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Abstract. In this article, we study the extremal processes of branching Brownian motions conditioned on having an unusually large
maximum. The limiting point measures form a one-parameter family and are the decoration point measures in the extremal processes of
several branching processes, including branching Brownian motions with variable speed and multitype branching Brownian motions.
We give a new, alternative representation of these point measures and we show that they form a continuous family. This also yields a
simple probabilistic expression for the constant that appears in the large deviation probability of having a large displacement. As an
application, we show that Bovier and Hartung’s (ALEA Lat. Am. J. Probab. Math. Stat. 12 (2015) 261-291) results about variable speed
branching Brownian motion also describe the extremal point process of branching Ornstein—Uhlenbeck processes.

Résumé. Le présent article a pour objet ’étude du processus extrémal du mouvement Brownien branchant conditionné a avoir une
particule anormalement loin a droite. Ces mesures ponctuelles limites forment une famille & un parametre et apparaissent dans les
processus extrémaux de plusieurs processus de branchement tels que le mouvement Brownien branchant avec vitesse variable ou
certains mouvement Brownien branchants multitype. Nous donnons une nouvelle représentation de ces mesures ponctuelles et nous
montrons qu’elles forment une famille continue de lois. Nous obtenons ainsi une expression probabiliste simple de la constante qui
apparait dans le principe de grande déviation pour un déplacement anormal de la particule la plus a droite d’'un mouvement Brownien
branchant. Finalement, nous appliquons ces résultats pour montrer que les travaux de Bovier et Hartung (ALEA Lat. Am. J. Probab.
Math. Stat. 12 (2015) 261-291) sur le mouvement Brownien branchant avec vitesse variable décrivent également le processus extrémal
du processus d’Ornstein—Uhlenbeck branchant.
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1. Introduction

Spatial branching processes, and in particular, the behaviour of their extremal particles, have been at the centre of a wide
research activity over the past few years, both in the physics [15,16,20] and in the mathematical literature [1,2,4,29]. These
models have a rich and complex structure that is of intrinsic interest, but they are also representatives of an intriguing
“universality” class, the so-called log-correlated fields which includes the two-dimensional Gaussian free field [9,14],
Gaussian multiplicative chaos [31], random matrices [3] and others.

Perhaps the simplest model in this class is the branching Brownian motion, in which particles move in R as Brownian
motions, branch into two particles at rate one and behave independently of each others. For the system started with a
single particle at the origin, let AV; be the set of particles alive at time 7 and for u € N; let X, (u) € R be its position. For
s <t we will also write X(u) for the position of the unique ancestor of u at time s so that (Xs(u),s <) is the path
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followed by the particle u. Then, it was proved in [2,4] that the point measure

(1.1) & = 2 : SX, (u)—/2r+ -3~ logt
272
ueN;

converges in law, as t — oo toward a random intensity decorated Poisson point process (DPPP for short) Ex.

In general, the law of a DPPP £ is characterized by a pair (v, ®) where v is a random sigma-finite measure on R and
® is the law of a random point process on R. The point measure £ can be constructed, conditionally on v, by first taking
a realisation of a Poisson point process on R with intensity v, whose atoms are listed as (x;, i € I), and an independent
family of i.i.d. point processes (D;, i € I) with law ®. Then, each atom x; is replaced by the point process D;, shifted by
x; (this action is called the decoration of x; with a point process of law ). In other words, writing (di] , J € J;i) the atoms
of the point process D;, we have

(1.2) 52225x,-+d,f”

iel jel;

We refer to [32] for an in-depth study of random intensity decorated Poisson point processes, and their occurrences as
limit of extremal point measures.
With this notation, £y := lim;_, o & is the following DPPP

(1.3) Eoo = DPPP(k Zoge V> dx, D)
where « is an implicit constant, Z, is the a.s. positive limit of the so-called derivative martingale

(1.4) Z; = Z (\/El‘ _ X,(u))eﬁxt(“)—”,
ueN;

and where the decoration law D! is the law of a point measure supported on (—o0, 0], with an atom at O defined by the
following weak limit

1 . :
(1.5) D)= tl_l)l&P( Xj\; (X, -y € - | My = «/§t>,
ue/Ny

where M; := max,cn; X;(u). Moreover, it is well-known that max & converges in distribution toward max £, where
max £ is the position of the largest atom in a point process £ (see Lalley and Selke [26]).
The decoration law D! belongs to the family (D¢, o € [1, 00]), defined, for o < oo by the weak limits

(1.6) D0():= lim P( XA:[ S(X, ()M} €+ | My = ﬁgt)
ueN;

We denote by ©°° the law of the Dirac mass at 0. The family ©¢(-) was introduced by Bovier and Hartung [12] as the
decorations appearing in the extremal processes of variable speed branching Brownian motions. A detailed statement of
the result of Bovier and Hartung is given in Section 4. This convergence in law can be seen as an extension of the Yaglom
limit [18, Theorem 3], that is the convergence of the number of particles above level \/Egt conditionally on M; > ﬁgt.
The decoration law ©9(-) can also appear in the context of multitype branching Brownian motions [5].

Note that the law D¢ is constructed by conditioning the branching Brownian motion on a large deviation event for its
maximum. For ¢ € (1, c0) we define

(1.7) Clo) = Qtlggotl/ze@z*l)’P(M, > 201).

The asymptotic behaviour of P(M; > +/20t) was first studied in the seminal paper [18] (where the existence of the
limit C(p) is implicit) and the function C(o) plays a key role in [12] where it is proven that C(1) = 0 and that
limy— 00 C(0) = (47)~!/2. We plot in Figure 1 a graph of the function o > C (o) based on Monte-Carlo simulations,
using its representation from Theorem 1.1.

More recently, the same function C(-) is the focus of [20] where, in particular, the asymptotic behaviour of C(p)
as ¢ — oo and ¢ — 1 are conjectured. They conjectured that C (o) ~ a(o0 — 1) as ¢ \( | using non-rigorous analytic
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Fig. 1. Monte-Carlo approximation for the function C together with its right derivative at o = 1.

computations. Here, using our notation

. e V2 . [ 3
(1.8) a_ZZlinc}o 73 t1_1>rr010P(M,Z 2t—2—ﬁlogt+z>.
The behavior of C(p) as 0 — 1 is deeply linked to moderate and large deviations of the maximal displacement of the
branching Brownian motion, see [17,21,23] for further recent developments on this topic.

The goal of this article is to study both the function ¢ — C(p) and the family (92, ¢ € (1, oo]). We provide a new
construction of these quantities, that do not rely on the conditioning on a vanishing event but uses a spine decomposi-
tion. Recall that a sequence of random point measures (P;);>o on R converges to P in law for the topology of vague
convergence if and only if, for every compactly supported continuous function ¢, the real valued random variables

(19) (Pr.g) = / (¥ P (dx)

converge in law to (P, @) as t — co. We prove in this article that C is continuous on [1, co], and that g > ©° is
continuous on (1, co] for the topology of vague convergence. This can be used to extend the main theorem of [12].

