general, it depends
both on the generation at which these p individuals live, but
also on the choice of the p individuals, even in the limit of
very large trees. This double source of fluctuations for the Tp
is reminiscent of what happens in mean field spin glasses �5�:
as for the overlaps in Parisi’s theory, the distribution of the
Tp remains broad even when the size of the population be-
comes very large �5,20�.

For a given model, one can try to determine averages �Tp�
or moments ��Tp�k� of these times Tp �the averages are taken
over all the branches of the tree, i.e., over all the population
at a given generation, and over all the random trees, i.e., over
all the generations in the language of models of evolution�.
In recent works �21,22�, it was noticed that for a large class
of mean field models of evolution with selection, the ratios
of these average times �Tp� take, for a large population,
simple universal values indicating that the genealogical trees
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FIG. 1. The times Tp are the ages of the most common ancestors
of p individuals chosen at random.
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are distributed according to the statistics of the Bolthausen-
Sznitman coalescent. Therefore, at the mean-field level and
for a large size of the population, two universality classes
seem to emerge for models of evolution: Kingman’s trees in
the case of neutral evolution for which
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and Bolthausen-Sznitman’s trees in the case of selection
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The goal of the present work is to try to measure these coa-
lescence ratios for other models of evolution, in particular to
analyze the effect of spatial fluctuations, and to argue that
directed polymers in a random medium are in the same uni-
versality classes as evolution models in presence of selec-
tion.

The paper is organized as follows. In Sec. I we consider,
at the mean field level or in finite dimension, coalescence
models which are equivalent, as we will see, to neutral mod-
els of evolution. Above two dimensions of space, the coales-
cence trees have the same statistics �23� as in mean field with
coalescence times given by Eq. �3�, whereas in one dimen-
sion, they lead to a different universality class for which we
compute the ratios of coalescence times. In Sec. II, we con-
sider the trees of optimal paths in the problem of directed
polymers in a random medium. Our numerical results will
show that at the mean field level, the trees satisfy the
Bolthausen-Sznitman statistics Eq. �4�, whereas the ratios of
coalescence times vary with dimension as expected by the
known universality classes of the problem.

I. COALESCENCE AND MODELS OF NEUTRAL
EVOLUTION

A. Kingman’s coalescent

Kingman’s coalescent �11,12� is a mean-field model of
coalescing particles: during each infinitesimal time interval
�t every pair of particles has a probability of coalescing into
a single particle. Therefore if one starts with p particles,
there is a random waiting time �p until a coalescence event
occurs when these p particles become p−1 particles. Then
there is another random time �p−1 until a pair among these
p−1 particles coalesce �and one is left with p−2 particles�,
and so on. The times �k are independent and distributed ac-
cording to exponential distributions

�k��k� =
k�k − 1�

2
exp�−

k�k − 1�
2

�k	 �5�

and the time Tp for p particles chosen at random to coalesce
is given by

Tp = �p + �p−1 + ¯ + �3 + �2. �6�

This allows one to easily recover the values of Eq. �3�. In
fact the whole generating functions of the times Tp can be
calculated as

�e�Tp� = 

k=2

p
k�k − 1�

k�k − 1� − 2�
. �7�

In particular one can notice that the time T2 has an exponen-
tial distribution.

B. Wright-Fisher model

The Wright-Fisher model �13,14� is one of the simplest
neutral models of an evolving population. It describes a
population of constant size N with nonoverlapping genera-
tions and asexual reproduction. At each generation, all the
population is replaced by N new individuals with the follow-
ing rule: each individual at a given generation has its parent
randomly chosen among the N individuals at the previous
generation. If one goes backward in times, the lineage of an
individual performs a random walk on a fully connected
graph of N sites. Following the lineages of p individuals is
the same as following p coalescing random walks on this
fully connected graph. Since the random walks are indepen-
dent, the statistics of coalescence times can be easily calcu-
lated �11,12�: for p individuals chosen at random at genera-
tion g, the time Tp is the age of their most recent common
ancestor, i.e., Tp is the number of time steps for the p random
walkers on the fully connected graph to coalesce. At each
generation in the past, two distinct lineages have a probabil-
ity 1 /N of merging, thus T2 scales as the size N of the popu-
lation. For fixed p�2, the probability that a pair of lineages
coalesce is 1 /N whereas multiple coalescences occur with
higher powers of 1 /N for large N. One can then neglect these
multiple coalescences and

