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The Brownian bees model is a branching particle system with spatial
selection. It is a system of N particles which move as independent Brownian
motions in R and independently branch at rate 1, and, crucially, at each
branching event, the particle which is the furthest away from the origin is
removed to keep the population size constant. In the present work we prove
that, as N — oo, the behaviour of the particle system is well approximated by
the solution of a free boundary problem (which is the subject of a companion
paper (Trans. Amer. Math. Soc. 374 (2021) 6269-6329)), the hydrodynamic
limit of the system. We then show that for this model the so-called selection
principle holds; that is, that as N — o0, the equilibrium density of the particle
system converges to the steady-state solution of the free boundary problem.

1. Introduction and main results. The Brownian bees model is a particular case of an
N -particle branching Brownian motion (N-BBM for short) which is defined as follows. The
system consists of N particles with locations in R? for some dimension d. Each particle
moves independently according to a Brownian motion with diffusivity +/2 and branches in-
dependently into two particles at rate one. Whenever a particle in the system branches, the
particle in the system which is furthest (in Euclidean distance) from the origin is immediately
removed from the system so that there are exactly N particles in the system at all times. Thus,
the branching events arrive according to a Poisson process with rate N. The name Brownian
bees, suggested by Jeremy Quastel, comes from the analogy with bees swarming around a
hive; throughout the paper we will refer to this process simply as N-BBM.

The particles can be labelled in a natural way which will allow us to write the N-BBM as a
cadlag (]Rd YN _valued process. Each of the N particles carries a label from the set {1, ..., N}.
Suppose at some time 7 the particle labelled k branches and the particle with label £ is
the furthest from the origin. Then, at time t the particle with label £ is removed from the
system, and a new particle with label £ appears at the location of the particle with label k. For
ke{l,...,N},let X ,EN) (t) denote the location of the particle with label k at time ¢. Then,

XMy =xMa@), ..., xWV )

is the vector of particle locations in the N-BBM at time ¢. This labelling is motivated by the
following equivalent description of N-BBM in terms of jumping rather than branching: at
rate N the particle that is furthest from the origin jumps to the location of another particle
chosen uniformly at random from all N particles. (The particular choice of ordering of the
particles here plays no essential role in our results.)
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We shall prove two types of result about this interacting system of particles: results about
the spatial distribution of particles at a fixed time ¢, as the number of particles N — oo, and
results about the long-term behaviour of the particle system, as time t — oo for a fixed large
number of particles N. As we show, there is a sense in which these limits commute. Showing
that this so-called selection principle holds is a major motivation of the present work and
was originally conjectured by Nathana€l Berestycki. More precisely, he predicted that, as
N — 00, the particles would localise in a ball of finite radius at large times.

Our first main result is a hydrodynamic limit for the distribution of particle locations at
a fixed time ¢, as the number of particles N — oo. This limit involves the solution of the
following free boundary problem: for a probability measure po on R?, find u(x, ) : R? x
(0, 00) — [0, 00) and R; : (0, 0c0) — [0, o] such that

oru = Au+u, forr > 0 and ||x|| < Ry,

u(x,t)=0, fort > 0 and ||x| > Ry,
(1) u(x,t) is continuous on R? x (0, 00),

/ ulx,t)dx =1, fort > 0,

R4

u(-,t) = o weakly as # \( 0.

In the companion paper [6] we prove that (1) has a unique solution (#, R) and that the function
R; is finite and continuous for ¢ > 0.
For t > 0, we let

.....

denote the maximum distance of a particle from the origin at time 7. For A € R? measurable,
we let

™A, 1) = %\{i efl,....N}: XM @) e A)|

denote the proportion of particles which are in the set A at time ¢. In other words, u™) (dx, )
is the empirical measure of the particles at time ¢, that is,

1 N
(N) ——
w Y (dx, t) = N kE_I(SXIiN)(’)(dx)'
We can now state our hydrodynamic limit result.

THEOREM 1.1. Suppose that g is a Borel probability measure on R? and that:
° X%N)(O), e XI(VN) (0) are i.i.d. with distribution given by o, and
o (u, R) is the solution to (1) with initial condition (.

Then, for any t > 0 and any measurable A € R?, almost surely,
M (A, 1) —>f u(x,t)ydx and MI(N) — R, as N — o0
A
(this holds for any coupling of the processes (X ™)) yew).

Note that Theorem 1.1 implies that, for r > 0, almost surely u™N(dx, 1) — u(x,t)dx
weakly as N — oo.

Our second set of results concerns the long-term behaviour (# — 00) of the particle system
for large N. We can show that, for large fixed NV, the particle system converges in distribution
as t — 0o to an invariant measure. For X € (R?)", we write Py to denote the probability
measure under which (X™)(¢), ¢ > 0) is an N-BBM process with XM) = Xx.
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THEOREM 1.2.  For N sufficiently large, the process (XN (1), 1 > 0) has a unique in-
variant measure 7™, a probability measure on (RHN | For any X € RHYN | under Py, the
law of XN (1) converges in total variation norm to ™) as t — oo,

lim sup|Px (XM () e C) — 2™ (0)| =0,
1—00 C
where the supremum is over all Borel measurable sets C C (RHN

For each ¢ > 0, the empirical measure u™N (., 1) is a random element of P(R?), the set of
Borel probability measures on R?. Theorem 1.2 implies that, as  — oo, the law of ™) (-, 1)
converges in total variation to the measure 7 V) o H=1, where H : (RH)N — P(R?) is the
map defined by H (x1,...,xy) = % ZlN:l 8x; and 7™M o H1 is the pushforward of 7™ un-
der the map H. The law of ™) (-, r) and the measure 7 ™) o H~!, which are both probability
measures on the Polish space P(R?), do not depend on the particular ordering of particles
used to define X™)(¢) as an (RY)" -valued process.

We also obtain more explicit results about the long-term behaviour of the particle system.
We let U : RY — R denote the principal Dirichlet eigenfunction of (—A) in a spherical do-
main with radius uniquely chosen so that the eigenvalue is 1. That is, let (U, Rx) denote the
unique solution (with U continuous) to

—AUx) =U(x), x| < Roos
U(x) >0, x| < Roos
(2 U(x)=0, X1l > Roo,

/ Ux)dx =1.
llxl<Roo

Then, (U, Rx) (which can be written explicitly in terms of Bessel functions, see (10) in
[6]) is a stationary solution to (1). In [6] we prove that any solution (u(-, t), R;) of the free
boundary problem (1) converges to the stationary solution (U, R), as t — 00, and it turns
out that this stationary solution also controls the long-term behaviour of the particle system
for large N.

We shall use the following notation to denote a reasonable class of initial particle configu-
rations. For K > 0 and ¢ > 0, let:

1
3) F(K,c):{Xe(Rd)N:NHi:HXiH<K}|zc}.

This is the set of particle configurations which put at least a fraction ¢ of the particles within
distance K of the origin. The following result shows that if N is large, then, at a large time ¢,
the particles are approximately distributed according to U, and the largest particle distance
from the origin is approximately R.

THEOREM 1.3. Take K > 0 and c € (0, 1]. For € > 0, there exist Ne = N.(K, ¢) < 00
and T, = T, (K, c) < oo such that, for N > N¢ and t > T¢, for an initial condition X €
['(K,c) and A C R? measurable,

ng(‘,u(N)(A, 1) —f U(x)dx' > e) <€
A
and  Pr(IM™) — Ry| =€) <e.
As a consequence of Theorems 1.2 and 1.3 for large N and under the invariant distribution

7™M the proportion of particles in a set A is approximately | 4 U(x)dx, and the furthest
particle distance from the origin is approximately R.
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THEOREM 1.4. Fore >0 and A C RY measurable,

) n(N)({Xe RN ‘ZE{XEA /U(x)dx

})—>O as N — oo
(35) and JT(N)<{XE(Rd) :‘ie{l}laXN}”Xi”_ROO‘ZE})_)O as N — oo.

The results in this article and in the companion article [6] can be summarised in the fol-
lowing informal diagram.

N — o0 Hydrodynamic

™
(-BBM, u (.0 Yokt (e, ), )

t— o0 t— o0

Stationary N — o0
distribution, 7™

Stationary
solution (U(z), Roo)

In [6] we deal with the right-hand side of the diagram: well-posedness of the free boundary
problem (1) and the long-term behaviour of its solutions. In the present article, Theorem 1.1
gives rigorous meaning to the top of the diagram, Theorem 1.2 covers the left-hand side, and
Theorem 1.4 covers the bottom of the diagram.

1.1. Related works. The particle system we are considering is a particular case of
a more general N-particle branching Brownian motion (N-BBM) with spatial selection,
described as follows: The system consists of N particles moving in R¢ with locations
(X EN) ®,....X I(VN) (¢)). Each particle moves independently according to a Brownian mo-
tion with diffusivity /2 and branches independently into two particles at rate 1. Whenever
a particle branches, however, the particle having least “fitness” or “score” (out of the entire
ensemble) is instantly removed (killed) so that there are exactly N particles in the system at
all times. The fitness of a particle is a function F(x) of its location x € R?, and as a result,
the elimination of least-fit particles tends to push the ensemble toward regions of higher fit-
ness. Variants of this stochastic process were first studied in one spatial dimension, beginning
with work of Brunet, Derrida, Mueller, and Munier [9, 10], followed by work of Bérard and
Gouéré [5], on discrete-time processes, and the work of Maillard [21] on the continuous-time
model involving Brownian motions. In these works the particle removed from the system is
always the leftmost particle which means that they could be described by a monotone fitness
function (e.g., F(r) =r, r € R). The general multidimensional model, which we have just
described above, was first studied by N. Berestycki and Zhao [8]; specifically, they studied
the particle system with fitness functions F(x) = ||x|| and F(x) = X - x, both of which have
the effect of pushing the ensemble of particles away from the origin. The Brownian bees
model that we consider in this article corresponds to the fitness function F(x) = —||x]||.

In the setting of one spatial dimension and with monotone fitness function F(r) =r,r € R,
De Masi, Ferrari, Presutti, and Soprano-Loto [13] determined the hydrodynamic limit of the
particle system. For ¢ > 0, define the measure

1 N
(N) =
pMdrn =+ ;%w ().

De Masi et al. proved that if the initial particle locations X gN) ©0),...,. X ](VN) (0) are i.i.d., with
certain assumptions on the distribution of X iN) (0), then the family of empirical measures
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,u(N )(dr, 1) converges, as N — oo, to a limit which can be identified with a solution u(r, t)
to a free boundary problem,

8;u:8r2u+u, r>y,t>0,
(6) u(r,t) =0, r<vy.,t>0,

o0
/ u(r,t)dr=1, t>0,
Ve
where the free boundary at r = y; € R is related to u through the integral constraint. Global
existence of solutions to this free boundary problem was proved by J. Berestycki, Brunet,
and Penington [7]. De Masi et al. also state that, for fixed N, the particle system (seen from
the leftmost particle) converges in distribution as # — oo to an invariant measure vy, but
they did not prove asymptotic results about the shape of the cloud of particles under vy
as N — oo. As discussed in Section 1.2 below, a related one-dimensional result plays a
fundamental role in our work. We use some coupling ideas similar to those in the proof of
the hydrodynamic limit result in [13], but we obtain a more quantitative result for our particle
system (see Proposition 1.5 below) which does not require the initial particle locations to be
i.i.d. random variables. This, together with results about the long-term behaviour of the free
boundary problem (1) from [6], allows us to control the long-term behaviour of the Brownian
bees particle system for large N.

Building on the approach of [13], Beckman [4] derived a similar hydrodynamic limit in the
one-dimensional setting with symmetric fitness J(r) = —|r| which coincides with our case
if d = 1. Beckman also studied the long-term behaviour of the N-BBM in one dimension,
with a nonmonotone fitness function of the form F(r) =r + ¥ (r), ¥ being periodic, and
proved existence of a stationary distribution in a certain moving reference frame. In earlier
work, Durrett and Remenik [15] studied a related branching-selection model in which non-
diffusing particles in R are born at random locations but do not move during their lifetimes.
They showed that the hydrodynamic limit of this particle system is given by a nonlocal free
boundary problem. Bérard and Gouéré [5] determined asymptotics for the speed of the N-
particle branching random walk. Their work does not involve a hydrodynamic limit, but the
couplings they use in their Section 3 are also closely related to those in the present paper.

Another related model is the Fleming—Viot system studied by Burdzy, Hotyst, and March
[11]. In that model, particles diffuse within a bounded domain having fixed boundary; when-
ever a particle hits the boundary, it is instantly killed, and one of the internal particles simul-
taneously branches, preserving the total mass. As in our case, the stationary distribution for
that system also converges to the principal eigenfunction of the Laplacian (as the number of
particles goes to infinity). This eigenfunction is a quasi-stationary distribution for the diffu-
sion conditioned on nonextinction; see also Collet et al. [12] and references therein, for other
related works on quasi-stationary distributions.

In [2], Asselah, Ferrari, Groisman, and Jonckheere considered a slightly different
Fleming—Viot particle system. In their work the N particles live on {0, 1, 2, ...}, move in-
dependently as continuous-time subcritical Galton—Watson processes, and are killed when
they hit O (each time a particle is killed, one of the remaining N — 1 particles, chosen at ran-
dom, branches). Recall that, for a single sub-critical Galton—Watson process conditioned on
nonextinction, there exists an infinite family of quasi-stationary distributions. (By contrast,
observe that a diffusion on a bounded domain conditioned on not exiting the domain has a
unique quasi-stationary distribution.) Asselah et al. showed that, for each N, the Fleming—
Viot particle system has a unique invariant distribution, and that its stationary empirical
distribution converges as N — oo to the minimal quasi-stationary distribution of the Galton—
Watson process conditioned on nonextinction (which is the quasi-stationary distribution with
the minimal expected time of extinction). This has been called the selection principle in the
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literature. It is reminiscent of the fact that the solution of the Fisher-KPP equation started
from a fast decreasing initial condition converges to the minimal-velocity travelling wave
(see, in particular, [18] and the note [17] of Groisman and Jonkheere). This principle is con-
jectured to hold in quite broad generality. For instance, for the one-dimensional N-BBM
studied in [13], it is conjectured that the unique invariant distribution of the system seen from
the leftmost particle converges, as N — 00, to the centred minimal-velocity travelling wave
solution of (6) (which is given by y; =2t, u(2t +r,t) =re " Li>0)).