Let (B;,t > 0) be a standard Brownian motion, (ox, k € N) be the ranked atoms of a Poisson point process with
intensity 2dx on R4 and (X t(k) (u),u € /\/',(k), t > 0) for k € N be i.i.d. branching Brownian motions. We shall assume that
B, (ox, k> 1) and (X ® k> 1) are independent of one another. Given g € (1, c0) and ¢ > 0, we define the point process

-
(1.10) D=8+ D0 0y irpmrx
keNueNé,I:)

In words, D€ is the point process constructed using a Brownian motion with drift —+/2¢, that spawns branching Brownian
motions at rate 2. A branching Brownian motion spawned at time oy then starts evolving backward in time until it hits
time 0, the particles alive at that time are added to the point process.

Theorem 1.1. Let C : [1, 00] = Ry be the function given by (1.7) and for o > 1 let D? be a random point measure of
law ©°9 as defined in (1.6). Then

1) C(o) = ﬁP(ﬁQ((O, o0)) =0) for all o > 1. The function C is continuous on [1, o). It also satisfies C(1) =0,
C(0) >0foro>1and C(co)=1/+/4rm.

i) P(D?e-) = P(ﬁg €| 59((0, 00)) = 0). The family of point processes (D%, o € (1, 00)) is continuous in the space
of Radon point measures equipped with the topology of vague convergence.

The rest of the article is organized as follows. In Section 2 we introduce the spinal decomposition of the branching
Brownian motion, and its application to the extremal process of the branching Brownian motion, seen from the rightmost
particle. We then prove Theorem 1.1 in Section 3. Then, as an application of Theorem 1.1, in Section 4 we show how the
results of Bovier and Hartung [11,12] about variable speed branching Brownian motion also describe the extremal point
process of a branching Ornstein—Uhlenbeck. We conclude this article with some open questions.

2. Spinal decomposition at the maximum

We apply the so-called spinal decomposition of the branching Brownian motion to obtain the joint law of the maximum
and the extremal process of the branching Brownian motion. The spinal decomposition is an alternative description of the
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process constructed via the probability tilting by the additive martingale Wﬁé’, which is defined for all ¢ > 0 by

o CI S )
ueN;

This idea was already at the heart of the approach taken in [18] to study branching Brownian motions conditioned to have
large displacements (i.e. the event M; > ct with ¢ > \/i). In particular, they give in [18, Theorem 5] a description of
the law of the branching Brownian motion biased by W; up to the first branching time. Spine decomposition techniques
were expended by Lyons, Peamantle and Peres in [28] to study Galton—Watson processes, then generalized to branching
random walks by Lyons [27] and to general branching processes in [8].

Let (F;) be the natural filtration of the branching Brownian motion, defined by

Fr=0 (N, (Xs),u e Ny),s <1).
For o € R and ¢ > 0, we introduce the size-biased law as

o 2
2.2) Polr, = W, Pl

and call X under ﬁg the size biased process. The law ﬁg is identified in [18, Theorem 4] as the limit law conditioning on
the maximal displacement begin large at large times, precisely for all o > 1,

Vs> 0.YAeF, lim P(AIM, > V201) =P, (A).
—00

The spinal decomposition links the size biased process with the so-called branching Brownian motion with spine. It
describes the evolution of a branching particle system with a distinguished particle &;, which behaves differently from
the others. The system starts with the spine particle at position 0. This particle moves according to a Brownian motion
with drift /20 and produces children at rate 2. Each of its children starts an independent (standard) branching Brownian
motion from its birth place. We shall use the same notation N; for the set of particles alive at time ¢ in this process (it is
not a Yule process anymore), and write & € N for the label of the spine particle. The law of this branching Brownian
motion with spine is denoted by ﬁg. The spinal decomposition can be stated as follows.

Theorem A (Spinal decomposition [6,18]). For all o € R, with the above notation we have Py |, = /Pl) |7 forallt > 0.
Moreover, for all u € N,

eV20X W —t(@*+1)

Wﬁ@

t

P& =ul|F)=

In words: the law of the marked tree ((X;(u), u € Ny), s < t) has same law under probability Pand P. Moreover, con-
ditionally on this marked tree, one can choose to distinguish at random an individual u € N; with probability proportional

to eV2eX1@) o construct the law of the branching Brownian motion with spine.
Using this result, we can describe the joint law of the extremal process and the maximal displacement of the branching
Brownian motion.

Lemma 2.1. Let o > 1 and t > 0, we denote by

&= 8xw-m,
ueN;

the extremal process of the branching Brownian motion seen from the rightmost individual, and we introduce the point
process

o
(2.3) Dy =60+ Z Z 830k7ﬁ90k+x<(7],?(u)’

keN:oy <t ue/\/y‘)
k

where B is a Brownian motion, (o, k > 1) are the jump times of a Poisson process with intensity 2 and (X §k) (u),u e
N, s > 0)ken are i.i.d. branching Brownian motions (see Figure 2). For all non-negative measurable function f, F, we
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Fig. 2. Construction of the point process De.

have

E[F(£7) £ (M, = V2] = e =0 E[e¥2P £ (= Bi) F(DF)150,0,0020) |

Proof. For ¢t > 0, denote by u?p € N the label of the largest particle alive at time ¢ (which is a.s. unique). We observe
that we can write

E[F (&) f(M; —v201)] = E[ > F(E @)L, o, f (M~ fzgt)]
ueN;

where £ (u) := ), 7 0x,()—x, ) is the extremal point measure seen from particle u € N;. Thanks to the spinal de-
composition and using (2.2), the above reads

— 1
EQ[ Z F(gt*(u))l{uzu;ip}f(Mt — ﬁgt)]

E[F (&) f(M; —v201)]
[ W[ﬁg LIE./\/;

_ E‘Q [efﬁgx,@oﬂgzg)m(gt* (ét))1{§[:u;ip} F(XE) - ﬁgt)].