Tp � N��p + �p−1 + ¯ + �3 + �2� , �8�

where the times �k are distributed according to Eq. �5�, im-
plying that the statistics of the times Tp are exactly the same
as in Kingman’s coalescent Eq. �3�.

C. Coalescing random walks in finite dimension

We are now going to look at coalescing random walks on
an hypercube of N=Ld sites in dimension d with periodic
boundary conditions. We consider the continuous time case,
where during infinitesimal time interval �t, each walker on
the hypercube has a probability �t of hopping to each of its
neighboring sites, and whenever two walkers occupy the
same site, they instantaneously coalesce into a single walker.
If T2�r�� is the coalescence time between two walkers at a
distance r� apart, its evolution is

T2�r�� = ��t + T2�r�� with probability 1 − 4d�t ,

�t + T2�r� + e�i� with probability 2�t ,



�9�

where e�i is one of the 2d unit vectors on the hypercubic
lattice.

It is clear that the distance between the two walkers per-
forms a random walk and that T2 is simply the first time that
this distance vanishes. This is of course a very well known
first passage problem �24,25� which can be solved easily �it
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reduces to the inversion of a Laplacian�: the generating func-
tion of T2�r�� satisfies for �t�1 and for r��0

�e�T2�r��� = e��t��1 − 4d�t��e�T2�r��� + 2�t�
i=1

2d

�e�T2�r�+e�i��� ,

�10�

where �¯� denotes an average over all the random walks. At

r�=0� , it satisfies the boundary condition

�e�T2�0��� = 1. �11�

For r��0� , one can rewrite Eq. �10� as

��e�T2�r��� + 2�
i=1

2d

��e�T2�r�+e�i�� − �e�T2�r���� = 0 �12�

and this can be easily solved in Fourier space to give

�e�T2�r��� = A��� �
n1=0

L−1

¯ �
nd=0

L−1 exp
2i	n� · r�

L

� + 4�i=1
d �cos

2	ni

L
− 1	 ,

�13�

where the constant A��� is fixed by the condition of Eq. �11�.
Starting with two particles at random positions on the

lattice and averaging over these two positions leads to

�e�T2� = �1 + �
n��0

�

� + 4�i=1
d �cos

2	ni

L
− 1	�

−1

. �14�

This implies that

�T2� = �
n��0

1

4�i=1
d �1 − cos

2	ni

L
	 , �15�

�T2
2� = 2��

n��0

1

4�i=1
d �1 − cos

2	ni

L
	�

2

+ 2�
n��0 � 1

4�i=1
d �1 − cos

2	ni

L
	�

2

. �16�

For large L, it is well known �24,25� that Eq. �15� gives

�T2� 
 �L2 for d = 1,

L2 ln L for d = 2,

Ld for d � 2.
� �17�

On the other hand, one can show that the second term in the
right-hand side of Eq. �16� grows as Ld in dimension d�4
and as L4 in dimension d�4. Therefore for d�2, the ratio
�T2

2� / �T2�2 goes to 2 when L→
, as in the mean-field case
Eq. �3�.

In fact it has been proved �23,26� that in d�2 �and for
large L� the whole genealogies of p individuals �averaged

over all their positions� are given by the Kingman coales-
cent, up to the rescaling �17�. This implies that the distribu-
tion of the time T2 is exponential and that the moments of all
the coalescing times Tp have their mean fied values above
the upper critical dimension d=2 which is the well known
upper critical dimension of coalescing random walks �27�.