Finally, we mention the very recent work [1] of Addario-Berry, Lin, and Tendron in which
a variant of the Brownian bees model with the following selection rule is considered: each
time one of the N particles branches, the particle currently furthest away from the centre of
mass of the cloud of particles is removed from the system. Addario-Berry et al. show that the
movement of the centre of mass, appropriately rescaled, converges to a Brownian motion.

1.2. One-dimensional results and outline of the article. The first step in the proofs of
Theorems 1.1, 1.2, 1.3, and 1.4 is to control the proportion of particles within distance r of
the origin at a fixed time ¢, when the number of particles N is very large.

For r > 0, let B(r) = {x e R? : || x|| < r} be the open ball of radius r centred at the origin.
Suppose that (u#, R) solves (1) with some initial probability measure (o, and let v : [0, 0c0) X
(0, 00) — [0, 1] denote the mass of # within distance r of the origin at time ¢,

v(r,t) :/[-3( )u(x,t)dx.

Then, r — v(r, t) is nondecreasing and v(r,t) = 1 for r > R;. Let vo(r) = uo(B(r)); then,
by Lemma 6.2 of [6], v satisfies the following parabolic obstacle problem:

O0<v(rn=l1, fort >0,r >0,
d—1
dv=20v— v+, ifv(r, 1) <1,
r
(7) U(O, t) =0, fort > 0,
v(r, t) is continuous on [0, co0) x (0, 00),
0, v (-, t) is continuous on [0, 00), fort > 0,
v(- 1) = g in Ll asz\,0.

We prove in Theorem 2.1 of [6] that, for any measurable vg : [0, co) — [0, 1], (7) has a unique
solution.

The following result is a hydrodynamic limit result for the distances of particles from the
origin, and will be an important step in the proofs of Theorems 1.1 and 1.3. Introduce

(8) FM @G 1) = n™M(B(r), 1)

as the proportion of particles within distance r of the origin at time ¢. Then, Proposition 1.5
below says that, for any initial configuration of particles at a fixed time ¢, the proportion
FM(r, 1) is close to the solution v™)(r, ¢) of (7) with initial condition vy determined by the
initial configuration of particles. The bound does not depend on the initial particle configura-
tion; this will be crucial when the result is used in the proof of Theorem 1.3.

PROPOSITION 1.5. There exists c1 € (0, 1) such that for N sufficiently large, for t > 0,
and any X € (RHN,

PX<Sup’F(N)(V» H—v™M@ )| > eZTN_C‘) <N,

r>0

where v'N) is the solution of (T)withvo(r)=F M (r,0) Vr > 0.
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The next result uses Proposition 1.5 to get an upper bound on the largest particle distance
from the origin which holds over a time interval of fixed length. This will then allow us to
compare the particle system to a system in which particles are killed, if they are further than
a deterministic distance from the origin, which will enable us to prove the d-dimensional
hydrodynamic limit in Theorem 1.1.

PROPOSITION 1.6. There exists ¢ € (0, 1) such that, under the assumptions of Theo-
rem 1.1, forany 0 < n < T, for N sufficiently large (depending on d, ug, n, and T),

P@Eren T1: M™N > R +n) < N~'-.

In the case where o has compact support, the proof of Proposition 1.6 can easily be
extended to bound the probability that there exists ¢ € (0, 7] with M,(N) > R; + n. However,
an upper bound on M,(N) in the time interval [5, T'] (for an arbitrarily small n) is enough to
allow us to prove Theorem 1.1.

Using Proposition 1.5 and results about the long-term behaviour of solutions to the obstacle
problem (7) from the companion paper [6], we can also prove the following result about the
long-term behaviour of particle distances from the origin when N is large. For r > 0, let

©) V= [ v,
B(r)
where U is defined in (2).
PROPOSITION 1.7. Take K > 0 and c € (0, 1]. For € > 0, there exist Nc = N.(K, ¢) <

oo and Te = T¢ (K, ¢) < oo such that, for N > N¢ and t > T, for an initial condition X €
I'(K,¢),

(10) Py (sup|F<N>(r, H—V@)|=> e) <e,
r>0
(11) Pr(|M™N) — Ryo| =€) <,
(12) and  Px( sup M{}) > Roo+e) <e.
s€[0,1]

Using (12), we can compare the particle system at large times to a system in which particles
are killed if they are further than distance R, + € from the origin. This, together with (10),
will allow us to prove Theorem 1.3.

The rest of the article is laid out as follows. In Section 2 we recall results from [6] which
will be used in this article. In Section 3 we define notation which will be used throughout
the proofs. Then, in Section 4 we prove Propositions 1.5 and 1.6, and in Section 5 we use
Proposition 1.6 to prove Theorem 1.1. In Section 6 we prove Proposition 1.7 and use this to
prove Theorem 1.3 and, finally, Theorems 1.2 and 1.4.

2. Results from [6]. In this section, we state some results from [6] which play a key
role in the present work. The first one is Theorem 1.1 in [6], which says that the free bound-
ary problem (1) has a unique solution and that, moreover, the free boundary radius R; is
continuous.

THEOREM 2.1 (Theorem 1.1 in [6]). Let o be a Borel probability measure on R4. Then,
there exists a unique classical solution to problem (1). Furthermore:

e t— R; is continuous (and finite) for t > 0.
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o Ast \( 0, R, — Ry :=inf{r > 0: uo(B(r)) =1} € [0, oc].
o fort >0and |x|| < Ry, u(x,t) > 0.

For a Borel probability measure 1o on R, let (u, R) denote the solution of (1). Let (Bt)r>0
denote a d-dimensional Brownian motion with diffusivity /2, and, for x € RY, write P, for
the probability measure under which By = x. For 7 > 0, define a family of measures on R?
according to

pr(x, A) =Pc(B; € A, || Bs|l < RVs € (0, 1))

for all Borel sets A € RY. Then, ot (x, dz) is absolutely continuous with respect to the
Lebesgue measure, so it has a density. Abusing notation, we denote this density by o, (x, z).
Then, by Proposition 6.1 in [6],

(13) uGn=¢ [ uo@op. zeRr>0,
Define the cumulative distribution of the norm process || B; ||, conditional on || Bg|| = y, as
(14) w(y,r,t) :=P(| Bl <rllBoll = y).

Then, the function r — g(y,r,t) := d,w(y, r, t) is the density of | B;||, conditional on
|Boll = y; in other words, g is the transition density of the d-dimensional Bessel process
with diffusivity +/2. The function

(15) G(y,r, 1) :=—0yw(y,r,1)

is the fundamental solution of the equation
d—1
(16) athaEG— —9,G, G(y,0,1)=0, G(y,r,0)=6(r —y).
r

(See Section 3 of [6] for more details on the properties of G.) For ¢, r, y > 0, the fundamental
solution G and transition density g are smooth functions of their arguments and are related
by

(17) 8,G = —yg.

For a given initial condition vg € L°°(0, 00), we let

o.¢]
(18) vg(r, 1) =e’/ dyG(y,r, t)vg(y).
0
This v* is a solution to the linear problem

d—1
8tv€=8r2v€——8rvz+ve, fort >0,r >0,
r
(19) v4(0,1) =0, for ¢ > 0,
v, 1) — vl in L1 as\,0,

and it is the unique solution to (19) which is bounded on [0, o0) x [0, T'] for each T" > 0. In
the particular case vg(r) = l{y<r}, we have i) = ew(y,rt).
For t > 0 and m € R, we define the operators G; and C,, by letting

(20) G:f(r) :/(; dyG(y,r,t)f(y) and C,f(r)=min(f(r), m).

In particular, vt = e’G,vS. By Lemma 3.1 in [6], we have that |f0°°G(y,r, Hh(y)dy| <
||| Lo, and so, for f, g € L°°[0, o0) and ¢ > 0,

21 1Gif —Giglliee < |1f — gllL=.
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Suppose v : [0, 00) — [0, 1] is nondecreasing, and let v denote the solution of the obstacle
problem (7) with initial condition vg. For 6 > 0 and k € Ny, we let

(22) VR0 = (9GsCos)rg, V90T = (C12Gs) g,

Then, by Lemmas 4.3 and 4.4 in [6], we have the following result.

LEMMA 2.2 (Lemmas 4.3 and 4.4 in [6]). For any § > 0 and k € Ny,
V() <u(r k8) < Ry Vr=0 and  |pR0 T — vk"s’_HLoo < (e +1)(® —1).
We shall also use the following result which was proved as part of Theorem 2.1 in [6]. The

result says that the solution of (7) is continuous with respect to the initial condition in the
following sense.

LEMMA 2.3 (From Theorem 2.1 in [6]). Let v and v be the solutions to (7) correspond-
ing to the initial conditions vy and vg. Then, for t > 0,

“l)(',t) - i}('at)HLoo = €t||1)0 — VgllLoe.

Recall the definition of V in (9). The following result, which follows directly from The-
orem 2.2 in [6], gives us control over how quickly the solution v(-, t) of the obstacle prob-
lem (7) converges to V.

PROPOSITION 2.4 (From Theorem 2.2 in [6]). For c € (0,1], K > 0, and € > 0, there
exists te = t(c, K) € (0, 00) such that the following holds. Suppose vy : [0, co) — [0, 1] is
nondecreasing with vo(K) > ¢, and let v solve the obstacle problem (7) with initial condition
vo. Fort > 0, let Ry =inf{r > 0:v(r,t) = 1}. Then, fort > t,

lv(r,t) =V (r)|<€e Vr>0 and |R —Rx|<e.

The final result from [6], which we need in this article, is Proposition 5.10, which says that
for large K and small c, if an initial condition vy has mass at least ¢ within distance K of
the origin, then the solution v of (7) has mass at least 2¢ within distance K — 1 of the origin
during a fixed time interval [#g, 27g].

PROPOSITION 2.5 (Proposition 5.10 in [6]). There exist to > 1 and co € (0, 1/2) such
that, for all c € (0, cgl, all K > 2, and all t1 € [tg, 2tg], for vy : [0, 00) — [0, 1] measurable,
the condition

vo(r) > cly>gy Vr>0
implies that
v(r,t1) > 2cly>k—1y Vr >0,
and
v(r, nty) > min(2co, 2"¢) Ly smax(k—n, 1)}, Vr >0,n €N,

where v(r, t) denotes the solution of (7) with initial condition vy.
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3. Notation. From now on, we let (B;);>¢ denote a d-dimensional Brownian motion
with diffusivity /2, and for x € R?, we write P, for the probability measure under which
By = x and write [E, for the corresponding expectation.

The locations (positions) of a collection of m particles in RY are written as a vector
X € (RY)™. The size of the vector (i.e., the number of particles in the collection) is writ-
ten |X| (i.e., |X| =m for X € (R?)™). The individual locations in X are written X} for
ke{l,...,| X[},

X=(X,...., &, withm=|X|.

We extend some set notation to vectors. Specifically, we write X C ) to mean that all the
particles in X" are also in )/,

Xcy <« 3j:{L....|1X} = {1,...,1Y|} injective such that X} = V;x) Vk.
We write |A N X'| for the number of particles in X which lie in some set A C R4,
IANX|=|{ke{l,...,|X]|}: X € A}

If X and ) are two vectors of particles with locations in R4, we write X <) to mean that
the vector X’ contains more particles than the vector ) in any ball centred on the origin,

(23) X<Y & |XNBr)|=|YnB(r)| forallr=>0,
where we recall that B(r) is the centred open ball of radius r,
B(ry={x € RY: |x|| < r}.

Notice that X < ) implies that |X| > |)|.

The order in which the particle locations are written within a vector X is irrelevant for the
operations C, N and, < described above.

It will be useful to compare the N-BBM to the standard d-dimensional binary branching
Brownian motion (BBM) without selection in which particles move independently in R¢,
according to Brownian motions with diffusivity /2, and branch into two particles at rate 1.
The BBM may be labelled using the Ulam—Harris scheme (see [20] and references therein).
Let U = U2, N", and for t > 0, let N;* C U denote the set of Ulam-Harris labels of the
particles in the BBM at time ¢. (If the BBM has m particles at time 0, then the particles
initially have labels 1, ..., m and for each ¢ > 0, J\/,Jr CU {1, ...,m} x {1, 2}”_1; e.g., the
particles labelled (7, 1) and (7,2) are the two children of the seventh original particle; the
particle (7,2, 1) is a grandchild of the seventh original particle and is the first child of (7, 2).)
For u € /\/?L, let X ;f (t) denote the location of particle u at time ¢, and for s € [0, 1), let X ;L (s)
denote the location of its ancestor in the BBM at time s. We write X 7 (¢) = (le_ ) ye N for
the vector of particle locations in the BBM at time ¢, with particles ordered lexicographically
by their Ulam—Harris labels.

In the proofs we shall often use the following standard coupling between the BBM and the
N-BBM: consider a standard d-dimensional binary BBM, as described above. In addition to
their spatial location, let each particle carry a colour attribute, either red or blue. When a blue
particle branches, the two offspring particles are coloured blue, and simultaneously, the blue
particle furthest from the origin turns red. When a red particle branches, the two offspring
particles are coloured red. The system begins with N blue particles at time 0. The set of blue
particles is a realisation of the N-BBM, while the entire collection of particles (blue and red)
is a realisation of standard BBM. Specifically, for ¢ > 0, let /\/,(N) - /\/,Jr denote the set of
labels of blue particles at time ¢. Then, J\/t(N) is always a set of size NV, and there exists an
enumeration (ux)}_, of /\/,(N) such that XM (r) = (X5 (@),.... X, (). Recall that we let
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MI(N) = MaXie(l,..., N} ||X,({N) (#)|l, the maximum distance of a particle in the N-BBM from
the origin at time ¢. Notice that, for # > 0, almost surely

(24) NN ={ue N | x| < M™N Vs €0, 1]}

We usually write X for the initial configuration of the N-BBM and of the BBM. In some
cases where we compare an N-BBM and a BBM with different initial conditions, we write
X for the initial condition of the BBM. Expectations and laws started from an initial con-
dition X are written Ey and Py, respectively. We also write (F;);>¢ for the natural filtration
of (XM (1),t>0), thatis, F; = o (XN (s), s <1)).