Next, we use the definition of the branching Brownian motion with spine to rewrite the above expression. For s € [0, ¢]
let By =7,y — Z; where Z; = X, (&) — «/Egs and for all k € N, oy is the kth instant at which the spine gives birth to a
new particle when running time backward from 7 (i.e. t — o7 is the last time before 7 at which the spine branches).Then,
under E,, B is a standard Brownian motion and (o) are the atoms of a Poisson point process on R with intensity
measure 2dx. For each branching event oy, the spine gives birth to a standard branching Brownian motion that we call

X® =(x S(k) (u),u e M(k); s € R;). With these notation we then get

2.4) @@= Y 2 S mexPa

keN:oyp <t MGNa(,l:)

All that is left to do is thus to note that under EQ, the pair of variables (£ (&), X;(&;)) jointly have the same law
as (D,Q, (—B; + +/201)) from (2.3). Thus substituting I{S[:u;ip} by 1{55((000)):0} and f(X,(&) — v201) by f(—B;) we
conclude that

E[F(E7) f (M, — V20t)] = (=0 VE[[eV205: F=BOF (D) 50 (0,000 ) O

We are now going to show that for all ¢ > 1, the point measure De given in (1.10) is well-defined as the increasing
limit of Dlg as t — 00. Recall that, with the notation of Lemma 2.1, we have

_
2.5) De=80+2 . 2. 35 romxBu
kENueN(ﬁ’;)

Our first step is to prove that De is a well-defined sigma-finite point measure, meaning that for every a < b € (—o00, o],
we have D¢ ([a, b]) < 00 a.s..
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Lemma 2.2. Forall o > 1, Deisa well-defined point measure. Moreover, we have

thrn DQ De g, for the topology of the vague convergence.
—> 00

Remark 2.3. Note that the above result would not hold for o = 1, as in that case one can prove that lim;_, 5,1 0,1)=00
a.s.

Proof. Let o > 1, the point measure DO can be rewritten as

0 —
(2.6) Dr=dot+) . 3 Bog =3 0= Do)+ (XL W~ o)
keNuEN(k)

We observe that (B, — V2(0 — Doy, k > 0) is a random walk with negative drift — V2(0 — 1)/2. Moreover, for all k € N
the position of the largest atom in the point measure Z N 8X<k> ()30 is, for large values of k, typically around

3

position — 25 logoy =~ log k. Thus, heuristically, if o > 1, the random walk drifts to —oo at positive speed such

2f

that only a finite number of branching Brownian motions put particles in any given compact set. On the other hand, when
o =1, the random walk B, has drift zero and we show that it implies that an infinite number of particles are to be found
in any finite neighbourhood of 0.

To make the above argument rigorous, we write M, for the maximal displacement at time ¢ in a branching Brownian
motion. Setting m; = =2t — logt It is well-known [2,4] that (M; — m,, t > 0) is tight and has uniform exponential

tails. More precisely, it is proved in [22] (in a much more general settings) there exists C > 0 and A > 0 such that
(2.7 P(IM; —m;| > x) <Ce™ forallt,x > 0.

Given k € N, we denote by M® = max, _w X ((,li) (1) the maximal displacement of X® at time 3. Using the bounds
%

from (2.7), we observe immediately, using the Borel-Cantelli Lemma and the fact that o} ~_, o k/2 that, with probability
one,

M®O — /2 3
2.8) Jim sup | V204 <47l
k—00 logk 24/2

In view of (2.8) and the law of large numbers, we deduce that

V2 -1

0 as.
5 <0 as

1
(2.9) lim %(B(,k +M® —V2001) = -

k— 00

In particular, it implies that given A > 0 one can find a random 7 € R such that
Vor =T, By +M® —200; <A,

in which case ’DQ((x x0)) = DQ((x 00)) for all + > T and x > —A. This proves that De is locally finite a.s. and that
D? 7 DC as t — 00, as claimed. O

Next we show the weak continuity of the family (Do, o>1).

Lemma 2.4. The family of point processes (59,9 > 1) is a.s. continuous in o > 1. Moreover, for all o > 1,
P(D4((0, 0c0) =0) > 0 and

lim P(D}((0,00) =0)=0 and 1imlP(59((o,oo))=o)
o—

—>00

Il
e

Proof. To prove the a.s. continuity of (139 ,0 > 1), it is enough to show that for all continuous function ¢ with compact
support, the function ¢ — (¢, D?) is continuous a.s. This is a direct consequence of the fact that there are only finitely
many atoms in any compact interval, and that the position of these atoms in D¢ are decreasing and continuous with g, by
(1.10). Hence, for any oo > 1, there is only a finite number of atoms to follow as o increases to compute o € [0, 00)
(¢, D?). Hence this function is continuous, which completes the proof of the first statement. For Nthe second statement, it
suffices to observe that for 7 > 0 there is positive probability that oy > T and that D?(0, co) — D? 0, 00) =
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We now focus on the case o = 1. By law of iterated logarithms for the random walk, we have that

limsupk~ /2By, =00 as.,
k—o00

which together with (2.8) yields

_ Bo, + M® — 20y
lim sup 73 =00 as.
k— 00 k1/

This shows that the event {B,, + M &) _ /20y > a infinitely often} has probability 1 for every a > 0. In particular it
implies that Dl((a o0)) 1 00 a.s. as t — 00.

To conclude the proof, we observe that for all ¢ > 0, there exists ¢ > 0 such that P(D1 ((0, 0)) =0) < &. At the same
time it follows from (2.3) that DQ is continuous in o € R, hence for all o > 1 small enough, we have

P(D?((0, 00)) = 0) < P(D?((0, 00)) = 0) < 2e,

which shows that lim,_, | P(ﬁg (0, 00)) = 0) =0, completing the proof. O

3. Probabilistic representation of the extremal point process conditioned on a large maximum

In this section, we prove the weak continuity in o of the cluster point process ¢ as well as the continuity of the function
o0 — C(p) and their spine representation. To prove this, we show that the cluster law ©¢ and the function C can be
computed as continuous functionals of D¢ defined in (1.10). This connection is based an application of Lemma 2.1 to
the study of the extremal process of the branching Brownian motion conditioned on having a maximum larger than +/20.
Those results in combination complete the proof of Theorem 1.1.

We begin with the following computation of the extremal process of the branching Brownian motion conditioned on
satisfying {M; > +/201}.

Lemma 3.1. Let o > 1 and ¢ : R+ Ry be a continuous function whose support is bounded from the left. Then

1
- 125> = Dig[e—(EF9) — —(D%9)q ~
Jim or'Se' VR[N o] = ME[e 00,0001 )

Proof. Fix ¢ as in the lemma and o > 1. Using Lemma 2.1, we may write for ¢ > 0

2 Ditp[a—(EF, — V20B (D7, ~
(0 )E[e (& Wl{Mtz\fZQt}]_E[e 0 "1;,<0)€ (D; wl{Df((O,oo)):O}]'

We compute the right hand side by first conditioning on B; = x. Introducing the point measure 55” as ﬁg conditioned
on {B; = x}, one gets

o@D [e-(E eﬁ@X—fE[ it

{755’X<<0,oo>):0}]~

1 _ O dx
(Mi=vaon] = oo 271

We are going to show that, for any fixed x < 0,

. (D%, ~ _ —(De, ~
(3.1) lim E[e™P ¢>1{Dr@,x((0m))=0}]_1«:[e ( ¢>1{DQ((0,OO)>=0}]

—00

then, the lemma follows by a simple application of the dominated convergence Theorem.
We shall couple the processes DQ and D€ in such a way, that for any fixed x € R,

(3.2) lim (DX, )= (D%, ¢) as.