D. Coalescing random walks in one dimension

In dimension d�2, the two terms in the right-hand side of
Eq. �16� are comparable, and the ratio �T2

2� / �T2�2 no longer
converges to 2.

In dimension d=1 the calculation of all the moments of
the times Tp is rather straightforward. First one can easily
solve Eq. �12� for periodic boundary conditions with condi-
tion Eq. �11� and one gets

�e�T2�r��

=

�4 − � + ��2 − 8�

4
	L/2−r

+ �4 − � + ��2 − 8�

4
	r−L/2

�4 − � + ��2 − 8�

4
	L/2

+ �4 − � + ��2 − 8�

4
	−L/2 .

�18�

For large L, this becomes a scaling function of �L2 and of
r /L

�e�T2�r�� �
cos

�L − 2r���

2�2

cos
L��

2�2

=

sin
r��

�2
+ sin

�L − r���

�2

sin
L��

�2

�19�

and, averaging over r, one gets

�e�T2� �
2�2

L��
tan

L��

2�2
, �20�

which shows that the distribution of T2 is no longer expo-
nential.

One can write down the equations satisfied by the gener-
ating functions of the times Tp. For large L and �=O�L−2�
the solution is

�e�Tp�r1,. . .,rp�� � �
k=1

p
sin�rk

��/2�

sin�L��/2�
, �21�

where the rk are the distances between consecutive particles
along the ring �one has of course r1+ ¯ +rp=L�. In particu-
lar, for p=2, r1=r and r2=L−r, one recovers Eq. �19�. Av-
eraging Eq. �21� over all the positions of the p particles on
the ring leads to

�e�Tp� � p�p − 1��
0

1

dx
sin�Lx��/2�

sin�L��/2�
�1 − x�p−2. �22�

From Eq. �22� one can then obtain all the moments of
�Tp�. For example, one has
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�Tp� �
�p − 1��p + 4�

12�p + 1��p + 2�
L2 �23�

and one can show
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�24�

in contrast with Eqs. �3� and �4�.
One could repeat the calculations which lead to Eqs.

�15�–�17� and Eq. �24� for models of coalescence on other
lattices or with more general jumping rates. As long as the
motion of the coalescing particles remains diffusive, one
would recover the same values Eq. �3� or Eq. �24� for the
statistics of the trees.

E. Neutral evolution in finite dimension

One can try to generalize the Wright-Fisher model to the
finite-dimensional case, for example, by considering an hy-
percube with a finite population of fixed size m on each
lattice site, and the case where each individual chooses its
parent in the previous generation with a probability p on the
same lattice site and with probability 1− p on one of the
neighboring sites. The study of the genealogies in this case is
obviously the same problem as following the coalescences of
the lineages which perform random walks on this lattice.
Therefore in dimension d=2 and above, the trees are given
by the statistics Eq. �3� of Kingman’s coalescent whereas in
dimension d=1 they will be in the universality class Eq. �24�
of coalescing random walks in one dimension.

II. DIRECTED POLYMERS IN A RANDOM MEDIUM

Directed polymers in a random medium is one of the sim-
plest examples of a strongly disordered system �7,28–30�. It
describes directed paths in a random energy landscape. In its
zero-temperature version, the problem reduces to finding the
optimal path, i.e., the path of minimal energy in this random
energy landscape. The optimal paths starting at the same
point but arriving at different points give rise to a tree struc-
ture, that we try to characterize in this section by measuring
the coalescence times Tp.

A directed polymer in dimension d+1 is a line extending
in one of the directions �traditionnaly called “time,” and
which we represent as the vertical direction in Fig. 2 and
Fig. 3� with some random excursions in the d other trans-
verse directions �see Fig. 2�. We consider here directed poly-
mers on a lattice which is infinite in the “time” direction but
finite and periodic in the d transverse directions. In each time
section, there are N=Ld sites located on a d-dimensional hy-
percube of linear size L with periodic boundary conditions.
Each site in a given time section is connected to M =2d sites
in the previous time section �and it is also connected to M
other sites in the next time section�. The way each site is
connected is shown for dimension 1+1 in Fig. 2. In higher
dimensions, we generalized the lattice of Fig. 2 in the fol-
lowing way: let x� = �x1 ,x2 , . . . ,xd� be the transverse coordi-
nates of a given site; the xi are integers at even times and

half-integers at odd times, and the M =2d potential parent
sites of x� have coordinates �x1�1 /2,x2�1 /2, . . . ,xd�1 /2�
in the previous time section.