4. One-dimensional hydrodynamic limit results. In this section we prove the hydrody-
namic limit results about the distances of particles from the origin, Propositions 1.5 and 1.6.
For r > 0 and r > 0, recall the definition (8) of the cumulative distribution function

1 1 Y
(N) _ ,(N) _ (N) _
(25) F 1) =pu"™(B(r), 1) = N |X N B(r)\ =% ._E lﬂ{lle[v)(l)llq}’
and introduce

1 1
Fr(r,t)= NIX"L(f) NB(r)| = v > Lyximl<r)-

ueN;t
4.1. Proof of Proposition 1.5.

4.1.1. Upper bound for the proof of Proposition 1.5. Recall from (20) that, for m € R
and f : [0, 00) = R, we let Cy,, f (r) = min(f(r), m). The following proposition will play a
crucial role in the proof of Proposition 1.5; it says that the random function F, correspond-
ing to the BBM, stochastically dominates the random function F¥) corresponding to the
N-BBM, if both processes start from the same particle configuration.

PROPOSITION 4.1.  Suppose X = (X}, ..., Xn) € RHN. There exists a coupling of the
N-BBM XN (1) started from X and of the BBM X (t) also started from X such that
FM (0 <CiFH(,n vi=0.
(Equivalently, X (t) < XM (1) for all t > 0.) In particular, if f :[0,00) - RU {+o00} is

measurable, then, for all t > 0,

P (sup(FN (r,1) = f(r) 2 0) <P (sup(CLF T (,1) = £(r) 2 0).

r>0 r>0

PROOF. This is a direct property of the standard coupling between the N-BBM X ) ()
and the BBM X T (¢), as described in Section 3. Observe that, with XM (0) = X = X (0),
under the coupling described in Section 3, for # > 0 we have X N (1) € X (). It follows that
FM(r,t) < Ft(r,t) for all > 0 and 7 > 0. Therefore, since F™) (r,) < 1 also holds for
all ¥ > 0 and t > 0, we have

FM@,ty<C Fr (), r>0,t>0
which completes the proof. [J

Recall the definition of the operator G; from (20), and introduce
(26) v, 0) = Gl(r)  withv§(r) = FT(r,0),

the solution of (19) with initial condition determined by the initial configuration X*(0) of
the BBM.
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LEMMA 4.2.  For N large enough (N > 48 is sufficient), for all X € (R)™ withm < N
andall t > 0,

supPx(|[FF(r, 1) —vl(r, )| = N71/%) < 13e% N9/,
r>0

and

Px(N“H(|XT ()| —e'|X]) = N71/%) < 13e¥ N7/,

PROOF. Recall that (B;);>0 is a d-dimensional Brownian motion with diffusivity V2.
We claim that, for » > 0 and ¢ > 0,

|X]

(27) i =— ZeIPX Bl <r).
i=1

Indeed, by the definition of G, in (20),
| X

G:Ft(r,0)= / G@,r, I)Zﬂ {lxl<yrd

|X]

—Z - " GOy.rndy

1 1

——Z/ faygyrtdrdy
1|

B

——Z/ X1, 1)

|X]

1
= —ZPX, IB:]l <r),

i=1

where the third line follows by (16) and (17) and the last two lines follow since g(y, -, t) is
the density at time ¢ of a d-dimensional Bessel process started at y. This proves the claim
27). .

In the BBM X T started from X, fori € {1, ..., |X|}, denote by NV;*' the labels of the fam-
ily of particles at time ¢ descended from the ith particle in A, that is, recalling that particles
are labelled according to the Ulam—Harris scheme, let

/\/,+’i ={u eNt u=(,uy,.. )}
Then, letting X/ (t) = (X (1)), pr+i» the processes X + form a family of independent
t

BBM:s, and for each i the process X1 is started from a single particle at location X;. Fix a
time ¢ > 0, and write n; = |/\/,+’l| for the number of particles descended from AX; at time ¢
and

ni(r)={ue N XF@) e Bl
for the number of particles at time ¢ descended from A; which lie within distance r of the
origin. Then, FT(r,t) = L Zlﬂ n;(r) and by the many-to-one lemma (see [19]) and (27),

[ X] |X]

|
—ZExn(r) 5 2B (1Bl <r) =v (1),

i=1
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Therefore,

Ex[(F*(r. 1) — v 0)*]

= % Ex [(lg(m (r)—Ex [ni(r)])>4}

i=1

x x
- % (,lé Ex[(ni(r) —Ex[ni(n])*] + 6i|,~2—|1 Vary (n; (r)) VarX(nj(r))).
i<j

Note that
(28) Ex[(ni(r) — Ex[n:(M])*] < Ex[ni()* + Ex[ni ()]*] < 2Ba[ni (1)*] < 2Ex[n]]
and that
(29) Vary (n;(r)) < Ex[n; (r)?] < Ex[n?].
Furthermore, since n; has geometric distribution with parameter e/,
(30) Ex[n!] <24e* and Ex[n7]<2¢.

We now have that, since |XY| < N,
1 _ _
Ex[(F*(r.0) — v )] < W(N48e4’ +3N%4e*) < (48N 73 + 12N 72)e™.

By the same argument, since | X (¢)| = Zlﬂ n; and Zlﬂ Ex[n;] =e€'|X|, we also have
Ex[(N~'(|XT ()| —e'1X])*] < (48N 3 + 12N 2)e™.
By Markov’s inequality the stated results follow as soon as
N*3(48N73 +12N7%) < 13N 79/
which is equivalent to N > 48. [

Next, we upgrade the estimate in Lemma 4.2 to be uniform in r, at the expense of slightly
slower decay in N. Recall the definition of vt in (26).

LEMMA 4.3. For all N> 1, all X € (Rd)m with m < N, and all t > 0 such that
et|X|N—l >1— N—I/IO’

PX(Sup}ClFJF(r, £ — C1ve(r, t)| > 3N—1/10) < 1364 N~11/10,

r>0
PROOF. Observe that there is nothing to prove if N!/19 < 3; as in that case the probability
is actually 0. Thus, we assume henceforth in this proof that N!/19 > 3. Fix 7 > 0 such that
e'|XIN~!>1— N=V10 For k e Ny with k < [N'/10], let

k
—; R4
rk_mf{yZO.v (y,t) > m}
Recall the formula for v(-, 7) in (27) in the proof of Lemma 4.2. Note that F*(-,¢) and
vi(-, 1) are nondecreasing, that vt (-, 1) is continuous, and that (r) fork =0, 1,..., LNl/IOJ
is an increasing sequence with rg = 0. As r — oo, vl 1) — e’N_1|X| >1— N0 g0
ri < oo fork < |[NV10] —2.
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Suppose that, for every k € {1, ..., IN1/10) 2},

(31) |FF (i t) = v (e )| < N7,
Then, for r > 0, if r € [rg, rr+1] for some k € {0, ..., LNl/IOJ — 3}, we have
k _ _ k+1
iy —N B <Frrn ) < FY oo < Fr(na, ) <N+ [N1/10]
and
k k+1
¢
vo(r,t) € [ , :|
I_NI/IOJ LNI/IOJ
Since % + N71/5 <1 for all N > 1, we see that, for all r < FIN1/10) 0, WE have

C1F*t(r,t) = F*(r,1) and C1v'(r, 1) = v'(r, t). Thus, assuming (31) holds,
ICLFY (r.1) — Cot (r )| < N7V 4 (INV1O) !
< 3N—1/10
forall r < FIN1/10] 2 (since N'/10 >3 implies (I_Nl/loj)_1 < 2N~V10y,
If instead r > ry where k = [N1/10] — 2, then
k
¢ 1 1/10 y—1
U(”J)Em—l 2(INE))
and by (31),
Frrt) = Ftmn=1—- N5 —2( NV~
Hence,
|C1Fr(r, 1) — ot (r, 1) < 3NT/10

(since N/10 > 3 implies N~!/10 4 2N 1/10 /| N1/10] < 3) Thus, if N!/19 > 3 and (31) holds
foreach k € {1,..., [N'/19] —2}, then

sup|C1 F*(r, 1) — Civl(r, 1)| < 3NTV/10,

r>0
Now, by a union bound and Lemma 4.2, for N 1710 > 3.

IP’X(sup|C1F+(r, 1 —Ct(r 1)) > 3N—1/1°)

r>0
<Pxke{l,..., [NV =2} |FT (i, 1) — ' (i, 1) = N7173)
< Nl/lO . 13641‘N—6/5
— 1364 Ny—11/10

which completes the proof. [J

COROLLARY 4.4. Forall N > 1, for X € (Rd)N, andt > 0,

PX(SUP(F(N)(V, 1) —Cie' G, FMr, 0)) > 3N—1/10> <134 N~11/10,

r>0
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PROOF. This follows immediately from Lemma 4.3, Proposition 4.1, and the definition
of vt in (26). O
As in (22), for § > 0 and k € Ny, let
ROt = (C15Gs) FM (., 0).

We now apply Corollary 4.4 repeatedly on successive timesteps to prove the following result.

PROPOSITION 4.5. Forall N > 1,8 >0, K e Nand X € RHV,
Py (Sup(F(N) (r, K8) — vK9H () > 3K6K8N—1/10> < 13K Y N—11/10,

r>0

PROOF. Forke{l,...,K}and r >0, we can write
FM(r, k8) —v* 27 () = FN (1, k8) — C1e° Gs F N (1, (k — 1)9)
(32) +C1°Gs FM (r, (k — 1)8)
— C18G st ().
To control (32), we define the events

Ey = {sup(F M) (r, k8) — C1° Gs F ™) (r, (k — 1)3)) < 38~/10)

r>0

and

K
E.= () Ex.
k=1

Then, on the event E,, for each k € {1, ..., K}, we have by (32) that, for r > 0,
FM(r, k8) — 5T () <3NV 4 €18 Gs FNV) (1, (k — 1)8) — C1e° Gsvk 10T (r).

Note that since G > 0 and fooo G(y,r,t)dy <1by (14) and (15), we have that G5 f — Gsg <
max (0, sup,-o(f(r) — g(r)) for any f, g :[0,00) - R. Moreover, Cy f(r) — C1g(r) <
max (0, f(r) — g(r)) for any f, g : [0, c0) — R. Therefore, for r > 0,

Ci1®Gs f(r) — C1e°Gsg(r) < ¢’ max(O, sup(f(r) — g(r))).
r>0

It follows that
FN(r, k8) = o5 (r) <3N 7Y/10 4 ¢ max (0, sup(F N (y, (k — 18) — v =124 (3)) )

y=0
also holds on the event E,. By iterating this argument, it follows that, for k € {1, ..., K},
sup(FN) (r, k8) — 82T (r)) < 3kekd N~1/10

r>0

holds on E,.
To estimate Py (ES), we use a union bound and Corollary 4.4 with ¢ = §. Specifically,

Py (ES) = IP’X<6 E,g> < pr(E,g).

k=1 k=1
By the Markov property, for k € {1, ..., K},

P (Ef) = Ex[Px(E{|1 Fa—1)s)] = Ex[H(X™ ((k — 1)3))],
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where H : (RN — R is defined by
H(X') =P (sup(FV(r,8) = C1¢°Gs FV(r,0)) = 3N~ /10).
r>0

Therefore, by Corollary 4.4,

K
Pa(ES) <Y 130 N~1/10 = 13K M N-11/10,
k=1

The result follows. [

4.1.2. Lower bound for the proof of Proposition 1.5. We begin by proving that under
a suitable coupling, the random function F*) for the N-BBM stochastically dominates the
random function F* for the BBM with an initial condition consisting of less than N particles.
This result is very similar to the lower bound in Theorem 5.1 of [14].

Recall from our definition of the < notation in (23) in Section 3 that

XMy =xt@0) & FYCnzFCo.
Moreover, the relation X < X' is not affected by the ordering of the points in the vectors X

and X'T.

PROPOSITION 4.6. Suppose X = (X1,...,Xy) € RDY and XT = (X,..., X)) €
(RHY™ with m < N and such that X < X*. There exists a coupling of the N-BBM XN (r)
started from X and of the BBM X ™ (t) started from X such that, fort > 0,

XMy <x*T@) if|xTe)| <N

In particular, under that coupling, FM( 1)y > Fr(,1) if |1XT(t)| < N. Then, if f :
[0, 00) — R is measurable, fort > 0,

(33) IPX<i1>1£(F(N)(r, 0 —f(r) > 0) > IP’X+(iE(f)(F+(r, 1 — f(r) >0,

Xt §N>.

PROOF. The coupling of the processes X™) and X is similar in spirit to the lower
bound in Section 5.4 of [14].
Let ‘EZ— for £ € N denote the successive branch times of the BBM process,

t =inflt >0: | Xt (@0)|=m+¢}.

By induction on |Xt|, we claim that it is sufficient to find a coupling of the processes X )
and X1 on the same probability space with X™)(0) = X and X+ (0) = X such that

[O,‘L’fr], ifm <N,

34 XMa@y<xt@), Vie
4 0= ®) [O,‘L'1+), ifm=N

holds almost surely. Indeed, assume that (34) holds. If m = N, then the proposition is
proved. If m < N, then X 4 )(r1+ )< X +(t1+ ), and the construction of the coupling can be
repeated up to time r2+ using XV )(rfr ) and X *’(rl+ ) as the new initial particle configura-
tions, by the strong Markov property. By induction the property XV (r) < X*(¢) holds for
t €0, t;\?_m Jrl), where r;_m 11 is the first time at which there are N + 1 particles in the
BBM X, and the proposition is proved.

We now show that (34) holds. Set 7o = 0, and let (z;)72, be the arrival times in a Pois-
son process with rate N so that (7,41 — 7;);>0 i a family of independent Exp(N) random
variables. These 7; for i > 1 will define the branch times for the N-BBM process X (N) The
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coupling will ensure that ‘L'1+ = 1, for some p € N, where we recall that ‘L'1+ is the time of the
first branching event in the BBM X .