—>0o0

Then, this gives (3.1) (and the lemma) by dominated convergence.
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Fix x € R, recall that B is the Brownian underlying the construction of D@ and introduce for 0 < s < ¢
® ._ S
By’ = Bs + ;(X — By).

It is well-known that (/35'); s € [0, t]) is a Brownian bridge from ﬂg) =0to ,B,(t) =x.

Almost surely, there exists a random constant C such that
|Bs| <14 Cs%' foralls > 0.
Then, with the same constant C, one checks that we have the following uniform bound:
(3.3) B <2+ x| + 5”5 +5C17%% forallt > 0and all s € [0, 1].

Recall that ¢ has bounded support on the left. Therefore, there exists a € R such that ¢(x) = 0 for all x < a. Let us fix
0 <& < +/2(0 — 1). For all ¢ large enough so that Ct~%*° < ¢, observe that

BY — V205 < —(V20 —€)s + 2+ |x| + Cs* forall s € [0, 7].
As in the proof of Lemma 2.2, since \/EQ — & > +/2, we conclude that there exists T’ < co a.s. such that uniformly in t,

all the points in ﬁtg’x on the right of @ come from branching events on the spine that occurred at times o} < T".
Therefore, in computing (D%, ¢), one only needs to consider finitely many points: those that branched from the spine

at a time smaller than 7”’. These points converge, as ¢ — 00 to the corresponding points in De (because B — By as
t — 00) and, as ¢ is continuous, (3.2) holds and the lemma is proved. O
Using that last result, we now prove Theorem 1.1.
Proof of Theorem 1.1. We recall from (1.7) that for all o > 1, we have
Clo)=0 lim 1126@=Drp(p, > /201).
—00
Therefore applying Lemma 3.1 with ¢ =0, we can rewrite C (o) as
1 ~
(3.4) C(0) = —P(D?((0, >0)) =0).
SP(0°(0.50) =0)
We deduce from Lemma 2.4 that C is a continuous function on [1, co) such that C (1) = 0. Additionally, it can be seen
from the proof of [12, Lemma 3.3] that lim,_, - C(0) = \/% =: C(00), which completes the proof of the first part of
Theorem 1.1.

We now turn to the proof of the second part. We recall that by the definition (1.6), given D€ a point process of law D¢,
for all continuous function ¢ with compact support, we have

E[e=P*¥] = lim E[e™" | M, > v201].

t—>0o0

At the same time, by Lemma 3.1 we get

x E[e (€91 - ] E[e—(59,¢)1 ~ ]
lim E[e~ "9 | M, > V201] = lim (M=) _ " De0.00p=0)
e =00 P(M; = V200 P(D2((0, 00)) = 0)

This shows that for all continuous compactly supported function ¢ : R+— R
E[e~ P9 =E[e~P*¥ | D?((0, 00)) = 0],

proving that P(D? € -) = }P’(ﬁg €| 59((0, 00)) = 0). The weak continuity of D¢ for ¢ € (1, co) follows readily from
Lemma 2.2 and the continuity of C. This concludes the proof. ([
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3.1. An alternative proof for the first part of Theorem 1.1

We sketch here an alternative proof for the representation of C(p) in terms of the point processes D@ defined in (1.10).
This proof is based on PDE analysis rather than tight probabilistic estimates, and can thus be of independent interest.

Let M; be the maximum at time ¢ in a branching Brownian motion, and set u(x, t) = P(M; > x) its tail distribution.
We recall that u is solution to the Fisher-KPP equation 9,;u = %83u + u — u? with step initial condition u(x, 0) = 1{x<q}.
Wfi/c_an thus compute C (o) from its definition (1.7) using the Feynman—Kac representation to evaluate P(M; > \/§Qt) =
u(+/2pt,t).

Recall from Feynman—Kac that, given a function K (x, t), the solution to d;h = %83%1 + K h can be written as

t
h(x,t) =E" |:h(Bt, 0) exp(/ dsK (B, t — s)>:|.
0

We apply this not to u(x, t), but to d,u(x, t), the derivative of the solution to the Fisher-KPP equation, which is solution
to 0;[0yu] = %Bf[axu] + (1 — 2u)[0d,u] with initial condition d,u(x, 0) = —3(x). This gives
Beu(x, 1) = —e'EX[§(B,)e 2o dsu(Bei=9)]
1

2 .
_ ez—g—[Ex—w[e—z,/o’ dsu(BX,t—s)]
2t

where in the last expression B is a Brownian bridge from x to 0. We write By = x(1 — %) — E,_s, so that B is a Brownian
bridge from 0 to 0, we make the change of variable s =t — s and we drop the tildas:

)Cz S
Ocu(x,t)=— L et_?TEO_)O[e_zfé d‘”‘(XT_BS*S)].
2t

Then, by setting x = +/20t + z and integrating over z > 0, one gets

e(1=aM1

u(\/zgt, t) =

© 22
f dze—\/igz—‘z—TEO—)O[e—Zfé dsu(z%+«/§gs—Bs,s)].
2nt Jo

For ¢ > 1, the quantity u(z7 + V205 — By, s) goes exponentially fast to 0 as s — 0o, (unless B has wild fluctuations, but
these events have a vanishingly small probability). Then, using the fact that B, (the value at time s of a Brownian bridge
over a time t) looks, as + — oo for fixed s, more and more like a Brownian motion at time s, it is not very difficult (and
akin to what was done in the proof of Lemma 3.1) to show that

lim EO—)O[e—Zf(; dSM(Z?—i—«/EQs—BS,S)] — EO [e_zfooc dsu(«/EQS—BS,S)] for 0> 1’

—>00

where B on the right hand side is a Brownian motion. In fact, the convergence also holds for o = 1, as one can check that
the quantities on either side are then equal to zero. Then, by dominated convergence,

co 2
/ dze—ﬁgz—‘éjEO—)O[e—Zf(; dsu(zf—i—«/igs—BS,s)]
0

1

- s EO e—zfooodsu(ﬁgs—Bs,s) foro > 1
t—00 \/EQ [ ] o>
and
! —2[;° dsu(v/20s—B
C(o) = —Ee 2 fo7 dsu(~/205—Bs.,s) '
T [ ]

Observe that in the point process (1.10) the probability that there are no particles on the right of 0 is then

P(D?((0, 00)) = 0) = E[H[l — u(v/200% — Bo,, ok)]} = E[e_zfooo dsu(ﬁ@S—Bs’”]
k

and therefore C (o) = ﬁP(ﬁQ((O, 00)) = 0), as claimed.