We consider also a mean-field version �Fig. 3�, where
there is no spatial structure in the transverse directions: A
time section consists of a set of N sites, and each of them is
connected to M sites chosen at random among the N sites of
the previous time section, where M might be any number
between 2 and N.

We assume that each link �AB� between two connected
sites A and B carries a random energy ��AB�. The energy E of
the polymer is then the sum of all the energies ��AB� of the
visited links.

We choose an origin where the polymer starts, and for any
given site A on the lattice, we call EA the minimal energy of
the polymer over all the possible directed paths connecting
this origin to A. At zero temperature, the directed polymer
chooses the path which minimizes its energy and one has the
simple recursion relation

EA = min�EB + ��AB�,EC + ��AC�, . . . � , �25�

where B ,C , . . ., are the M potential parent sites of site A.
For any pair of sites A and A� in the same time section,

we define their coalescence time �see Fig. 2� as the number
of up steps during which the two optimal paths arriving at A
and A� differ �we suppose that the origin of the directed
polymers is at a remote enough time in the past for the paths
to coalesce�. In a similar way, we define the coalescence
times of any group of p different sites as the maximal coa-
lescence time of any pair within the p sites. All these quan-

B C

A

FIG. 2. �Left� a directed polymer in dimension 1+1. The “time”
direction is vertical. �Right� A directed polymer arriving at A comes
either from B or from C, whichever is more energetically favorable:
In the example shown, the coalescence time of the directed poly-
mers arriving at B and C is 4.

FIG. 3. Directed polymer in mean field. At a given time, each of
the N=4 sites is connected to M =2 random sites at the previous
time.
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tities depend on the chosen sites and on the realization of the
disorder and, as in the previous section, we note by �¯� the
average over the choice of sites and the disorder. In this
section, we consider the averaged coalesence time �Tp� and
the averaged square of the coalesence time �Tp

2� of p sites.
We have simulated four models in dimension 1+1; from

top to bottom on Fig. 4: on the lattice of Fig. 2 with a dis-
crete distribution of � with values �=0 or �=1 with prob-
abilities 1 /2, on the lattice of Fig. 2 with a uniform distribu-
tion of � in �0,1�, on the lattice of Fig. 2, with negative values
of �, distributed according to ����=e���−��, on a square lat-
tice where each site is connected to M =3 parents �just above
itself, on its right and on its left� where � takes positive
values, with an exponentially decreasing distribution: ����
=e−���+��. In dimension 2+1, we have simulated three mod-
els all on the lattice with M =4 ancestors described above;
from top to bottom on Fig. 4: with an exponentially increas-
ing distribution ����=e+���−��, with a uniform distribution
of � in �0,1� with an exponentially decreasing distribution
����=e−���+��.

Finally, we have simulated two models in mean-field with
a uniform distribution of � in �0,1� and either M =2 or M
=4 random ancestors for each site �M =2 is above M =4 in
Fig. 4�. Our data for all these models are plotted together
with the same symbol for each dimension to emphasize the
universality of our results.