We now construct the motion of the particles for ¢ € (0, 71). Given x, xT € R? with ||x|| <
lx* ||, we say that (B, B™) are a pair of spherically-ordered Brownian motions starting from
(x,x1) if B and Bt are Brownian motions in R¢ (with diffusivity V2), starting from By = x
and BO+ = x T, and such that, with probability one, || B;|| < || B,+ || holds for all # > 0. There are
multiple ways to construct such a pair. For example, B and B* might evolve as independent
Brownian motions in RY up to the first time 7 at which | Br|| = ||B}L ||; after that time they
are coupled in such a way that || B;|| = || BtJr || for all # > T, for example, by taking B; — Bt =
O(B;t — B}L ) with ® : R¢ — R< being an orthogonal transformation such that ® B = By
Alternatively, one could use the skew-product decomposition of Brownian motion (see, e.g.,
the proof of Proposition 2.10 in [8]), driving the radial components of B and B™ by the same
Bessel process.

Since the condition X < X' is invariant under permutation of the indices of points in X
and X'T, it suffices to assume that the vectors X and X' are ordered in such a way that

I < [

, Ykefl,...,m},

where we recall that m = |X | < N. (Order the vectors X and X', e.g., so that the points
with the lowest indices are the points closest to the origin.)

Then, for 7 € (0, 7)), we define (X" (1), X} (1)) for k € {1,...,m} to be m indepen-
dent pairs of spherically-ordered Brownian motions starting from (X}, X,:r ), and for k €

{m+1,...,N}, the X ,(CN) (t) are defined to be independent Brownian motions starting from
Xy Hence, for 7 € (0, 71), we have | X\ (1)|| < | X; ()| for k € {1, ..., m} which, in turn,

implies that
XMy <xt@) V<.

We now describe the first branching event at time 7.
Defining XM (1;—) = (XM (11-), ..., XV (z1-)) = lim, »;;, XM (1), and similarly
defining X (t1—) = lim; »r, X*(r), we have

1 XM )| < X7 (r1-)

Let ji, a random variable uniformly distributed on {1, ..., N}, be the index of the branching
particle in the N-BBM at time 77. Let k; denote the index of the particle in X W )(‘El —) with
maximal distance from the origin. If j; > m, then at time 71, the N-BBM branches, but the
BBM does not. The particle in XN) with index j; is duplicated; the particle in X with
index k1 is eliminated. More precisely, let

, Ykell,...,m}.

X/EN)(TI) = X,((N) (r1—) fork #ky,
N

M =x"@-), and Xt()=X"(-).

Then, fork € {1, ..., m},
XM @l < 1% @) < IxE @) = 1% @,

and, in particular, X (N (11) < Xt (11). The construction is then repeated to extend the defini-
tion from time 7] to 72: take new pairs of spherically-ordered Brownian motions to determine
the motion of particles up to time 17, pick the branching particle j, in the N-BBM uniformly
at random, and so on until time 7;+, where it =inf{i > 1: j; <m}. This time T+ = t1+ isa
branching time for both the N-BBM and the BBM. Observe that T1+ ~ Exp(m).
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In the construction of the coupling, so far we have that, for r < 751+ ,

XV < | XF @] Yeefl,...,m},

and so, in particular, X™) (r) < X (r). At time ‘L'1+ — = 1;+—, the particles with index j;+ €
{1,...,m)} from both X and X7 branch, and the particle in X) of maximal distance
from the origin is removed. More precisely, if k;+ is the index of the particle in XV )(‘E+—)
with maximal distance from the origin, we let

XM ) =xM (=) fork £k, XV () =xV (-,

and  XH(e) = (X{ (). XE (5 =), XT (5 =) X (2 ).
Suppose m < N. Then, ||X(N)(r1+)|| < ||X+(r1+—)|| Vk e {l,...,m}, with k # k;+, and also
1% DI < 1X T, (7 =)l Moreover, if k;+ < m, then ||X<N)1<r1 = 1x. @)l <

||Xk‘+ (rl —)|I. It follows that X(N)(th) =< X+(r1+) if m < N. This concludes the coupling
construction to achieve (34), and the proof of proposition is now complete. [

We now use Proposition 4.6 to prove a lower bound on F®) (., §).
LEMMA 4.7. For N large enough (N > (2¢)'0 is sufficient), for all X € RN, and for
all § € (0, 1),
}P’X(in(f)(F(N) (r,8) — e GsC,ps_n-1sF N (r,0)) < —4N—1/1°) <26 NH/10,
r>

PROOF. Take 8 € (0,1) and X € (RY)N. For r > 0, let fx(r) = N~'|X N B(r)|; note
that if XM (0) = X, then F™) (r,0) = fx(r). Let XY™ C X consist of the [N (e ™% — N~1/9)]
particles in X which are closest to the origin. Let (X (¢), ¢ > 0) be the BBM started from
X7 (0) = X" Observe that F¥(r,0) = C|y(-s_y-1/5))/n fx(r) so that
(35) C,-s_n-15fx(r) — N '<Ffr0) < C,-s_y-15fx(r) Yr=0.

Let Ry be the event
R ={|Xt(©)| <N}

Since |XT| < N(e™® — N7'/3), one has N~ 'ed| x| — 1 < —N"13¢% < —N~1/5 and
Lemma 4.2 implies that, for N > 48,

P+ (RS) < Py+ (NTH(|XT ()] — e |XT]) = N71/%) < 13e% N9/,
Let Ry be the event

Ry = {sup|C1F T (r,8) — Crvt(r, )] < 3NV,
r>0
where, as in (26) in Section 4.1.1, we let v(r, 8) = 4G5 F(r, 0). Since | X 1| > N(e™% —
N715) —1,onehas NN XT|>1 - NS — N1 > 1 — N~V10if N is sufficiently
large that e(N_1/5 + N1 < N~V10 for instance, if N > (2@)10. Then, by Lemma 4.3 we
know that, for all N > (2e)10,
P+ (RS) < 13 N~1/10,

Since ) N1 XT| < 1, we have v’(-, 8) < 1 (by (27) in the proof of Lemma 4.2). Therefore,
by (35) we have that, for r > 0,

C1vb(r, 8) =04 (r,8) =G5 F T (r,0) > € GsCps_y-1s5 fx(r) —e’ N7L.
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On the event R we also have FT(-,8) < N~'|X1(8)| < 1,and hence C; F1(-,8) = F*(., §).
This shows that on the event Ry N R, we have both | X (8)| < N and

in’(f)(F+(r, 8) — e G5Cpms_y-15 fr(r)) = ing(ClFJr(r, 8) — C1v'(r,8)) —e’ N1
r> r=

> —3N"V10 _ N1

Note that since X C X, we have X < X'*. Therefore, by Proposition 4.6 and taking N
sufficiently large that eN~! < N~1/10 (which again holds when N > (2¢)'?),

Px<in£(F(N)(r, 8) — & GsCyos_n-1y5 fre(r)) > _4N—1/10)
r>
> P+ (ing(F+(r, 8) —G5Cys_n-1s fr(r)) > —4N"V10 | XF(8)| < N)
r=
>Px+(R1NRy)
> 1= Pas (RS) — P (RY)
> 1= 134 NT6/5 _ 1304 Ny—11/10,

which completes the proof, since fx(-) = FM (-, 0)if XMO)y=x. O

As in (22), for k € Ny and § > 0, let
VR0 = (2G5 C,s ) FN (-, 0).

By applying Lemma 4.7 repeatedly, we can prove the following lower bound, which, together
with the upper bound in Proposition 4.5, will allow us to prove Proposition 1.5.

PROPOSITION 4.8. For N large enough (N > (2e)10 js sufficient), for all X € (RHN |
6€(0,1),and K e N,

Pa(inf (F™ (r K8) =027 () < =5KSON1/10) <26K e N1/,
rz

PROOF. Forke{l,...,K}andr >0, we can write
FMNM (r, k8) — "2 (r)
= FM (1, k8) — ®G5Cpes_n-1s F N (r, (k — 1)8)
(36)
+GsC,s_y-1s FN(r, (k — 1)8) — € GsC,—s F V) (1, (k — 1)8)
+6°GsCps FN (1, (k — 1)8) — 2 G5C,—sv* 10 ().

For the second line on the right-hand side of (36), note that ||C,—s_y-1/5f — C,—s f||Lo <
N~/5 for any f : [0, c0) — R, and so, using (21),

37 €GsCps_y-1sFN (-, (k= 1)8) — 2 GsCos FM (-, (k — 1)8) | ;o <’ N1,

For the third line on the right-hand side of (36), observe that C,, f(r) — Cpg(r) >
min(0, f(r) — g(r)) forany m € (0, 1) and any f, g : [0, co) — R. Then, since min(0, f(r) —
g(r)) <0, we have that, for any § > 0, m € (0, 1), and r > 0,

GsCn f(r) — GsCg(r) = Gsmin(0, f(r) — g(r)) = yigf(;min(O, f» —gO»)),
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where we used from (14) and (15) that G > 0 and fooo G(y,r,t)dy < 1. It follows that
rigg(GgCe_aF(N) (r, (k = 1)8) — G5C,-sv* 197 (1))
¥ > min(o, inf (FM (y, (k = 1)8) — vk_l"s’_(y))>.
y=0
To control the first line of the right-hand side of (36) for k € N, define the event
Ej = {rigg(F(N)(r, k8) — € GsCos_y-1s F N (1, (k = 1)8)) > —4N =110},

and let

K
E* - ﬂ Ek.
k=1
Then, on the event E,, using (37) and (38), we have foreach k € {1, ..., K}, forall r > 0,
FM @ k8) — "%~ (r) > —4N~V10 — N1

+ ¢ min(0, inf (F™ (y, (k = 1)8) —v* 7127 (1))).
y>0
By iterating this bound, it follows that if N > (2¢) 10 (and so, in particular, e N —1/5 « N—1/10y,
then on the event E,, fork € {1,..., K},
(39) ing(F(N)(r, k8) — 50 (r)) > —(ANTV10 L N TS )kekd 5 SN0 KD,
r>

To estimate Py (ES), we use a union bound and Lemma 4.7. Specifically,
K K
Px(E;) = Px<U E]i) =< Z]P)X(E]g)
k=1 k=1
By the Markov property, for k € {1, ..., K},
Px(Ef) = Ex[Px (E{|Fa-1s)] = Ex[H (X ™ ((k - D8))].
where H : (R?)N — R is defined by
H(X') = IP’X/<in£(F(N) (r,8) = € GsCos_y-1s F N (r,0) < —4N~110).
r>

Therefore, by Lemma 4.7 for N > (2¢) 10

K
IP)X(E:) < 2268481\,711/10 :26Ke48N711/10.
k=1

The result follows by (39). O

4.1.3. Combining the upper and lower bounds for the proof of Proposition 1.5. 'We can
now complete the proof of Proposition 1.5. Let v™) denote the solution of (7) with initial
condition vo(r) = F™)(r, 0) for r > 0. By Lemma 2.2 we have that, for 8§ > 0, k € Ny, and
r=0,

V=) = (2 G5Cs) FM (r,0) < v™ (1, k8) < (C16°G5) FN (1, 0) = 055+ (r)
and

o455 = 80 = (@ )€~ 1),
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For N > (2¢)!0, X ¢ RN, 5 € (0, 1), and K €N, Proposition 4.5 yields that

]P’X(sup(F(N)(r, K8) — v (r, K8)) > 3KeXKONT10 4 (K 1 1) (e — 1))

r>0

< 13Ke48N711/10’
and by Proposition 4.8,
]P’X(rirzlg(F(N)(r, K8) —vN(r, K8)) < —SKeFONTVI0 — (K0 1) (e — 1))
< 26K€48N_11/10.
It follows that, for N > (2¢)'9, for ¥ € RN, 8 € (0, 1), and K €N,

P (sup| FN (r, K8) = v ™ (r, K8)| = SKeXONTI10 4 (K0 1) (e — 1))

r>0

< 39K M N—11/10,

Take t > 0, and let K = |'N1/20t'| and § =t/K. Then, § < N—1/20 < 1, and using that e* —
1 <2xifx €0, 1], we see that, forall N > 1,

SKKONTI0 4 (K3 1 1)(e — 1) < SV 1)l NTVI0 g (o 1) - 1)
< 5(1 + 1)elN71/20 +4etN71/20
< 92 N—1/20,

Furthermore, by taking N large enough that 39¢*V e < 40, we have 39K ¥ N~11/10 <
40(t + 1)N—21/20_ Therefore, for N sufficiently large (for instance, N > 15820 ensures that

3964V < 40), for any X € RN, and ¢ > 0,

IEDX(Sup{l”(’v)(r, N — v, 0| > 9e2’N—1/20) < 40¢' N721/20,

r>0

This completes the proof of Proposition 1.5.

4.2. Proof of Proposition 1.6. We begin with the following lemma, which is a conse-
quence of Proposition 1.5 and a concentration estimate for F N)(.,0), in the case where
x™M0), ..., x{(0) are i.i.d. with some fixed distribution j¢. This lemma will be used
later to argue that at a fixed time ¢, F N)(R,, 1) is close to 1, where (u, R) is the solution of
the free boundary problem (1) with initial condition pg.