A simple backward construction of BBM with large displacement 2103

4. Application to branching Ornstein—Uhlenbeck processes

As an application of Theorem 1.1, we study the asymptotic behavior, as t — 0o, of a branching Ornstein—Uhlenbeck
process with a pulling parameter that decay to 0 as t — oo. The main motivation to study this process is the article
of Cortines and Mallein [19], in which it is conjectured that such a process, when undergoing selection, should exhibit
unusual behaviour. In particular, the genealogy of these processes could be given by Beta coalescents, a family that
interpolates between the Kingman and Bolthausen—Sznitman coalescents. Let us begin by introducing the branching
Ornstein—Uhlenbeck process.

An Ornstein—Uhlenbeck process X with spring constant y is the solution of the stochastic differential equation

.1 dX* = —puX"ds + dBy,

where B is a Brownian motion. It is well-known that Ornstein—Uhlenbeck processes may be represented, if v > 0, as a
space-time scaled Brownian motion: given W a standard Brownian motion, the process defined by

"
4.2) Vs>0, XM=Xoe ™ + W,
s m e 1

is an Ornstein—Uhlenbeck with spring constant ¢ and initial condition X¢. Equation (4.2) shows that, if © > 0, the law of
X, conditionally on {X( = x}, is N (xe™H5, 1_3—;2’”). In particular, X is then strongly recurrent and its invariant measure
is NV(0, ﬁ).

In a branching Ornstein—Uhlenbeck, since the genealogical structure of the process is independent of the motion of
the particles, we continue to denote by N the set of particles alive in a branching Ornstein—Uhlenbeck process with
spring constant . and we write (X4 (u), u € N) for the positions of such particles. It will be convenient to work with
a normalized version X £ (u) of X! (u) that has variance ¢ so that things happen on the same scale as for the branching
Brownian motion. This can be easily obtained by setting

2/s

4.3) X =7

XE ().
With this notation, we define the extremal point process:

n_ ~
4.4) & = § :(Sxf‘(u)—«/iHLlogz-
272
ueN;

Note that here the logarithmic correction is ﬁ instead of —2= as in the branching Brownian motion case (u = 0, see

22

(1.1)). The aim of this section is to study the asymptotic behaviour of £ as i — 0 and t — oo simultaneously.
Throughout this section, we will choose the spring constant u as depending on the time-horizon ¢ at which we observe
the positions of particles, in the sense that u = u, is kept fixed for the evolution of the branching process at all times
s € [0, t]. For reasons that will become clear later on, one should choose u; such that yu;t — y € (0, oo] as t — 0o, which
trivially covers the standard case where u is fixed for all ¢’s.
The particular case pu; = y/t for some y € (0, 00) is a direct application of the results of Bovier and Hartung [12].
Hence we start by recalling their result.

4.1. Extremal processes of variable speed branching Brownian motions and of branching Ornstein—Uhlenbeck processes
For each o}, € [0, 1) and o, > 1 let £2°°¢ be a decorated Poisson point process defined as
(4.5) EZ% := DPPP(v/2C (0,) WY 2%V dx, 0,0%),

with the parameters of the process being described as follows: Let (X, (u), u € A;) be a branching Brownian motion and
M; its maximal displacement at time 7. Then,

- Wfo is the limit of the additive martingale, previously defined in (2.1). As (Wt'6 ,t > 0) is a non-negative martingale, it
converges a.s. to a limit Wo%. Moreover, it is well known that a.s. Wf; > 0 if, and only if, B € (—v/2,V/2).
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- The function C is the one defined in (1.7).
- The family of laws (D9, ¢ > 1) is the family of point processes introduced in (1.6), and ¢®? is the image measure of
D¢ by the application D+ Y d;eD 8cd;» scaling the positions of the atoms by a factor c.

Let us now introduce the variable speed branching Brownian motion. Let A : [0, 1] — [0, 1] be a twice differentiable
increasing function with A(0) =0 and A(1) = 1. Then, the variable speed branching Brownian motion with variance
profile A and time horizon ¢ is defined in the same way as a branching Brownian motion, except that particles move as
Brownian motions with time-dependent variance 0,2 (s) = A’(s/t) where s € [0, t] is the time of the process. In particular,
the position of a particle at time s is a Gaussian random variable with variance tA(s/t).

The main result in [12] is the following:

Theorem B (Bovier and Hartung [12] Theorem 1.2). Assume that the twice differentiable increasing function A :
[0, 1] — [0, 1] satisfies

1. A(0)=0,A(1)=1and A(x) < x forall x € (0, 1);
2. 07 :=A0) <lando?:=A'(1) > 1.

Let (Yy(u); u € Ny; s € [0, t]) denote the variable speed branching Brownian motion with variance profile A and
—A
gt = Z SY,(u)—\/it-i-ﬁ logt
ueN;
be its extremal point measure at time t. Then

. =A .
(i) the extremal process E, converges in law for the topology of the vague convergence to Eoo".
(ii) the maximal displacement of the process converges in law, and for all x € R,

IE,I&P(maXE? < x) = P(max&'gg’”" < x).

This Theorem is the basis for obtaining a similar result for branching Ornstein—Uhlenbeck processes. More precisely,
we will see that the case u; = y/t is a direct consequence and that more generally the case fu; — y as t — oo cane be
deduced through comparison arguments. For each y > 0, we define two constants, ¢, and d,, by

_ | % | %
(46) Cy = eZV 1 and dy = m

Now for y > 0 let

(4.7) L = EL".

In the y = oo case, we set coo = 0 and do, = 00, thus WO}/)E Coo — Wgo is an exponential random variable with mean
1, the limit of the martingale associated to the Yule process (#N;,t > 0). As is shown in [12] (see also Theorem 1.1),
C(dso) =C(00) = \/% and a point measure drawn from Do =D is as. 8.

T
We prove the following result in the rest of the section.

Theorem 4.1. Assume that lim;_, oo t; = y € (0, 00], then, with the above notations, we have that

lim (St“’, max St“’) = (Ego, max Ego) Jjointly in law,
—00

where the convergence of the point process is in the sense of the topology of vague convergence.

Remark 4.2. We prove in the forthcoming Lemma 4.4 that the convergence in law of a random point measure (for the
topology of vague convergence) jointly with that of its maximum is equivalent to the convergence in law of (P, ¢) to
(P, ) for all continuous functions ¢ with support bounded from the left. This notion of convergence forms a thinner
topology on the space of point measures.
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Remark 4.3. In the simplest case where u; = p is a constant, the theorem with (4.3) and (4.4) implies the following
behaviour for the non-normalised positions X}*(«): the position of the rightmost particle is almost surely given by

[t log?
max X' ()= /—— +o0(t™ ' ,
ueN; t( ) n 4«/[,” ( )

and the next particles are at distance of order r~!/2 from the rightmost.

We shall call the case tpu; — oo the uncorrelated case, because the extremal particles have the same distribution
as the extremal particles of an i.i.d. sample of Gaussian random variables. Indeed, in this regime, the dilation factor
\/ 2ust/(1 —e2Mt) diverges as t — oo, which prevents the existence of local correlations (decorations) in the limiting
picture.