To measure the Tp’s, the conceptualy simplest way is to
update a N�N matrix containing for all pairs �i , j� of indi-
viduals the time T2�i , j� of their most commun ancestor. In-
deed, for an arbitrary number p of individuals, one has
Tp�i1 , . . . , ip�=max�T2�i1 , i2� ,T2�i1 , i3� , . . . ,T2�i1 , ip��, so that
the matrix of the T2’s contains all the relevant information.
Updating this matrix at each time step is easy: The T2 of two
different sites is one plus the T2 of their parents, and the T2
of a site with itself is zero. Because updating at each time
step a N�N matrix is time consuming, we used a more
sophisticated method �21�, where we keep track of the ge-

nealogical tree of all the sites at a current time: there are of
course N sites at the current time, and at most N−1 nodes,
where a node is a site from previous times which is the most
recent common ancestor of two sites at the current time. At
each time step, updating the whole tree takes a time linear in
N, and averaging the Tp over all the choices of p individuals
takes also a time linear in N, as one simply has to recursively
walk down the tree from its root and count for each node the
number of times it is the most recent commun ancestor of p
sites in the current time. This algorithm is described in more
details in Ref. �21�.

For each data point, we have run one long simulation and
averaged our results over all the time steps once the steady
state was reached. This is equivalent to averaging over many
independent realizations if we run a simulation for a time
much longer than the correlation time, which we estimated to
be of the order of magnitude of �T2�. All of our simulations
were at least 20 000 times longer than �T2�.

In Fig. 4, we plot the coalescence time �T2� as a function
of the system size. For directed polymers on a lattice which
is infinite both in the time direction and in the d transverse
directions, the transverse displacement of the optimal path
scales as t�, where t is the length of the directed polymer and
� is a universal exponent �7� equal to �1+1=2 /3 in dimension
1+1 and �2+1�0.624 in dimension 2+1. In our setup, with a
finite lattice of linear size L in the transverse directions, this
scaling can only hold as long as t�Tcorr with Tcorr

� =L=N1/d.
This time Tcorr is the correlation time on the scale of which
the system forgets its initial condition. Moreover, if we con-
sider several sites and the optimal paths arriving at these
sites, these paths coalesce on a time scale of the order of
Tcorr, as can be seen in Fig. 4.

In mean-field with a finite number M of potential ances-
tors per site, there is no notion of distance in the transverse
directions, and the exponent � is meaningless. We therefore
expect a different scaling. The problem of zero-temperature
mean-field directed polymers can be formulated �31� as a
noisy Fisher-Kolmogorov-Petrovsky-Pisconov �Fisher-KPP�
like equation �32,33�. Recently, a phenomenological theory
of coalescence trees in models of Fisher-KPP fronts sug-
gested �21,34,35� that the coalescence time in such models
should be of order Tcorr
 �ln N�3. On Fig. 4, one can see that
the data seem to have a slower growth than a power law, but
the values of N we simulated here are too small to check the
�ln N�3 prediction. Better simulations on a closely related
model are presented in Ref. �21�, where the �ln N�3 scaling
appears clearly.

We now turn to the ratios of coalescence times. Figure 5
shows the ratios �T3� / �T2� and �T4� / �T2� as a function of the
system size for all the models we study �four models in di-
mension 1+1, three in dimension 2+1, and two in mean-
field�. Numerically, all the symbols for a given dimension
overlap of large N: these ratios seem to depend only on the
dimension, and not on the distribution ���� of the bond en-
ergies, nor on the shape of the lattice. The results in mean-
field are compatible with the prediction that for an infinitely
large system in the Fisher-KPP front equation class �21�, the
genealogical tree converges to a Bolthausen-Sznitman coa-
lescent, with ratios given by Eq. �4�. In dimensions 1+1 and
2+1, our numerical results indicate clearly that we have tree

∞ + 1 dimensions (mean field)2 + 1 dimension
s

1 +
1 dim

en
sio

ns

N

〈T
2
〉

104103102

104

103

102

10

FIG. 4. Averaged coalescence time �T2� of two individuals for
several models of directed polymers in dimensions 1+1 and 2+1,
and in mean-field, as a function of the number N of sites in each
time section. The data are compared to the prediction �T2�
N1/�d��

in dotted lines for dimensions 1+1 and 2+1. Note that, by chance,
two out of the four models in dimension 1+1 and two out of the
three models in dimension 2+1 have nearly the same prefactor and
their data are undistinguishable.
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statistics different from the Bolthausen-Sznitman coalescent,
and also different from the Kingman coalescent for which
�T3� / �T2� would be 3 /2 as in Eq. �3�.