LEMMA 4.9. There exist constants c3 € (0, 1) and Ng € N such that the following holds.
Let wo be a given probability distribution on R?, and suppose X gN) ,..., XJ(VN)(O) are
i.i.d. with distribution g. Let v denote the solution of (7) with initial condition vo(r) =
wo(B(r)). Then, for N > Ny and t > 0,

P(|FM (1) —v(, 1) oo = e NT3) <! N7179,
The constant Ng does not depend on pg. The difference between Lemma 4.9 and Propo-

sition 1.5 is that the initial condition for v(-, ) in Lemma 4.9 is given by vo(r) = uo(B(r)),
whereas the initial condition for v®¥) (-, ¢) in Proposition 1.5 is given by vo(r) = F M (r, 0).
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PROOF. Recall from Proposition 1.5 that there is a constant ¢; > 0 such that, for N large
enough (not depending on the initial particle configuration), for # > 0,
P(|FNM (1) = o™ (1) o = ¥ NT) <! N7,
where v™) is the solution of (7) with initial condition v(()N) (r)y=FM(r, 0). By Lemma 2.3,
(40) [o™ 1) = v D e < € NFNC0) = po(BO) e

The function vy(r) = no(B(r)) is the cumulative distribution function for each of the real-
valued random variables || X l-(N)(O) II,i =1,..., N, which are independent. Therefore, it fol-
lows immediately from Corollary 1 and Comment 2(iii) of [22] (which is a sharp, quantitative
version of the Glivenko—Cantelli theorem) that

(41) P(IFM (-, 0) — 1o(BO)llze > €) < 2e2N¢

holds forall e > 0and N > 1.
For € > 0 to be chosen, let E be the event

E={|F™M,0) - no(BO)| 1 <€}
Then, for ¢3 > 0 to be determined, N large enough for Proposition 1.5 to hold, and ¢ > 0,
P(IFY 0 =v(, 0] = e N79)

2

<P(|FM 0 = v 0]+ [V 1) = 0C 1) oo 2 e N7
<P([FM 0= o™+ 0™ 1) = v 0] 2 € N7, E) + P(EC)
<P(|F™M ¢, 1) — v, D] oo +e'e> NG E) + 22N

by (40) and (41). Choose c¢3 € (0, min(cy, 1/2)) and € = %N ~%. Then, for N large enough,
one has e2’ N™%3 — ele > ¢¥ N~ for all ¢ > 0 (it is sufficient for the inequality to hold at
t = 0 which is the case when N1~ > 2). Therefore,

P(IFM (1) = v(.0)] oo 2 ¥ N™2) <! N7176 42673870,
Since 1 — 2¢3 > 0, we may take N larger if necessary so that ¢! N~!1=¢1 4 2= 3N <
e! N=1=¢ for all t > 0 (it is sufficient for the inequality to hold at # = 0), and the proof is
complete. [

Now consider an N-BBM XV started from an initial condition X € (R?)VN. Recall the
coupling in Section 3 between X and X+, where X (r) = (X} (1)), -+ is the vector of
particle locations at time ¢ in a standard BBM started from the same initial condition X such
that under the coupling, for all # > 0, X N) () € X (¢). Recall also from (24) that under the
coupling, for t > 0, almost surely

“2) (XMl = {X;(t)}ue/\/,("’”

where NV = {u e Nt | XF (o) < M) s €10, 11},

.....

from the origin at time s.

For Lemmas 4.10 to 4.12, we also introduce two quantities. For any particle with label
ue J\f,+ in the BBM at time ¢, let B, (s) be the displacement of that particle at time s € [0, ¢]
from its location at time 0,

Byu(s) = X[ (s) — X, (0).
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For € > 0 and r > 0, let Z.(r) denote the number of particles in the BBM at time € which
started (at time 0) from a particle in B(r),

Zo(r)=|{ue Nt : X (0) e B(r)}|.

LEMMA 4.10. For N > 1 and €,r > 0, if the following two conditions hold:

e Z.(r)> N, 1
[ ] maxueNz‘: Supse[O’Zg] ”BM(S)” 5 §€1/37

then

MS(N) <r +elB vse [€, 2€].

PROOF. Assume the hypotheses hold. Then, we must have

N

1
Is* € [0, €] : MM §r+§el/3.

Indeed, if we had MS(N) >r+ %61/3 Vs € [0, €], then by (42) and using that || B,(s)| =
1X,F(s) = X,F (O] < 3€'73,

1
NNV o {u eNF X )| <r+ 561/3 Vs € [0, e]}

D {ue N | XFO)] <r},

which is impossible, as the set on the right-hand side has size Z.(r), and we assumed that
Z:(r)> N.

Then, for any s € [s*, 2¢], for any particle with label u € M(N), its ancestor at time s*
must have been within distance Mfiv ) of the origin, that is, || X ;f M| < Mfiv ), Hence,

1 1
MM < 4 ul‘;l/a\léHBu(s) — B,(s%)] < <r + gel/3> 12. 561/3
which completes the proof. [J
Recall from the definition of I" in (3) that, for» > 0and § € [0, 1), X € I'(r, 1 — §) means

that at least a fraction 1 — § of the N particles of the vector X are in B(r), and, in particular,
fort >0,

(43) XMnyerr1-8 < FMEn>1-s.

LEMMA 4.11. There exists a constant c4 > 0 such that, for any N € N, r > 0, and
€€(0,1),if X e (r,1 — Le), then

Px(Ze(r) < N) < e <N,

PROOF. Note that since each particle in the BBM branches independently at rate 1 and
since we assumed that the number | X’ N B(r)| of initial particles in B(r) is at least N (1 — }‘e),
we have

Ze(r) zN(l — %E) +&,
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where £ is a Poisson random variable with mean N (1 — }Te)e. Hence, for any ¢ > 0, by
Markov’s inequality,

Px(Ze(r) <N) < P(S < ieN)
:]P;(e—cs Ze—%ceN)

< e%ceN E[e—cg]

— e%ceN—i—N(l—%e)e(e_"—l)
< eN(lfj—le)e(%che"'fl)
J— 9

where we used }‘e < %6(1 — }‘e) in the last line. Fixing ¢ > 0 sufficiently small that %c +
e ¢ —1=—c <0, it follows that

]P)X(Ze(r) S N) SB_C/GN(I_‘%E) Se_%C/EN‘ D

LEMMA 4.12. Fix b € (0, 1/2). Then, there exists No = No(d, b) such that, for all N >
Noandr >0,if X el'(r,1 — %e) where € = N7?, then

Px< sup MV > r 4 61/3> <<

s€le,2¢€]

PROOF. Take X eI'(r,1 — }Te). By Lemma 4.10, observe that

Pr( sup MM >r+e') < Pa(Z(r) < N)
s€le,2¢€]
(44) 1
+Px<3“ €Nyt sup [[Bu(s)] > ‘61/3)
s€[0,2¢] 3

By Lemma 4.11 the first term on the right-hand side is bounded by e~ We focus on
the second term. By the many-to-one lemma, recalling that we let (Bs)s>0 denote a d-
dimensional Brownian motion with diffusivity \/5,

1 1
IP’X<EIu eN5E: sup | Bu(s)| > —61/3> < Ne26P0( sup || Bs| > —61/3>.
s€[0,2¢] 3 s€[0,2¢] 3

Letting &1 g, ..., &4 s denote the d coordinates of By, which are themselves independent one-
dimensional Brownian motions,

1 1
o sup IB1I> 3¢ ) =Bo( sup (6,4 87,) > e
s€[0,2¢] 3 s€l0,2¢] 9

1 1
f]P’o( sup g2 >—e?Por ... or sup £2 >—€2/3)
se02e T 9d s€[0,2¢] 457 9q
(45) <dIP>o( sup 61 |>Le‘/3)
= .S
s€[0,2¢] 34/d
1
§4d[F’0< 1,2¢ > 61/3>
&1,2¢ W7

=13
<4d exp(— 72 )
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where the fourth line follows by the reflection principle and the last line by a Gaussian tail
bound.
By (44) we now have that

~1/3 -

}P’X< sup MS(N) >r 4+ 61/3> <e N 4 NeZ€ .4dexp(—e ) <e € 1/4,
sele,2€] 72d

where the second inequality holds for N sufficiently large (depending only on d, b, and the

constant c4), since € = N~bandbe ©0,1/2). O

We can now complete the proof of Proposition 1.6. Recall that we assume that the N-BBM
is started from N i.i.d. particles with distribution given by some wg and that (u#, R) denotes
the solution to the free boundary problem (1) with initial condition pg. As in Lemma 4.9, let v
denote the solution of (7) with initial condition vg(r) = wo(B(r)), and recall from Section 1.2
that v(r, 1) = fB(,) u(x,t)dx and so, in particular, v(R;,t) =1 for ¢ > 0.

Take ¢3 € (0, 1) and Ng € N as in Lemma 4.9; take N > Ny, and let € = N—¢/2 Then, for
T > 0, by a union bound,

P@Er €26, T1: M > Reije)—1) +€'7)

|T/e]—1
< Z P( sup Me(k-q)m>R€k+€l/3>
s€le,2¢€]
|T/e]—1
< Z ( —|—IP’<E€k, sup ME(,H)_S>R€k—|—el/3>>.

s€le,2¢€]

The above is, of course, valid for any choice of events E; for each ¢ > 0, but in order to
use Lemma 4.12, we let E, = (XM (1) e (R;, 1 — }‘e)}. Then, for N sufficiently large that

}te > 2T N—¢3, recalling the meaning of I" in (43), and since v(R;,t) =1, for ¢t € (0, T],

P(ET) =P(X(N)(t) ¢ F(Rz, 1- %e)) =IP’<F(N)(R,, H<l-— %6)
< P(Sup|F(N)(r N —v(r0)|=eTN™ C*)
<el N7I7

by Lemma 4.9. For N sufficiently large (depending on d), for k € N, by Lemma 4.12 (with
b = c3/2) and the Markov property at time €k, we have
/4

P(Eek; sup Mg(k+g > Rer + 61/3) =<

s€le,2¢e]

Therefore,
P@Er e 26, T1: M™ > Re(ijej—1y +€%) < [T/e)(e" N7 4 o7 ) < N—17503

for N sulfficiently large (depending on d and T'). For n € (0, T), since (R;)e[,1] 1S continu-
ous (by Theorem 2.1), for N sufficiently large,

(46) Re(uje)—1y +€* <R +n Vren Tl
Therefore, for N sufficiently large (depending on d, wo, n and T),
P@Ere(n. T1: MM > R +n) < N~173%

which completes the proof of Proposition 1.6.
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5. Proof of Theorem 1.1: Hydrodynamic limit result for u. First, we notice that it is
sufficient to prove that there exists ¢s > 0 such that, for any r > 0, A C R“ measurable and
8 > 0, for N sufficiently large (depending on d, g, A, § and ¢),

(47) }P’(M(N)(A,t)—/ u(x,t)dxza) <N,
A

Indeed, since u'™(A,1) + ™M RNA, 1) =1 and [y u(x,0)dx + [ga\4ulx, 1) dx =
Jrau(x,t)dx =1,

(48) IP’(;L(N)(A,t) —‘/Au(x,t)dx < —5) :IP(M(N)(Rd\A,t) —/Rd\Au(x,t)dx z(S).

Hence, it follows from (47) that, fort > 0, A C R“ measurable, and § > 0, for N sufficiently
large,

P('M(N)(A,t)—/ u(x,t)dx
A

> 8) <2N~17es,

and so by Borel-Cantelli, M(N )(A, D 4 u(x,t)dx almost surely as N — oo. Moreover,
fort >0and§ >0,letd' =1 — fB(R,—&) u(x,1)dx > 0 by Theorem 2.1. Then,

P(M™ < R, —8) =P(u™ (BR, — 5).1) = 1)

— (N) _ _
_]P’(M (B(R, — 5).1) fB o

for N sufficiently large by (47). Also, by Proposition 1.6 with n = min(é, ¢), for N suffi-
ciently large,

u(x,t)dx > 5/> <NI76

PM™N > R +68) < N~1-e2,

Therefore, by Borel-Cantelli, M,(N) — R; almost surely as N — oo.
It now remains to prove (47). Let (X' (), > 0) be a BBM with the same initial particle
distribution as the N-BBM, that is, such that X*(0) = (X;"(0))_,, where (X;"(0))Y_, are

i.i.d. with distribution given by 1g. Recall the coupling described in Section 3 between the
N-BBM X and the BBM X such that, under the coupling, for all > 0,

XM@yC xt).

Take t > 0 and n € (0, t). We let C;; denote the set of locations of particles in the BBM
(without killing) at time ¢ whose ancestors at times s € [, t] were always within distance
Rg + n of the origin,

Cot={XF@):ueNT, |XF(s)| <R +nVselntl).
Notice that if MS(N) < R; +n Vs € [n, t], then, by (24), almost surely
xM@yce,,.

Therefore, for A € R? measurable and § > 0,
]P’(,u(N)(A, 1) —/ u(x,r)dx > 5) <P@Esen1: MY > Ry + 1)
A
1
(49) —HP)(—ICWHAI—/ u(x,t)deS)
N A

1
<Nl +P<N|C,,,t NA|— /Au(x, £)dx > 5)

for N sufficiently large (depending on d, (o, n and ) by Proposition 1.6. We now focus on
the second term on the right-hand side.
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LEMMA 5.1. Foranyt>0and A C RY measurable,

1
IimE| —|C ﬂA:|=fux,t dx uniformly in N.
lim B[ 101G, Al = [ utx.ydx uniformiy

PROOF. We claim that, for y € R4,
(50) Py(B; € A, ||Bsll < Ry Vs € (0,1]) =Py(B; € A, || Bg|| < Ry Vs € (0,1)).

(In words: the probability that the Brownian motion touches the moving boundary R at a
positive time without crossing it is zero.) We shall begin by showing that the lemma follows
from (50) and then prove the claim (50).

For n € (0,¢), by the many-to-one lemma and since at time O the BBM consists of N
particles with locations which are random variables with distribution g,

E[ICy. N Al =Ne' [ no(y) Py (B € A, 1Byl < R+ Vs € [n.1).
By dominated convergence and uniformly in N,

. 1
%{%E[ﬁwn,t n Aq = [ 0@ (B € A, 1B < R Vs € 0,1]

=¢ /Rd po(dy)Py(B; € A, || Bs|| < Rs Vs € (0, 1))

= fA u(x,t)dx,

where the second equality holds by (50) and the last equality follows from (13).