4.2. The u; =y/t case
We start with the proof in the case u; = y /¢, since it is a direct application of Theorem B.

Proof of Theorem 4.1 in the 1, = ¥/t case. Recall from (4.2) that, an Ornstein—Uhlenbeck X4 at time s with spring-
constant u, = y/t started from 0 can be written as

efys/t
Me W
Xs - [
2y /t

2ys/t_1-

For any u € NV;, we define (Y (u), s € [0, t]) by

2
(48) Vo) =\ e X w).

2ys/t _ . . . .
eeﬁy’_l‘. It is easily checked that the whole process (Y;(u),s < t),ecn; is then a variable
e2rr—1
er—1°

Clearly, Ys(u) has variance ¢

speed branching Brownian motion, with variance profile A(x) :=
of Theorem B with

which is a function satisfying the assumptions

2
—A)y=—"_ —d2.

2y 2 2 _
¢ 1—e 2

O'bZZA/(O):mZC (o}

Vv

converges in distribution as t — oo to a

Therefore, the extremal point process ), AL Y, (u)—~/31 +21 log

3
DPPP(v/2C (0,) W27 e V2 dx, 0,D%),

and the maximal atom converges as well. Since Y;(u) = X ,y / t(u) by (4.3), and using the forthcoming Lemma 4.4, we

conclude in the joint convergence (E,V/ " max E,V/ t) toward (£X,, max £X) in law, completing the proof of Theorem 4.1
when u; =y /t. (]

4.3. Comparison of extremal processes of branching Ornstein—Uhlenbeck processes with different spring constants

We use here Slepian-type computations to compare the extremal measures of Gaussian processes with different correlation
structures. We begin with a general result on the joint convergence of point measures and their largest atom.

Lemma 4.4. Let (P, Pxo) be point processes on R such that P ((0, 00)) < 0o a.s. The four following statements are
equivalent: as t — 00,

(i) (P, maxP;) =g (Poo, max Pyo) jointly;
(ii) P; =4 Poo and max Py — 4 max Pxo;
(iii) E[e~ P19 — E[e~Px¥)] for all continuous function ¢ with support bounded from the left.
(iv) E[e=Pr9)] — E(e=P=9)) for all C* non-decreasing function ¢ with support bounded from the left and such that
for some a € R, ¢(x) is constant for x > a.
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The proof of this lemma being rather classical and straightforward, we postpone it to the Appendix. A consequence of
the above lemma is that to prove Theorem 4.1, it is enough to prove the convergence in distribution of random variables
of the form (£, @), where ¢ is a generic non-decreasing bounded function with support bounded from the left.

We now recall that Kahane’s theorem is a more general version of Slepian’s lemma that allows to compare Gaussian
processes with different variances. We refer to [10, Chapter 3.1] for a self-contained proof of Kahane’s Theorem.

Theorem C (Kahane’s Theorem [24]). Let (X, j <n), (Yj, j <n) be two centred Gaussian vectors. Let F be a twice
differentiable function on R" with bounded second derivatives, that satisfies

32F _
Txi0x; (x) =0 fEX;X;)>EY;Y;)
32F _

and () <0 ifEX;X;) <EY;Y)).
axiax]'

Then we have E(F (X)) > E(F(Y)).

From Kahane’s Theorem C, we obtain Lemma 4.5 below, which is useful when comparing the Laplace transform of
the extremal point measures of branching Ornstein—Uhlenbeck processes with different spring constants.

Lemma 4.5. Let ¢ : R — R be a continuous non-negative non-decreasing function. Then, for all u <v < oo and t > 0,
we have

Elexp(—{¢. &'))] = E[exp(—{¢. &))].

where E!" and &} are the normalized, centred extremal point measures of branching Ornstein—Uhlenbeck processes as
defined in (4.4) when v < 00, and E° is the point measure defined as

oo __ ~
&= Z SX?Q(M)fﬁhLﬁlogt’

ueN;

where (X2 (), u € Ny) is a family of i.i.d. centred Gaussian random variables with variance t.

Remark 4.6. Note that as the spring constant p increases toward oo, the vector of normalized leaves (5(\ ;‘ ), u € Ny)
converges in law toward i.i.d. Gaussian random variables with variance ¢. This can be checked by computing the covari-
ance function of this vector, conditionally on N;. Therefore, we have lim,,_, o & = &L in law, for the topology of weak
convergence, justifying the notation.

Proof. Remember that, since the branching events are independent of the spatial displacements, one can construct a
branching Ornstein—Uhlenbeck with spring constant p by first drawing its genealogical Yule tree (N, s > 0) then, con-
ditionally on (N, s > 0) the spatial positions (X¥w), u € Ny, s > 0). Thus, given two spring constants w, v, we can
construct the two branching Ornstein—Uhlenbeck processes X* and X" using the same (N, s > 0). In the rest of the
proof we work conditionally on (N, s > 0) to study the extremal processes.

For u, v € NV;, we denote by 7, , the time of the most recent common ancestor of u and v. The covariance matrix of
the Gaussian vectors X* is given by

1— —2UTup
and COV(X# (1,{)7 X;u(v)) = e_zu(t_fu.u) 62—
u

1 —e2mt

Var(X}'(u)) = o

Recall that we normalize positions to have variance 7, setting as in (4.3)
~ 2ut
By — yh /
X, (w)y=X;"(u) e

ezﬂ-fu,v —1

As a result, we have that

4.9) Cov (X (u), XI'(v)) =g
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Observe that when p < v (including the case v = 00), we have that

Cov(X! (u), X! (v)) = Cov(X} (u), X! (v)),

e2p,.f —1

for all u, v € ;. Indeed, it is easy to verify that for all 0 < s < ¢ fixed the function pu — S
e 1

uneR.
We start by showing the result for ¢ : R — R, a smooth non-negative non-decreasing function, such that ¢’ has compact
support. Then the function

is non-increasing in

F:xeRV exp(— Z (P(xu)>v
ueN,;

is twice differentiable and constant outside of a compact, hence its second derivatives are bounded. It satisfies

2

(%) =<p/(xi)so/(xj)eXp<— Z w(xu)) >0, foralli#jeN,
ueN;

0x;0x;
by monotonicity of ¢. Thus, we can apply Kahane’s Theorem C, and we have that for all © < v < oo,
E[F(X}') |N:] = E[F(X}) |\ ].
Therefore, averaging over the genealogical tree (N, t > 0), we obtain that
1 € (—o00, 0ol - E(exp(—(&/", ¢)))
is non-increasing.