On Fig. 6, we show the ratios �T2
2� / �T2�2 and �T3

2� / �T2�2.
Here, the situation is less clear: the symbols for the different
models do not superpose and the ratios do not seem to have
converged �in particular, the mean-field ratios are rather far
from the prediction �4��. For some reason we do not under-
stand, it seems that the �Tp

2� / �T2�2 need much larger values of
N to converge to their final values than the �Tp� / �T2�. We
already observed a similar phenomenon on an exactly solv-
able related model �21�. We also measured the ratios
�TN� / �T2�, where TN is the age of the most recent common
ancestor of the whole population and found these ratios to be
close to 1.93 in dimensions 1+1 and 2+1, while it diverges
in meanfield �21�.

A. Long tail distributions

In the directed polymer problem, it is known that the scal-
ing regime is modified when the distribution ���� of the en-
ergies of the bonds decays as a power law ����
 ���−� for
large negative �: when ���c with �c�7, the directed poly-

mer in dimension 1+1 has an anomalous scaling �7,36� and
the exponent � depends on �. We have measured the coales-
cence times in dimension 1+1 for a distribution of energies
given by

���� =
A���

�1 + ����� , �26�

with ��1 and A��� such that ���� is normalized, for sizes
N=100 and N=400. The ratios �T3� / �T2� and �T4� / �T2� are
presented in Fig. 7. We observe that, for large �, these ratios
converge towards the universal values shown on Fig. 5,
while for �→1+, they seem to converge close to, respec-
tively, 1.24 and 1.35.

As we expect �T2� to scale like N1/����, it is possible to
obtain a rough estimate of the exponent ���� from the only
two datapoints at sizes N=100 and N=400. This estimate is
shown in Fig. 8.

N

〈T3〉
〈T2〉

104103102

1.38
1.36
1.34
1.32
1.3

1.28
1.26
1.24

N

〈T4〉
〈T2〉

1.56
1.52
1.48
1.44
1.4
1.36
1.32

104103102

FIG. 5. Ratios of coalescence times for directed polymers at
zero temperature as a function of the size N of the system in, from
top to bottom, dimension 1+1, dimension 2+1, and meanfield. The
dotted line represents the prediction Eq. �4� for meanfield in the
limit of infinite size. �Left� ratios �T3� / �T2�. �Right� ratios
�T4� / �T2�.

N

〈T 2
2 〉

〈T2〉2

104103102

2.15
2.1

2.05
2

1.95
1.9

1.85
1.8
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1.7

1.65

N

〈T 2
3 〉

〈T2〉2

3.1
3
2.9
2.8
2.7
2.6
2.5
2.4
2.3

104103102

FIG. 6. Ratios of moments of the coalescence times for directed
polymers at zero temperature as a function of the size N of the
system in, from top to bottom, dimension 1+1, dimension 2+1, and
meanfield. The dotted line represents the prediction Eq. �4� for
meanfield in the limit of infinite size. �Left� ratios �T2

2� / �T2�2.
�Right� ratios �T3

2� / �T2�2.

size N = 100

size N = 400
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〉
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1.55
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1.45

1.4

1.35

1.3
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1.2

FIG. 7. Ratios �T3� / �T2� and �T4� / �T2� as a function of the ex-
ponent � appearing in the noise Eq. �26�, for two different system
sizes in dimension 1+1.
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FIG. 8. Estimate of the exponent � of the directed polymer as a
function of the exponent � appearing in the distribution of � in Eq.
�26�. This exponent has been evaluated from the formula
ln�4� / ln��T2�N=400�� / �T2�N=100���. The universal value �1+1

=2 /3 for distributions decaying fast enough is also shown.
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The exponent ���� seems to converge toward the univer-
sal value �1+1=2 /3 for large �, while it seems to be 1 for
1���2. As with previous numerical studies �7�, our results
are not precise enough to determine accurately the critical �c
above which �=2 /3.