It remains to prove (50); we shall use the following claim. Suppose (&;)s¢0,7] 1S a contin-
uous path in RY with &y = y and & = 0, and suppose e € R¢ is a unit vector. We claim that
there are at most two values of r € R such that

)-o

which we write to mean that the min exists in (0, ¢) and is equal to 0; in other words, Ry >
& + fre| Vs € (0,7) and 3s € (0, ¢) such that Ry = ||&; + 3re||. Indeed, we have that

51 i R. —
6D min (R

S
5s+;re

2 , S 5
= I~ G0l + (5 e+ 2r)

S
Ss + ;i’e

and so if (51) holds, then the inequality Ry > [|&; + ;re|| implies that, for each s € (0, 1),

(52) —2((123— l& — & - e)e|?) P +&-e) <r < (R —||& — & - e)e|P)/* =& -e).

|~

Moreover, for any value of s € (0, #) such that Ry = || + 7re|, one of the two inequalities
in (52) must be an equality. Therefore,

rel int (LR -6 - &) -5 9)).

s€(0,0)\ s

sup (—5((R2 |6~ & -0l ) 45 ¢) ) |

se€(0,1)

which establishes the claim that (51) holds for at most two values of r.
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Now, for y € R4 under the probability measure PPy, let (&5)s¢[0,,) denote a d-dimensional
Brownian bridge with diffusivity +/2 from y to 0 in time #. Then,

Py({IIBsl <R, Vs e (0,11} N{3s € (0,1):||Bll = Ry})
=B, [P, ({IIBl < Ry Vs € (0, 1]} N {35 € (0.1) : [|B || = Ry}|By)]

= dz® —2)P i R — =0
[, 4= = B, min (& )=0)

=E, [ /R L dz®i(y — Z)ﬂ{minsqo,,)(&—||ss+';z||>=0}}

N
‘i:s + ;Z

by Fubini’s theorem and where ®,(x) = (4nt)_d/ze_”x”2/(4’) is the heat kernel. By (51) we
have that ming¢ (o, (Ry — [|&5 + %zH) # 0 for almost every z, and (50) follows. [

LEMMA 5.2. For N large enough (N > 48 is sufficient), for any A C R? measurable,
andany 0 <n <t,

1 1 4 ~
E[(ﬁwn,, NA|l— E[ﬁwn,, N A|D ] <13¢Y N2

PROOF. Recall that we let XT(0) = (X;"(0)Y_,, where (X;"(0))Y_, are i.i.d. with dis-
tribution given by s10. As in the proof of Lemma 4.2, denote by X+ the family of particles
descended from the ith particle in the initial configuration X+ (0). The X form a family
of independent BBMs, and for each i the process X1 is started from a single particle at
location X l+ (0). Fix 0 < n < t, write n; = |X1(¢)| for the number of particles descended
from X l+ (0) at time ¢, and introduce n; 4 as the number of particles in C, ; N A, which are

descendants of particle X l+ 0),
nia=|CprNANXT(0)).
Then, |C); N Al =N n; 4 and (n; 4)_, areiid., so
E[(ICy.c N Al —E[IC, N A[])]

E[(i( - E[ni,mﬂ

i=1

= iE[(ni,A —Elnial)*]+6 % Var(n; 4) Var(n; ).
i=1 llj<=jl
By the same argument as in (28), (29), and (30) in the proof of Lemma 4.2,
E[(ni.a — Eln; al)*] <2E[n}] <48¢* and  Var(n; 4) < E[n?] < 2¢%.
Therefore,
E[(ICyi N Al —E[|Cys N A[])*] < N - 48¢* +3N(N — 1)(2¢¥)?
< 13¢* N2,

where the second inequality holds for any N >48. [
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We can now conclude; for fixed r > 0, A € R measurable, and § > 0, let > 0 be suffi-
ciently small that, by Lemma 5.1,

‘ LE[ic,. Al [ we.na 2 WNeN

N i Au x,f)dx| < 5 .

Then, for N > 48,
1 1 1 )
]P’(N|CM NA| —/Au(x, t)dx > 5) < ]P’(N|Cm NA|l— NE“CW N A|] > 5)

<16 3y
54
by Lemma 5.2 and Markov’s inequality. By (49) it follows that, for N sufficiently large,

IP’(M(N)(A, D) —f u(x, t)dx > 5) <N 41657 13¢YNT?
A

1
E N—l—jcz

for N large enough, which establishes (47) with ¢5 = %cz, and completes the proof of Theo-
rem 1.1.

6. Proof of Proposition 1.7 and of Theorems 1.2, 1.3, and 1.4. We begin by proving
Proposition 1.7. We shall first describe heuristically how the proof works. Recall from (3)
that, for K > 0 and ¢ € (0, 1],

F(K.c)= {Xe (RN %Hi X < K| Zc}

is the set of “good” initial particle configurations that have at least a fraction ¢ of particles
within distance K of the origin (the dependence on N is implicit). Recall from (25) that
FM (., 1) is the empirical cumulative distribution of the particles at time 7. Let us explain
how we go about proving that, for € > 0, there exist N = N (K, ¢), Te = T< (K, ¢) such that

]P’X<sup|F(N)(r, 1=V > e) <e€
r=0

holds for any N > N¢,t > T and X € I'(K,, ¢).

Let Ko = 3, and take cg, as in Proposition 2.5, and ¢, = t.(co, Ko), as in Proposition 2.4.
We are going to show that there exists a time ¢, =, (c, K) independent of N such that, for ¢
large enough,

Xel(K,e) = XW(,) el (Ko, co) withhigh probability
— XM —1) el (Ko, co) withhigh probability
—  F™(. 1) iscloseto V with high probability.

For the first step we use Proposition 2.5 to choose #, such that v (r,1,) > 2colr>ky) Y1 =
0, where v™) denotes the solution of the obstacle problem (7) with initial condition vy (r) =
FM(r,0) = N~11X N B(r)|. Then, Proposition 1.5 tells us that X ™) (¢,) € T'(Ky, co) with
high probability for N large enough.

The second step will be provided by Proposition 6.2 below, with Proposition 6.1 as an
intermediate result.

For the third step, let v denote the solution of the obstacle problem (7) with initial condition
9o(r) = F™(r, t —t.). From the second step, X Mt —t.) € T (Ko, co) with high probability
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which is equivalent to 1o(K¢) > c¢g. Proposition 2.4 then gives us that v(-, #¢) is close to V (-).
Furthermore, Proposition 1.5, together with the Markov property at time ¢ — ¢, implies that
FWM (., 1) is close to 3(-, z.), which, in turn, is close to V ().

We start by proving the two propositions needed for the second step, and then we prove
Proposition 1.7. The first proposition implies that if X N)(0) € T'(m, ¢) for some m and c,
then, for j large and ¢ not too large, with high probability XV (t) € T'(m + j, ¢).

PROPOSITION 6.1. For any c € (0,1), any N e N, any t >0, and any m > 0, if X €
I'(m,c), then

Px(XM (@) ¢ T(m 4+ j,¢)) < 4dNe' e=i’1(36dD) forall j > 0.

PROOF. The argument, in particular the final Gaussian tail estimate, is very similar to the
one used in the proof of Lemma 4.12. Recall the coupling in Section 3 between the N-BBM
X and the BBM X T such that under the coupling, XM (0) = X+ (0) and for ¢ > 0, almost
surely

DEGINIES? SIOT VI

where N\ = {u e N7F 1 | XF ()| < MDYV Vs € [0, 1]).

(53)

Fix t > 0 and j > 0, and define the event

E= { max sup | X5 (s) — X (0| < l]}
ueM+s€[0,t] ! ! 3

We claim that, on the event E, if X)(0) € I'(m, ¢) for some ¢ € (0, 1) and m > 0, then
XMN(t) € T'(m + j,c). The proof of the claim is split into two cases, depending on the
stopping time

1
t=inf{sZO:M§N)§m+§j}.

We first consider the case T > ¢, meaning that MS(N) >m + % Jj Vs <t. By (53) and on the
event E N {t > t}, we have

XM o {X;(t):u eN;T,

+ l.
X, (s)||<m+§] Vs € [0, 1]

DX () :ueNT,

X )] <m},

where we used || X7 (s) — X;F (0) || < %j in the last line. Now, using that || X7 () — X7 (0)|| < j
on the event E, it follows that if X)(0) € I'(m, ¢), then XN (t) e T(m + j, ¢).
We now consider the second case, T < t. Take u € /\/,(N). On the event E N {t < t},

||Xl‘4|r o < M§N) <m-+ %j, and by the triangle inequality,

[Xs O] < X5 @ = X7 O + X (@) = X, O + [ X7 @] <m+j

by the definition of the event E. By (53) this shows that || X\ (1) < m+ j Vk € {1, ..., N},
and, in particular, X‘™) () € I'(m + j, ¢). This completes the proof of the claim.
Hence, for X € I'(m, ¢),

1
Pa(XM (1) ¢ Tm + j, ) < Pa(EY) < Ne! IP’O( sup [1By]l > 31)
s€[0,1]
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by the many-to-one lemma. Letting & , ..., &4 s denote the coordinates of By, we have
1 1
Px(XNM () ¢ T(m + j,c)) < Ne' IPO( sup &2 > —j2or...or sup £5, > —j2>
sefo, ~ 9d sefo,] 0 9d

1
§Ne’dP0< sup |15 = —j>
s€[0,1] YT 3dd

1
<Neé -4d]P’o<r§1 > — )
,t 3\/5_1]
< 4dNete—j2/(36dt),
where the third inequality follows by the reflection principle and the fourth by a Gaussian tail

estimate. [J

We now show that, for cg € (0, 1) and K¢ > O appropriately chosen, if N and ¢ are suffi-
ciently large, if X" (0) € I'(Ko, cp), then XM (1) € I'(K, ¢o) with high probability.

PROPOSITION 6.2. Take tog > 1 and co > 0, as in Proposition 2.5, and fix Ko = 3. For
€ > 0, there exist N, < 0o and t, < 0o such that, for N > N/, the following holds. Fort > t[,

(54) inf  Py(X™M (1) e I'(Ko, o)) =1 —e.
Xel'(Ko,co)

Furthermore, for t| € [tg, 2tg] and any K > 0,

(55) sup  Ex[inf{n > 1: XN (nt)) e I' (Ko, cp)}] < o0.
Xel'(K,co)

Note that for any initial condition X € (]Rd)N , we have that X € I'(K, cg) where K =
max; <y || A; || + 1, and so it follows immediately from (55) that for N sufficiently large, for
X e RHN, and 11 € [to, 210],

(56) Py (inf{n > 1: XM (n1;) € ['(Ko, co)} < 00) = 1.

PROOF. The proof uses Propositions 1.5, 6.1, and 2.5 to establish a coupling with a
1

Markov chain. Take é € (0, 1/16) sufficiently small that =5 > 1 — %e. Suppose N/ is
sufficiently large that, for N > N/ we have
1 (log N)?/3

57) 4dNeP0e—og Y3/ (Wdddi) _ _ s gpq O80T log?2.
2 144d1tg

Also, recalling the definition of ¢; in Proposition 1.5, suppose that N/ is sufficiently large
that, for N > N/, Proposition 1.5 holds,

(58) N1 <¢p and PONTIT < g2~ (oe Nt
Take N > N/ and 1; € [19, 2t]. We first show that
Xel(m,co)) = Px(XNM@)glm+j—1,c0)) <827/
Vj,m e Ny with m > Kj.

(39

Take m € N with m > Ky, and suppose X € I'(m, cg). We first assume that j € N with j >
(log N )2/3 4 1. Then, by Proposition 6.1 the fact that ¢ € [tg, 2¢9] and then by (57) we have

Pa (XM () ¢ T(m+j — 1,c0)) < 4d N 210~ (=1?/(T2d10) 133—<j—1)2/<144dto> <§2
b f— f— 2 f— .
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We now consider the case j < (log N)?/3 + 1. By Proposition 2.5 for v the solution of (7)
with vo(r) = N~'|X N B(r)|, we have that v™™) (m — 1, 1) > 2¢(. Therefore, by Proposi-
tion 1.5, since by (58), e*' N =1 < ¢y,

Px(XM (1) ¢ Tm — 1, ¢0)) <Pa(|[FN (m —1,0) = o™ m = 1,1)] = co)
< etl N—l—cl )
In particular, this and the condition (58) imply that, for j € Ng with j < (log N)?/3 +1,
Px (XM () ¢ T+ j —1,c0)) <Px(XM (1) ¢ Tm — 1,c0)) <" N7 <5277,

and (59) is proved.
Let us define the sequence of random variables (6,)52, by

0, =min{i € No: XM (nt;) e T (Ko +1i, co)} =min{i € Ng: FN) (Ko +1i,nt1) > co}.

Although 6, itself is not a Markovian process, (59) and the Markov property applied to X
implies that, for all X' € (]Rd)N and n, i, j € Ny,

(60) Op<i =  Px(Opp1 =i+ j|Fu) <8277,

Define a Markov chain (Yn)flo:O on Ny as follows. For n € Ng and i, j € Ny, let
P(Ynt1=JjlYn =10) = pij.

where

1-8 ifj=0, 1-25 ifj=—1,

P = . and, fori > 1, i = .
POT= 507 i j>1, =0 PUHT 500 ifj>o.

Suppose for K > 0 that X € I'(K, cg). Then, by (60), conditional on X (N (0) = X and Yy =
max(0, [K — K1), we can couple (X(N)(ntl))flozo and (Y,);2 in such a way that, almost
surely, 6,, < Y}, holds for each n € Ny which means that

XM (nt)) e T(Ko + Yy, co).

For j € Ny, introduce m ; > 1 as the expected number of steps needed for Y}, to reach zero
starting from Yy = j,

mj :=E[inf{n > 1:Y, = 0}|Yo = j].
Then, for n € Ng and X € I'(K, ¢p), the coupling implies
©1)  Px(XNM(@mn) ¢ T(Ko, co)) =Px (6, > 0) <P(Y, # 0¥ =K — Kol v 0)
and
(62) Ex[inf{n > 1: XN (n11) € T (Ko, co)}] < mrx—xy]vo-

Note also that

o0
(63) mo=1-8+) 627/mj.
j=1
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We now bound m; for j € N. Let (A;)72, be i.i.d. with A; ~ Bernoulli(25), and let (G;)72,
be i.i.d. geometric random variables with P(G| = k) = 2=%=1 for k € Ny. Then, for jeN,

n
mj :E[inf{n >1:j+) (AiGi—(1—A))) <0
i=1

nZl:ZA,-(G,-—i—l)fn—jH

i=1

(64) —F [inf[

<1+ P ZA,-(G,-+1>>k—j>,

k=1

00 ( k
since for a random variable Z taking values in Ny, we have that E[Z] = Y22, P(Z > k), and

i=1

i=1

since for k > 1,
n k
n21:ZA,~(G,-+1)§n—j} >k> 5P(ZA,~(G,~+1)>k—j).

i=1

]P(inf{

For k € N and A > 0, by Markov’s inequality,
k

IP’(Z Ail(Gi+ 1) >k — j) < e M=) [ Tict Ai(Git D)

i=1
= ¢ Mk=D) E[rA1GIFD K,
For 1 € (0, log?2),
i +1-26.