To conclude, note that any continuous non-decreasing non-negative function ¢ can be approached from below by a
sequence (¢,, n > 1) of smooth non-decreasing functions with derivatives having compact support. Moreover,

lim E[exp(—(é’,u,(pn))] =E[9XP(—(5}M#’>)]

n—o0

by monotone convergence. Hence, we conclude that u — E(exp(—(&” , ®))) is non-increasing. O
4.4. Proof of Theorem 4.1

We complete the proof of Theorem 4.1 in this section. We start with the observation that the family of limiting point
measures (&{o, y € (0, o0]), defined in (4.7), is continuous in distribution.

Proposition 4.7. The family (X, max EL); y € (0, 0o)) is continuous in law. Otherwise said, as per Lemma 4.4, for all
continuous ¢ : R — R non-decreasing with bounded support from the left, the function

y € (0,00~ E[e—(c‘?ch] is continuous.

Proof. Let ¢ be a continuous non-decreasing function, with support bounded from the left. For any y > 0, by Campbell’s
formula, we have

(4.10) E[e—<5<fo~¢>] =E|:exp<— f E[1 —e_<DdVvfﬂ(dy-+z)>]\/§C(dy)chye_ﬁz dz)]
R

We observe that C(d, ), Wf v as well as E[1— e (DY 0 +9)] are non-negative for all y > 0 and hence the exponential

term on the right-hand side of (4.10) is bounded by 1. Therefore, by dominated convergence, it is enough to prove that
each of the above functions is continuous.

It is obvious from the definition that both functions y +— ¢, and y +~ d,, are continuous in y with ¢, € (0, 1) and
dy, > 1for all y > 0. At the same time, Theorem 1.1 says that both

y+ C(e) and o~ E[l1— e_mg""(g'“))]
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are continuous in o > 1, by dominated convergence. Finally, Biggins [7] proved that the convergence of the additive
martingale W‘/EQ is uniform on compact subsets of (—1, 1), i.e. for all € € (0, 1), we have

lim sup ]W;/EQ — WQ?Q] =0 as.
1= pele—1,1—¢]
As aresult, we deduce that W\/—Q is continuous in @, completing the proof. ([

We now show that the point process £ defined in Lemma 4.5 converges in law, as t — 00, to the Poisson point
process £ defined in (4.7), jointly with its maximum. Recall that

0 —v2
Z 8X°°(u) «/—t+ logt and EOONPPP<\/—_WOO xdx)’
ueN;

where (X°(u), u € N;) are i.i.d. centred Gaussian random variables with variance .

Lemma 4.8. We have

tl_l)rgo(ét ,max &°) = (X, maxEY)  in law.

Proof. Note this result can be straightforwardly deduced from standard extreme values theory for Gaussian processes.
We include a direct self-contained proof which furthermore demonstrates how our toolbox can be used. Recall from
Lemma 4 4 that to prove the joint convergence of £° and its maximum, it is enough to prove the convergence of
E(exp(—(£E2°, f))) for all non-decreasing continuous functlons f with support bounded from the left.

Observe by Campbell’s formula for Poisson point processes, that

E[exp(—(2. f))IWS] = exp(—WgO /(1 — e )

Therefore, as WY, is distributed as a standard exponential random variable, we have

ﬁe_ﬁy
____@)
Va4

(4.11) E[exp(—(£2, f)] = (1+—/ e /) ﬁycly>_l.

On the other hand, conditioning with respect to #J\/, the number of leaves at time ¢, and writing X, for a Gaussian
random variable with variance  and m; = v/2r — 7 logt, we have

Efexp(~(£. f)] = E[E(e~/ im0,

! we have

As #\; is a geometric random variable with parameter e~
e 'E[e~/(Xi=mn)]
1— (1 —eHE(e f&Xi—m)
Ele—/(Xi—mi)]
e'E[l —e fXi=m)] 4 E[e—f(Xi—m)]

Efexp(—(€7. f))] =

(4.12)

Therefore, to complete the proof, it is enough to prove that

(4.13) lim e'E[1 — e/ Xr=m0)] — e fO) e V2V dy,

11— 00 A / /
which implies that (4.12) converges to (4.11) as t — oo.
We now turn to the proof of (4.13). By change of variables, we have

—x2/2t

B[l — ¢/ Xim] = /(1 o fmy©

N2t

—e— SO N 2
2/ a 62 )e—ﬁye—w%logte—jﬂ Zpet _ (ogd” dy.
Nt
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Hence, as the support of y > 1 — e~/ is bounded from the left, we can apply the dominated convergence theorem in
the above equation yielding, as t — oo,

—t

E[l —¢ /(rm)] ~ ¢

1—e /O ’ﬁyd
m/( e )e y

concluding the proof. ]

Finally, we use the Kahane estimate to control the branching Ornstein—Uhlenbeck process with pulling strength u; by
branching Ornstein—Uhlenbeck processes with pulling strength (y £+ ¢)/t.

Proof of Theorem 4.1. We denote by (X"'(u),u € N;) the positions at time ¢ of a branching Ornstein—Uhlenbeck
process with spring constant p, (recall that the spring constant x; remains constant throughout the process, up to time ¢)
and assume that

lim tu;, =y € (0, oo].
11— 00

We first consider the case y < 00. Let0 <y <y <. Forr large enough y/t < pu; <¥y/t. Thus, by Lemma 4.5,

Efexp(~{p. &"))] = Blexp(~lp. £/°))] < E[exp(~{p. 7).

for all ¢ continuous non-decreasing functions R — R .
As a result, taking + — oo, and supposing furthermore that ¢ has bounded support on the left, combining Lemma 4.4
and Theorem B, we obtain that

litrll)ng[exp(—(tp, )] = E(exp(—(q), 5010))]

limsupE[exp(—<g0, 5,”’))) < E[exp(—(<p, 5070))]

—>00

Now, letting y 1+ ¥ and ¥ | y, using Proposition 4.7 we obtain
Jim Efexp(~{p. £/"))] = E[exp(~{p. £7))].

We conclude by Lemma 4.4 that (£/", max /) converge toward (£7, max £7).

We now consider the case y = co. If lim;_, o #1; = 00, then for all y > 0, one has u; > y /¢t for all # large enough. One
the other hand, (X t” "(u), u € Ny) is straightforwardly “more correlated” than i.i.d. Gaussian random variables (formally
corresponding to the case y = co). Hence, using again Lemma 4.5, then Lemma 4.4 and Theorem B for the lower bound,
and Lemma 4.8 for the upper bound, we obtain

iminrElexp(—p. £7°)] = Elexp(~l. £%),
limsup E[exp(—(¢, &"))] < E[exp(—(¢. £X))]

for all smooth increasing function ¢ : R — [0, 1] such that ¢’ has compact support. Letting y — oo concludes the proof
of Theorem 4.1. O

5. Open questions and future work

The cases tu; — y € (0, 00) interpolate between the uncorrelated case and the branching Brownian motion regime
(uy = 0). Notice, though, that the multiplicative factor of the logarithmic correction remains equal to ﬁ (as in the

uncorrelated case) and not % (as in the branching Brownian motion). We believe that there is a second transition when

tiu — 0 where one gradually goes from the 2%/5 logt correction to 237 log ¢ while the decoration measure always is D!,
which is the decoration of the branching Brownian motion.
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More precisely, it is predicted in [20] that C(g0) ~ k(0 — 1) as o — 1, with the same constant « as in (1.3). Note
that k 2 1.18 is also the constant such that lim, P(M, > /2t — ; logt + y) ~ Tye_ﬁy as y — oo. This constant is
proved to exist for all branching random walks in [1, Proposition 4.1]. Note that in [20] the function ® defined by

e—t(02/4—1)

At

where u is the solution of the Fisher-KPP equation d,u = 8fu + u(1 — u) started from the Heavyside initial condition is
the analogue of C. The exact correspondence between the functions ® and C is

u(ct,t) ~ d(c) ast— oo

Clo) = ——d(20).