B. Discrete distributions

We are now going to discuss the case where the energies
of the bonds take discrete values. In this case, it may happen
in Eq. �25� that there are several paths coming from different
potential parent sites in the previous time section with the
same minimal energy, and the question is, of course, which
path should be selected as the parent site.

The simplest idea is to choose randomly at each time step
with equal probabilities one of the parent site with the lowest
energy. With this procedure, we have run numerical simula-
tions in dimension 1+1 for several sizes with a binary noise
for the energies � of the bonds

� = �0 with probability p ,

1 with probability 1 − p ,

 �27�

for several values of p. Our results for the ratio �T3� / �T2� as
a function of p are shown in Fig. 9 as dotted lines. As p
varies, we observe a crossover between two values: for small
p, �T3� / �T2��1.36 as for directed polymers in dimension 1
+1 when the distribution of energies is continuous �see Fig.
5� and, for large p, �T3� / �T2��1.4 which corresponds to the
coalescence of random walks in dimension 1, as in Eq. �24�.
The crossover between the two regions becomes sharper as L
increases, which suggests a phase transition. The critical
value of p is very consistent with the known threshold
0.6447 for directed percolation on the same lattice �37�.
Thus, the system behaves similar to the neutral model when
the �=0 bonds percolate.

Instead of choosing with equal probabilities which bond
the polymer follows when they are energetically equivalent,
there is an alternative procedure which corresponds to taking
the limit T→0+ in the problem of directed polymers at a
finite temperature T. At finite temperature, we keep track for
each site A of the partition function ZA of a polymer arriving
on A. Assuming that the site A has M =2 potential parent
sites B and C, we have the recursion Eq. �25�

ZA = ZA←B + ZA←C, �28�

where ZA←B=ZB exp�−���AB�� is the partition function of a
directed polymer arriving on A via the site B and where �
=1 /T. The probability that a polymer reaching A comes from
B is given by

�probability the polymer comes from B� =
ZA←B

ZA
. �29�

At very low temperature, the partition function is dominated
by the lowest energy paths

Z � �e−�E, �30�

where E is the minimal energy and � the number of ways
that this energy E can be obtained, so that Eq. �28� reads, at
low temperature,

�Ae−�EA � �Be−�EA←B + �Ce−�EA←C, �31�

where EA←B=EB+��AB� is the minimal energy of the path
arriving at A through B. If EA←B�EA←C, then the first term
in the right-hand side of Eq. �31� dominates and we obtain
EA=EA←B and �A=�B. Furthermore, from Eq. �29�, the cho-
sen path comes from B. On the other hand, if EA←B=EA←C,
both terms in Eq. �31� have the same order of magnitude and
we obtain EA=EA←B=EA←C and �A=�B+�C. Then, from
Eq. �29�, the probability that the directed polymer comes
from B is �B /�A.

In this way, we not only choose the optimal energy but we
also keep track of entropy effects. We have run numerical
simulations with the same parameters as above but with this
new procedure. The ratios �T3� / �T2� are shown on Fig. 9 in
plain lines. For small values of p, both procedures yield the
same results. For larger p, however, the difference is striking,
and the phase transition seems to have disappeared: on both
sides of the percolation threshold the data seem to be in the
same universality class �as they converge to �1.36�.

III. CONCLUSION

In this paper, we have presented analytical and numerical
results showing the existence of universality classes in the
tree structures which appear in several models of evolution
and in directed polymers �see Table I for a summary�. With-
out selection, the genealogies of neutral models like the
Wright-Fisher model or coalescing random walks are de-
scribed above the critical dimension dc=2 by the Kingman
coalescent. For d=1 the universality class is different: we
have obtained the distribution Eq. �22� of the ages Tp of the
most recent common ancestor of p individuals.