E[e)»Al(G1+l)] =25
1-— €

Hence, letting A =1og(3/2),
E[e08B/DA1GIHD] Z 1 445 <
[e |=1+48 < 2

)6

since we chose § < %. It follows that, for k € N,
k
P Ai(Gi+D)>k—j| <
(Za+n=t-1)<(3

Hence, by (64),

(65)

Therefore, by (63),
<1-3$ 82771 +5( = =1+ 156.
moy < +> ( + (2> ) +

Jj=1
o 18 positive recurrent, and since it is also irreducible and aperiodic, by

It follows that (¥;,)52
convergence to equilibrium for Markov chains we have that, as n — oo,
1

P(Y, =0|Yo=0) — — > .
Y =0Yo=0)= "= 17755
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Since ﬁ >1— %e, there exists n, < oo such that, for n > n.,
P(Y, #0]Y)=0) <,

and so by (61), for X € I'(Ky, cp) and n > n.,

(66) Px(X™(n11) ¢ T (Ko, o)) <e.

Let t; = max(neto, 2to). Then, for ¢ > t/, we have that |7/19] > ne and t/|t/19] € [to, 2t0].
Therefore, (54) follows from (66) with t{ =t¢/[t/fo] and n = [t/1o].
Finally, note that by (62) and (65), for K > 0, if X € I'(K, ¢p); then,
3\ [K—Ko1vO0
Ex[inf{n > 1: XN (n1)) e T(Ko, co)}] < 1 + 5<§)
which establishes (55) and completes the proof. [

PROOF OF PROPOSITION 1.7. Take ty and cg, as in Proposition 2.5, and fix Ko = 3.
Take € > 0, and take Né and té, as in Proposition 6.2. Take . = t.(co, Ko), as defined in
Proposition 2.4. Take ¢ € (0, cg] and K > K, and let

log(co/c) "‘

67) L=rK—Ko1+1+(
log2

Recall the definition of ¢; in Proposition 1.5, and suppose N > N/ is sufficiently large that
Proposition 1.5 holds and that

LN < ¢, eloy—I—ar < ¢, X N1 <e and <N ' <e.

Take X € I'(K, ¢), and let v'N) denote the solution of (7) with initial condition vo(r) =
N~1X N B(r)| which satisfies vy (r) > cl{>k). By Proposition 2.5, recalling the definition
of L in (67), we have the lower bound

(68) v (r, Lto) > 2colp5k,),  ¥r > 0.

(The time Lty is the same as the time ¢, mentioned in the outline at the start of Section 6.)

Now, we compare FWM(., Ltg) with vV (-, Lty), to show that FN) (K, Lty) > co
with high probability. By (68) and by Proposition 1.5, since N is sufficiently large that
Lo N—=¢1 < ¢g and eLO N~17¢1 < ¢, we now have that

Pa(F ™ (Ko, Lio) < co) < P (sup| F™(r, Lig) = v™(r, Ltg)] = co)
(69) r>0
<e€.

Take t >t/ + Lto. Then,
P (F™N (Ko, 1) < co)
70 < Px(F™ (Ko, Ltg) < co) +Pa(F™ (Ko, Lio) = co, F™ (Ko, 1) < co)
7
<€+ EX[P)(W)(L;O)(X(N)U — L1y) ¢ T'(Ko, CO))1{X(N)(Lto)eF(Ko,c0)}]

< 2,

where the second inequality follows by (69) and the last inequality follows by (54) in Propo-
sition 6.2.



BROWNIAN BEES IN THE INFINITE SWARM LIMIT 2167

Now, note that for any configuration ?ie ['(Ko, cp), letting v denote the solution
of (7) with initial condition vo(r) = N1 X N B(r)|, we have by Proposition 2.4 that
sup,>q [0(r, te) — V(r)| < €. Hence,

1) Py (sug|F<N>(r, te) = V()| = 2€) < P2<sug|F(N)(r, 1) = r 1) =€) <e
r> r=

by Proposition 1.5, since N is large enough that e>* N~ < ¢ and e N~ =1 <.
Hence, fort >t/ + Lty +t. and X € '(K, ¢),

Px(sup|F(N)(r, 1 —V(r)| > 26)
r>0

<P FN@ 60— V)| >2e, FN (Ko, t —t.) >
) < X(fgg| (r,0) = V()| = 26, F¥ (Ko, 1 = 10) = ¢9)

+Px(FNM (Ko, 1 — 1) < co)
<€+ 2,
using (70) for the second term and (71) with the Markov property and X :=xM (t —t¢) for
the first term. (Indeed, F™V) (K¢, t —tc) > co is equivalent to XMt —1.) e T'(Ky, co).) This
concludes the proof of (10), the first statement of Proposition 1.7. We now turn to proving
(12), the third statement.

Assume that # >t/ + Ltg + t. + 1 and X € I'(K, ¢), and introduce A = N /3. For any
family (Ey)72, of events, using (70), we have that

]P’X( sup Mz(ivs) > Roo—i-Ze)
s€[0,1]

L1/2]

(N)
(73) <2e+ Z IP’X(Ek, sup Mt+(kfl))\+s > Roo + 26)
k=0 sE[L,2M]

[1/2]
+ Y Px(Ef, F™V (Ko, t —te — 1) = co).
k=0

We use this expression with the events
Ex={F™ (R +e,t+(k—DAr)>1— N2},
For X € ' (Ko, co), let v denote the solution of (7) with initial condition
vw(r) =N X NBw),

and let R, =inf{r > 0: 0(r,t) = 1} for ¢t > 0. Then, by Proposition 2.4, for ¢t > ¢, |I§, —
Rso| < € and so (R + €, 1) = 1. Hence, by Proposition 1.5, for k € {0, ..., [1/A]},

Po(F™M (Roo + €, 1c + ki) <1 — 2UeFDNTer) < pletl y=l=er,

For N sufficiently large that ¢2(etD) N=¢1 < N=€1/2 by the Markov property at time  —f — A
this implies that
Px(ES, FN (Ko, t —te — 1) > cp) < eTINTT7er,
By Lemma 4.12 with b = ¢; /3, for N sufficiently large for ¢’ > 0,
L4

I
IPX(F(N)(ROO +et)=1—2h sup MY\ > Roo+e+ k1/3> <e
sE[X,2A]
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For N sufficiently large that }1)» > N~1/2and A1/3 = N~/ < ¢, choosing t’ =t + (k — )2,
this implies that

N) -4 _pNe1/12
Px(Ekx, sup M _ > Ry +2¢) <e =e .
< selh2A] t+(k—1D)r+s o0 )

By (73) it follows that, for N sufficiently large,

ng( s;gpl]M,(ivs) > R + 26) <2e 4 (N3 4 1)(6_1\”1/12 +eleFINTI=e) < 3¢
s€lV,

which concludes the proof of (12) in Proposition 1.7. It remains to show (11).
Recall from (9) that V is strictly increasing and continuous on [0, R ], with V(0) =0

and V(Roo) = 1. If sup, [FNV(r, 1) — V()| < 2¢, then M > V='(1 — 2¢), and so, for
t>t.+Lty+tand X € (K, ¢), by (72),

(74) Pr(M™N) < V=11 = 2€)) < 3e.

The statement (11) now follows from (74) and (12) which completes the proof. [J

For € > 0, let
Ce={X (") :u eNT

The following lemma is the main remaining step in the proof of Theorem 1.3.

XF(s)| < Roo +€ Vs € [e, e V/2]}.

LEMMA 6.3. Take & > 0. Then, there exists €9 = €9(8) > 0 such that, for all € € (0, €g],
there exists No = No(e€, §) such that, for all N > Ny, the following holds: if the initial particle
configuration X € (RHN satisfies

sup| N X N B(r)|-V(r)| <e,

r>0

then, for any A € R? measurable,

1 1
IP’X(NWE NA|l— /:4 Ux)dx > 8) < 55.
PROOF. First, we estimate the mean of % |Ce N A|. By the many-to-one lemma,

1
Ex[ﬁce mAq

1 - N
= Nee 1/2 Z]P)Xk(Be—lﬂ €A,|Bs|| <Rsx+€Vse [e, 6_1/2])
(75) k=1
LS 1/2
= ¢ 2 Ex[Pa (B €A IByll < Roo +e Vs €[0,671/7 —e])]

k=1
=erl/2/ w(y,é_l/z —e) dy,
A
where w(y, s) is the unique solution to

dsw = Aw s >0,y < Reo +¢,
(76) w(y,s) =0 s =0, Iyl = Roo + €,
w(y,0) = (Pe * ux)(y) Iyl < Roo +¢,
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continuous in (y, s) for s > 0, where ®.(y) is the heat kernel and px(dy) is the empirical
measure on R¢ determined by the points {Xk};i\’:l ,

Iyl
4e

1 Y _d/2
paldy) =13 8y, Pe(y) =(4me) I2¢
k=1

The function w(y, s) can be expanded as a series in terms of the Dirichlet eigenfunctions
of the Laplacian on B(R + €),

o
(77 wx,s) =Y are HUEX), 520, [x]l < Roo + e,
k=1

where the partial sums converge weakly in L%([0, T, Hol) for any 7 > 0 and s — w(., s)

is continuous from [0, 00) to L2(B(Rs + €)); see Theorem 3 in Section 7.1 of [16] and the
remark on p. 374, therein. Here, {(Uf (x), A{)}k>1 denote the Dirichlet eigenfunctions and
eigenvalues for —A on the ball {||x| < Roo + €},

2— AU; =12 Ug, for |x|| < Reo + ¢,
Ui (x)=0, for|lx| > R +e€.

By scaling we have

R 2 R /2 R
x,ﬁ:( ad )Ag and U,f(x)=< ad ) U,?(x e >
Ry + € Ry + € Ry + €

The eigenvalues satisfy )‘(1) =1< kg < ... and the eigenfunctions {U }72; form an orthonor-
mal basis in L2(B(Rao + €)). Furthermore, U{)(x) = ||U||221U(x); see (2).
Define w(y,s) =Y 32, age ™ H Ug (y). Thus,

(78) w(y, s) =a1e MU (y) + 0(y, 5),

and w(-, s) is orthogonal to U in L? for all s > 0. Observe that

2
Jw(, 032 5/11@(/]1@ P (y —X)/wc(dX)) dy
2
= [, [, @t =0 ux@ndy

_ _ 2 _ —d/2
_ Rd(fRdcbe(y x) dy)ux(dX)—(Sné) ,

where the second line follows by Jensen’s inequality. Therefore, for s > 0,
79 ¢ )72 < e P, 0)]72 < e w(-, 0)] 72 < e P Bre) T2,

Now, we estimate a;. Since ||Uj |2 = ||UP||L2 =1 and since Uy is spherically symmetric,
writing e for a unit vector, we have

a) = Ut (x)w(x, 0)dx
B(Roo+€)

Roo+e .
(80) _ fo US (re) ( /8 o (e Mx)(y)dS(y)) dr

Roo+e
= _/ 9, U5 (re) (/ (Pe* px)(y) dy) dr
0 B(r)
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by integration by parts. Also, for r > 0,

Roo ¥/ rRuce
81 —9,U¢ =—( i ) Ul-1s U( tad )
(81) r l(re) Reo +e I ||L2 r Reo +¢

In particular, since U (re) is nonincreasing in r for r > 0, —9,Uj (re) > 0.
Now, recall that we assume |[N~'|X N B(r)| — V(r)| < € for all » > 0, and so

(82) su%)mX(B(r)) — V()| <e.
r>
Then, for r > 0,
[ Oe(y —0)pr ) dy < px (B +€'3) < V(r+e?) +e,
B@r) J|x||<r+el/3

where the first inequality follows since [pa ®c(y —x)dy = 1. Furthermore, writing y = x +z,

/ / be(y_x)“X(dx)dny f Ljxtz)<r) Pe (2) dzpx (dx)
B(r) Jx||zr+e!/3 Ixl|=r+e/3 Jrd
= ®.(z)dz dx
[oronn ] @@zt

< D (2)dz
/nz||>e'/3 <@

<2de™¢ 16D,

where we used x (RY) = 1 in the third line and a Gaussian tail bound in the last line. This
implies that

/ (@c#p) () dy < V(r +€'P) et 2de™e /D,
B(r)
Therefore, by (80) and (81),

Root+e€ R d/2+1 3 FR~ e
as- [ () i)
0 Ry + € Ry + €

x (V(r+ 61/3) +e+ Zde_(l/S/(M)) dr

p [Reote 2

Wi [ (o vee +eulL)
x (V(r) + €3 V| +e+ 2de_é_1/3/(4d)) dr
Roo

< —||U||;21/0 3, U(re)V(r)dr + O(e'?).

Note that by integration by parts,
R Roo
—/ 8,U(re)V(r)dr=/ U@re)V'(r)dr = ||U||%2,
0 0

since V(r) = [, B(r) U (y) dy. Hence, for § > 0 and for ¢ sufficiently small, we have that

1
(83) ar < ||U||L2(1 + Za).



BROWNIAN BEES IN THE INFINITE SWARM LIMIT 2171

By (78) we have now shown that for ¢ sufficiently small (depending on &), for s > 0 and
X[ < Roo + €, (using that UV = U /|| U||;2)

1 R 2( R d/2 xR
84 )< (14 -8)e Rt <i> U( °°> D(x,s),
(84) w(x S)_( +4)e Rt e Rt e +w(x,s)

where w satisfies (79). Then,
1 ~
(85) / w(x,s)dx < <1 + -6+ O(e))e—S(Rfo+e)2/ U(x)dx —I—f \uN)(x, s)\ dx.
A 4 A B(Rog+e)
By Jensen’s inequality and then by (79),

f [ (x,5)|dx < |B(Roo +€)|'/?
B(Root€)

| 0C, )] 2 < |B(Roo + €)'/ 242 (87) /4.

Take ¢ € (0, Ag — 1), and suppose € is sufficiently small that 15 = (Rf:ie )2)8 > 14 c. Then,
/m o[BG dx <[B(Roo + o) 2em1HOs 8me) /4,
cot€
By (85) and (75), it follows that, for all N,
1 1 - _ (R0
EX[—|C€ N Aq < (1 -8+ O(e))e€ Y <Roo+e>21/ U (x)dx
N 4 A
(86) + |B(Roo 4 €)|l/ze—c'67]/2+(l+0)€(Sﬂé)—d/4
< (1 + 554 0(61/2)> f U (x)dx + O(e)
— 4 A .