N

Our factor « is thus given by the constant denoted 2« in [20] (see Equation (73) there).
On the other hand, we also know from [29], that for the additive martingale wh

B

Wso
lim =2z R
p—ov2- N2 —B >

with Zo, the limit of the derivative martingale. Since d, ~ 1+ y /2 and ¢, ~ 1 — y /2 when y — 0, we see that

«/—cyNKyz

C(dy)Wx 5

Zs asy —0.

Since yze_‘@‘ = V2 —V2log ¥), the extremal point process £X is roughly £y, the centred extremal point process
of the standard branching Brownian motion see (1.3), shifted to the left by V2| logy |+ O(1) (as y — 0). This might
suggest that the above-mentioned intermediate logarithmic corrections between WG and f/_ should appear for pu, =¢=¢

with o € (1, 3/2), and the extremal point measure would be the same as for the branching Brownian motion as soon as
s = o(t=3/%). This would complement the recent work [13] on a similar phenomenon for branching Brownian motion
with piecewise constant variance.

It may be worth noting that our model is notably different from the one studied by Kiestler and Schmidt [25] which
yields a different interpolation between the uncorrelated case and the branching Brownian motion. In that later model, the
extremal model is a Poisson point process Without decoration, but the logarithmic correction of the median of the maximal
displacement interpolates between — 5 f and — 7 On the contrary, in our case, the decoration of the extremal processes
interpolate continuously between the absence of decoration of the uncorrelated case and the decoration of the branching
Brownian motion. However, the logarithmic correction does not interpolate continuously on the scale of parameters we
are considering.

The case p < 0 is also interesting and is not covered in the present work. Notice that in the case u > 0 we rely heavily
on the results from Bovier and Hartung [12]. However we think that the u < O case corresponds to that of decreasing
variances for the variable speed branching Brownian motion for which results concerning the position of the maximum
are known (see e.g. Maillard and Zeitouni [30]), but not concerning the full extremal point process.

Appendix: Proof of Lemma 4.4

Proof. Obviously, (i) implies (ii) and (iii) implies (iv). It remains to proove that (ii) implies (iii) and (iv) implies (i).
We start by proving that (ii) implies (iii). First consider the case of a non-negative continuous function ¢ with support
bounded from the left, and introduce for A € R

o(x) ifx <A
ptix {(A+1—x)e(A) ifxel[A, A+1]
0 ifx>A+1.

The function ¢4 is continuous compactly supported, hence by (ii) we have

lim E(e™Pr¢") = (e~ P=¢"),

t—00
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By triangular inequality,
[E(e=P9)) — E(e~P=9))| < [E(e~ ) — E(e—<7>t,wA>)|
(e P ) (e o) (e P ) — B P
Moreover, as ¢ is non-negative, we have for all # > 0 and also for t = oo
[E(e™ P 9) —E(e~ P ¢")| < P(max P, > A).
Hence, by convergence of max P;, we have

lim sup|E(ef<P"“’>) — E(67<P°°“p>)| <2P(max P > A).

—>00

As the right hand side goes to zero as A — oo, we have proved (iii) for non-negative functions. Now consider an arbitrary
continuous function ¢ with support bounded on the left, and write

o =04y —@_ where ¢4 (x) = max((p(x), 0) and p_(x) = max(—go(x), O).
Then, for any «, 8 > 0, the function a¢ + By_ is continuous non-negative with support bounded on the left and,
therefore,
lim E( o(Pr 1)~ ﬂ('/)t,w—)) ZE(e—O!(Poo»(ﬂJr)—ﬂ(Pao,@—)).

—>00

We conclude that ((Py, ¢+), (P:, o)) jointly converge in law toward ((Peo, ¢+), (Pso, ¢—)). Therefore, (P;, ¢) con-
verges as well toward (Pso, ), which implies that (iii) holds.

We now prove that (iv) implies (i). Let f be a C*° non-decreasing function such that f(x) =0forx <Oand f(x) =1
for x > 1. Forany y e R and ¢ > 0, we set f¢ y(x) = fe x —y).

Noting that f; y(x) < 1x>y) < fe,y—e(x), we have for all (y1,...,y,) €R", (A1,...,A,) €RY and & > 0:

( =2 4l P, fe.yj—e ) < E(e* > AiP,((yi,oo))) ( =2 i (Pr fe,y; )

As t — oo, the two bounds converge by (iv) applied to the functions ) ; A; fe,y; and doiAife, yi—e

( =22 4i(Poo, fe,y;—e ) < liminfE(ef > MR((yi,OO)))
t—0o0
<lim SupE(ef i )»iPx((yi,OO))) < E(ff 2 4i{Poos fe,y; ))_
11— 00
Note that f; y(x) = 1{x>y) and f; ¢ (x) = 1{x>y) as € — 0. Hence one gets
E(e_ > )Lipoc([)’i»oo))) < liminfE(e_ > )»iP;((ytwOO)))
Al T t—>o0
(A < limsupE(e_ i )»i'Pr((.Vi,OO))) < E(e_ i )\ipoo((}’iaoo)))‘
11— 00

We conclude that (P;((y;, 00)), i < n) jointly converge in law to (Pso ((y;, 00)),i <n) as t — 00, except at discontinuity
points y; where P ({y;}) > 0 with positive probability. Hence, P; converges in law to P, for the topology of vague
convergence.

In (A.1), add one extra pair (A, y) to the A;, y;, and send X to infinity. Noticing that for A > 0 that

E(Aljmax P, <y)) < E(Ae 771 (©%)) < E(Aljmaxp, <y) + ¢ E(A),
one gets

E(e_ 2 1 Poo 13090 1{max PooSy})) = litrgiol.}fE(e_ i %iPi((yi-00)) 1{max P{S}’}))

§limsupE( — X 4P <>Q))1{ de,<»}))

t—00

S E(67 Zi )\.,Poo((yl’oo))l{mdxpoogy}))'

Hence (P, max P;) converges to (P, max Py) in law jointly. U
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