For directed polymers in a random medium at zero tem-
perature, the same coalescence times Tp have been measured

N = 64

N = 32

N
= 16

N = 16
N = 32

N = 64

p

〈T3〉

〈T2〉

0.80.750.70.650.60.550.5

1.405

1.4

1.395

1.39

1.385

1.38

1.375

1.37

1.365

1.36

1.355

FIG. 9. Ratios �T3� / �T2� as a function of p for the distribution of
� of Eq. �27� in dimension 1+1. The dashed lines correspond to the
simplest procedure of choosing with equal probabilities one of the
potential parent sites realizing the minimal energy, and the plain
lines represent the results using the weights � which corresponds to
the T→0+ limit of finite temperature directed polymers. The verti-
cal dotted line indicates the directed percolation threshold on the
same lattice.
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numerically. In the mean field case, their values are compat-
ible with Bolthausen-Sznitman’s coalescent, which is already
known to appear in spin glasses �19� and in branching ran-
dom walks with a selection mechanism keeping the size con-
stant �21,22�. In low dimension �at least d=1 and d=2�, the
coalescence times belong to different universality classes. It
would be interesting to predict analytically the values of
�T3� / �T2� and �T4� / �T2� measured numerically in Fig. 5 for
fast decaying distributions of � as well as the ones obtained
in Fig. 7 for power-law distributions of � with exponent �
�1+. In the mean-field case, it would also be interesting to
know if the replica method can be used in order to determine
the coalescence times.

The simulations presented in this paper deal only with
directed polymers at T=0. Directed polymers exhibit a phase
transition for d�2 as the temperature increases �38�. We
expect the tree statistics to change at Tc from the universality
class of directed polymers at zero temperature to the univer-
sality class of coalescing random walks.

The construction of the minimal energy path for directed
polymers can be related to spatial models in presence of
selection. In population dynamics, selection can be taken

into account through a parameter, called the fitness or the
adaptability, which characterizes the ability of an individual
to survive and reproduce �39–43�. Individuals with a higher
fitness have a higher probability of having a descendance.
This parameter is transmitted from parents to offspring up to
fluctuations due to mutations. An analogy can be drawn be-
tween the minimal energy of a directed polymer arriving on
a site, and minus the fitness of an individual living on a site.
In presence of local selection, a spatial model of population
could therefore be formulated as follows: on each site there
would be one �or a finite number m of individuals�; at each
generation, each individual would branch into k offspring
with mutated fitnesses. These offspring diffuse and, under
the effect of selection, only the best �or the m best� individu-
al�s� on each site would be kept. Because of the similarity of
such spatial models of population dynamics in presence of
selection with the directed polymers, we expect these models
to belong to the same universality classes.

We performed preliminary simulations on such a spatial
model of evolution with selection in dimension 1+1 with
m=5 individuals per site. Our results for the ratios �T3� / �T2�
and �T4� / �T2� coincide with those of directed polymers.

TABLE I. Universal ratios and order of magnitudes of coalescence times for models of evolution with and
without selection, and directed polymers in a random medium. We could not reach large enough system sizes
to give a reliable numerical prediction for the ratios �Tp

2� / �Tp�2.

�T3�
�T2�

�T4�
�T2�

�TN�
�T2�

�T2
2�

�T2�2

�T3
2�

�T2�2 �T2�

Kingman coalescent 1

Coalescing random walks in d�2 4
3

3
2 2 2 26

9 
N

Neutral models of evolution in d�2 
N

Neutral model in d=2 
N ln N

Neutral model in d=1 7
5

8
5 2 12

5
124
35 N2

Bolthausen-Sznitman’s coalescent 1

Models of evolution with selection
�or directed polymers at zero temp-
erature in mean field�

5
4

25
18 
 2 11

4 
�ln N�3

Models of evolution with selection
in dimension 2 �or directed poly-
mers at zero temperature in dimen-
sion 2+1�

�1.29 �1.42 �1.93 ? ? 
N1/�2�2+1��N0.80

Models of evolution with selection
in dimension 1 �or directed poly-
mers at zero temperature in dimen-
sion 1+1�

�1.36 �1.55 �1.93 ? ? 
N3/2
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