Therefore, for 8 > 0, for € > 0 sufficiently small (depending only on 8), if X € (R?)" satis-
fies (82), then for A C R4 measurable,

1 1
IEX[NWE ﬂA|] < /A U(x)dx + 58.
By the same argument as for Lemma 5.2, for N > 48, for A C R4 measurable and € > 0,
1 1 N 4712 2
(87) EX[<N|CGOA|—EX[N|CGDA|D ]5136 N~

So for 8 > 0, for € > 0 sufficiently small (depending only on 8), and N > 48, if X € (R%)N
satisfies (82), then for A C R? measurable,
1
CcNA =
[ | l” 2 )

1 1
IP’X(NWE NA|- /A U(x)dx > 5) < IP’XON
by (87) and Markov’s inequality. The result follows by taking N sufficiently large that 165~
471232 1
13¢™ "N™“ <56, O

<1654 . 1364 P N2

The following result is an immediate consequence of Lemma 6.3, and the coupling be-
tween the BBM X (¢) and the N-BBM X @) () described in Section 3.

COROLLARY 6.4. Take § > 0. Then, there exists €9 = €9(8) > 0 such that, for all € €
(0, €9l there exists No = No(e, &) such that, for all N > Ny, the following holds: if the initial
particle configuration X € (RN satisfies

sup| N"HX N Br)|-V ()| <e,

r>0
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then, for any A C R measurable,

1
IPX(M§N) <Rs+€Vse [0,6_1/2],,u(N)(A,6_1/2) —/ U(x)dx > 8) < 58.
A

PROOF. Under the coupling between the BBM Xt and the N-BBM X described in
Section 3, we have that, for € > 0, if MS(N) < Ry + € Vs € [0, 6_1/2], then by (24), almost
surely,

(XM 12y kefl,...,N})
g {X;—(E_l/z) u E./\/:’Ll/z,

where C, is defined just before Lemma 6.3. Hence, for any A C R4 measurable, M(N )(A,
e 12y < %lC6 N A|. The result follows by Lemma 6.3. [

X ()| < Roo +€ Vs €[0,e7 2]} CC,

We can now use Proposition 1.7 and Corollary 6.4 to prove Theorem 1.3.

PROOF OF THEOREM 1.3. Take K > 0, ¢ € (0, 1] and 6 > 0. As the second statement of
the theorem was already proved in Proposition 1.7, it remains to prove that for N and ¢ large
enough, for ¥ e I'(K,c) and A C R? measurable,

PX(’M(N)(AJ) —/AU(x)dx

Take € € (0, €9(8)] so that Corollary 6.4 holds and sufficiently small that [e Ve +e < %8.
Take Ne = N¢(K, ¢), Te = T: (K, c), as defined in Proposition 1.7, and take No = Ny(e, §), as
defined in Corollary 6.4. Let N > max(N¢, No), and take t > T, + e V2 Letto=1—e1/2.

For an initial particle configuration X € I'(K, ¢) and A € R? measurable, we have by a
union bound that

IP’X<;L(N)(A,t) —/AU(x)dx zs)

28><8.

<Py (M‘sN) < Roo + €¥s € [19, t], sup| FM (r, 1) — V(r)| <,

r>0
M(N)(A,t)—/ U(x)dxzé)
A

-HP’X( sup MM > Rog +e) +IP’X(sup|F(N)(r, 1) — V()| > e)

sE€[ty,t] r>0
1
< 584— [t —tole + €,

by (12) and (10) in Proposition 1.7 for the last two terms (since N > N, and tp =t — e 12>
T.) and by Corollary 6.4 and the Markov property at time fg for the first term. Therefore,
since [t —fgle + € = (e_l/ 2]6 +e< %8, it follows that, for any A C R4 measurable,

IP’X(/,L(M(A,I)—AU(x)dxz(S) <.

Asin (48), since u™ (A, 1) + u™MRI\ A, 1) =1 and [, U(x)dx + fga\ 4 U(x)dx = 1, we
have that

IP’X<M(N)(A, 1) — /A U(x)dx < —5) :PX<M<N>(Rd \A, 1) — /Rd\A U(x)dx > 6) <$

which completes the proof. [J
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It remains to prove Theorems 1.2 and 1.4, which will follow easily from the following
proposition.

PROPOSITION 6.5. Take ty > 1, as in Proposition 6.2. For N sufficiently large for any
11 € (0, 1o], the Markov chain (X (t1n))52 is a positive recurrent strongly aperiodic Harris
chain.

REMARK. This proposition will be used in the proof of Theorem 1.2 in combination with
Theorems 6.1 and 4.1 of [3], which say that a positive recurrent strongly aperiodic Harris
chain admits a unique invariant probability measure and that the distribution of the state of
the Harris chain after n steps converges to that invariant probability measure as n — oo.

PROOE. Forn € Ny, let ¥, = XN (t;n). We use a similar strategy to the proof of Propo-
sition 3.1 in [15]. By [3] and to show that (Yn)fl":0 is a recurrent strongly aperiodic Harris
chain, it suffices to show that there exists a set A € (R?)" such that:

1. Px(tp <00) =1VX € RN, where 1o =inf{n >1:Y, € A).
2. There exist € > 0 and a probability measure ¢ on A such that Py (Y] € C) > €q(C)
forany X € A and C C A.

Furthermore, to prove that the Harris chain is positive recurrent, we also need to show that:
3. supycp Exlral < o0.
We prove the proposition with the set
A = (B(Roo + 1))V,

We start with the third point, showing that sup ., Ex[ta] < 00.
Take Ko =3 and c¢o > 0, as in Proposition 6.2; let A’ =T'(Ko V (Roo + 1), ¢c0) D A.
By (11) in Proposition 1.7, there exist nj, Ni < oo such that, for N > Ny, for X € A/,

1
]P’X(M,gll\;f >R+ 1) < 3
Hence,

1
(88) sup Px (Y, ¢ A) < 7
XeN

Let 7o = inf{n > 1:Y, € A’}. Note that letting 1, = [fo/11]t1, we have that

I

T < L_ﬂ inf{n > 1: XN (nty) e T'(Ko V (Roo + 1), c0)}.

1

Hence, since 1, € [19, 2tp], if N is sufficiently large, then by (56) and (55) in Proposition 6.2,

(89) Pr(ta <oco)=1 VX e(RY)" and sup Ex[ra] < oco.
XeA’

Let 7(0) =0, and for k € N, let
thy=inf{[n>1+tk—1):Y, € A'}.

Then, by (89), (t(k))72, form an increasing sequence of almost surely finite times such that
Y (k) € A’. Notice that (1) = 7,/ and that

tA <1(k*)+ny, where k* =inf{k > 1: Y (k)4n, € A}.
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It is, therefore, sufficient to show that supy.y Ex[t(k*)] < oo to establish that

supyep Ex[ta] < 00.

Write (F,)52, for the natural filtration of the Markov chain (Y,)3° . Notice that, for k >
ni, the event {k* >k —n1} = {Yr(j)4n, € A V1 < j <k —n1} is measurable in F; ) since
7(k —n1) + ny < t(k). Therefore, by the strong Markov property, for k > nj and X € A/,

Px(k* > k) :]:P)X(YT(j)+ﬂ1 ¢AVI<j<k) < Px(k* >k —ny, YT(k)-Hll ¢ A)
= EX []]-{k*>k—n1} ]PY,(k)(Yn] ¢ A)]
1
< pr(k* >k —ny),
where we used (88) in the last step. Then, by an induction argument for k e Nand X € A/,

(90) P (k* > k) <27 K/mJ,

In particular, k* is almost surely finite. For X € A’,

o0

Ex[r(k*)] =Y Ex[t (k) Ljr—)]

k
1) Z [(t(€) — T(£ — 1)L jgr=p)]

4 "P”18

Ex[(t(®) = 1(€ — 1))Lg==gy].

=1

Then, for X € A’ and ¢ > 1, by (90) and the strong Markov property,
Ex[(z(€) —t(€ — 1))1prsoy] <Ex[(t(0) — t(€ — D) Ljprst—1-n}]
=Ex[Ex[t(0) — (€ — D|Fre—1)|Ligr>t—1-n1}]

< sup Ey[t(1)] Px(k* > € —1—ny)
YeA
< 9~ L=1=n1)/n1] sup Ey[t(l)].
Ve’
By substituting into (91), we get that sup . Ex [t (k*)] < oo, since we have that 7(1) = 75/
and, from (89), that supy,c x» Ey[ta/] < 00. This implies that supyc 5 Ex[ta] < 00 and, in
particular, supycp Ex[ta] < 00.
Proving the first of the three points at the beginning of the proof is now straightforward:

for X € (R?)N, we have 7, < 00 a.s. from (89) and, by the strong Markov property at time
75 and since Py (tp < 00) =1 for X' € A/,

Px(‘rA < OO) =1.

Finally, it remains to prove the second of the three points at the beginning of the proof.
Note that, conditional on the event that none of the particles in the N-BBM branch in the time
interval [0, #1], the N particles move according to independent Brownian motions. Therefore,
for X =(&1,...,Xy) € Aand C C A,

N
1 Ly 2
—-nN Nl —yi l
Erri €0z [T (grame 07 )an o
1=

> e*l‘lN(47Ttl)*Nd/267N(Roo+1)2/l‘1 Leb(C),
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where Leb(+) is the Lebesgue measure on (RYYN Indeed, for yeA, |X—yi 2 <4(Roo+1)2
Vie{l,...,N}. Let

€ = e~V (4 1)) N2~ N Rt D1 [ oy A,

and define a probability measure ¢ on A by letting ¢(C) = Leb(C)/Leb(A) for C C A.
Then, for ¥ € A and C C A, Py (Y € C) > €q(C). The result follows. [J

PROOF OF THEOREM 1.2. By Proposition 6.5, and by Theorems 6.1 and 4.1 in [3] for
N sufficiently large, for #; € (0, o], (XM (nt))°°, has a unique invariant measure nt(lN),
which is a probability measure on (RN | and for any X € (RHN | the law of XN (nr))

(N) -

under Py converges as n — 00 to T, in total variation norm. In particular, if C C (Rd W

18 measurable,

(92) P (XM (tin) € C) - 7V (C) asn— oc.
Fix N large enough for Proposition 6.5 to hold. We begin by showing that
93) M =7t = 7™ vy € (0, 1]

Take X € (RY)N, and C < (RY)N a closed set. Take § > 0. For € > 0, let
- {ye RHN - inf |Y - Z| <e].
ZeC

Here | — Z|| denotes the Euclidean norm of ) — Z regarded as a vector in R4N. Then,

n,o )(Ce) — JT,E)N) (C), as € — 0. Take € > 0 sufficiently small that

aM(ce) < x! )(C)+ 30

It is easy to see that if #; > 0 is small enough, then

(94) Po (XM (s) ¢ C€) < %5 VX e C,s€l0,1].
Indeed, the event that no particle branches on the time interval [0, ¢1] has probability e~ Nt
which can be arbitrarily close to 1 if #; is small enough. Conditioned on this event, the ran-
dom process Y (s) = X N () — XN)(0) is a Brownian motion in RN . In particular, Y (s)
is almost surely continuous on [0, #1], with Yy = 0, and the law of Y (s) does not depend on
XM (0) or #1. Then, Pz (XM (s) € C¢) > e M1 P(|Y(5)]| < € Vs € [0,#1]) which can be
made arbitrarily close to 1 by taking #; sufficiently small.

When choosing #; small enough for (94), we furthermore require that #p/#; € N. It is then

clear from (92) that JT(N) = rrt(ON) Take no € N sufficiently large that, for n > ny,

1 2
Pr(X M) € €9) =m” (€) + 38 <70 + 6.

For t > t1ng, we have

Px(XM (1) e C) <Px (XM ([t/11101) € C) + Px (XM (1) e €, XN ([t/11111) ¢ C°)
e (G 25 +Px (XM e, XM ([t/1]1) ¢ C°)
<7r,(N)(C)+8

by the Markov property at time ¢ and (94). Since § > 0 was arbitrary, it follows that
(95) limsupPx (XN (1) € C) <7V (0).

t—00
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Comparing (95) and (92), we see that nth)(C) < n(N)(C) for all closed sets C and all ¢ €
) _ JTtO M) for all t1 € (0, tp]. This proves (93),

so we now write 7™ for the unique 1nvarlant measure of the process (X M), t>0).
By the Markov property we have that, for any Xy € (RY)Y, D € (RY)N and 7 > 5 > 0,

(0, 10]. Hence, by the Portmanteau theorem, m;,

Px, (XM (1) € D) = /(Rd)N P, (XM (s) € dX)Px (XN (r —5) € D)

and n<N>(D):/ M @x)Px (XNt —5) € D).
®RHN

By taking the difference between these two equations,

P, (XM (1) € D) — 7™M (D)|

(96) < /(Rd)N P, (XM (5) € dX) — M) (dX) | P2 (XM (¢ —5) € D)

<f( . P (XM (s) € dx) -

where the right-hand side is the total variation norm of the difference between 7 and the
law of X™)(s) under Px,.

Now, choose s = |/1o]t, and let t — o0o. Since the law of X (n1) under Py, converges
to 7™ as n — oo in total variation norm, the right-hand side of (96) converges to zero as
t — 00, and the result follows. [J

PROOF OF THEOREM 1.4. Take ¢ > 0 and A € R measurable. Let

{XG Rd ’ ZE{XGA} AU(x)dx

Take the initial condition X = (0, ..., 0) € (RH)V. By Theorem 1.3 for any é € (0, €), there
exist Ng, Ts < oo such that, for N > Ns and ¢ > Tg,

Pr (XM (1) € D) <Px (XM (1) € Ds) < 28.

zeor‘maxHXiH —Roo‘ ZE}.
i<N

But by Theorem 1.2,
Pxr(X™M (1) e D) - 7™M (D) ast — oo.

It follows that JT(N)(DG) <26 for N > Ns, and so limy _, o n(N)(De) = 0 which completes
the proof. [
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