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Motivated by an evolutionary biology question, we study the following problem: we consider the hypercube
{0,1}L where each node carries an independent random variable uniformly distributed on [0,1], except
(1,1, . . . ,1) which carries the value 1 and (0,0, . . . ,0) which carries the value x ∈ [0,1]. We study the
number � of paths from vertex (0,0, . . . ,0) to the opposite vertex (1,1, . . . ,1) along which the values
on the nodes form an increasing sequence. We show that if the value on (0,0, . . . ,0) is set to x = X/L

then �/L converges in law as L → ∞ to e−X times the product of two standard independent exponential
variables.

As a first step in the analysis, we study the same question when the graph is that of a tree where the root
has arity L, each node at level 1 has arity L − 1, . . . , and the nodes at level L − 1 have only one offspring
which are the leaves of the tree (all the leaves are assigned the value 1, the root the value x ∈ [0,1]).
Keywords: branching processes; evolutionary biology; percolation; trees

1. Introduction and motivation

1.1. The model

We consider the following problem: for L ≥ 1, let (xσ , σ ∈ {0,1}L) be a sequence of i.i.d. random
variables with uniform distribution on [0,1] except for σ0 = (0,0, . . . ,0) for which we fix xσ0 =
x with x given and σL = (1,1, . . . ,1) for which we fix xσL

= 1. Viewing {0,1}L as the L-
dimensional hypercube we ask how many oriented paths there are from σ0 to σL:

σ0 → σ1 → σ2 → ·· · → σL,

where each σi+1 is obtained from σi by changing a single 0 into a 1 in the sequence σi , such that
values xσ form an increasing sequence:

xσ0 < xσ1 < · · · < xσL
.

Such paths are said to be open or accessible. A variant of this model which we also consider is
when the value xσ0 at the starting point is picked randomly as the other xσ .
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1.2. Motivation

This question is motivated by some classical and recent works in evolutionary biology. Consider
the following very simplified model for the evolution of an organism. The genetic information
of the organism is encoded into its genome which, for our purposes is a chain of L0 sites. With
time, the organism accumulates mutations which are only single site substitutions.

If we suppose that there are only two possible alleles on each site, it makes sense when looking
at the genome to only record whether the allele carried at a given site is the original one (the “wild
type”) or the mutant. We will represent a genetic type by a sequence of 0’s and 1’s of length L0

where we put a 0 at position i if this site carries the original code or a 1 if it carries the mutant.
Hence, a genetic type is a point σ ∈ {0,1}L0 , the L0-dimensional hypercube. This is a classical
way of encoding the possible evolutionary states of a population. For instance, in their seminal
article [9] Kauffman and Levin write:

Consider as a concrete example, a space of N peptides constrained to use two amino acids, say leucine and
alanine. Then 1 and 0 can represent the two amino acids, and each peptide is a binary string, length N of 1 and 0
values. Such strings are easily represented as vertices of an N -dimensional Boolean hypercube.

As an organism evolves by successive mutations, its genetic type travels along the edges of the
hypercube. Each genetic type σ ∈ {0,1}L0 is characterized by a certain fitness value xσ .

Assume that the population is in a regime with a low mutation rate and strong selection; this
means that when a new genetic type (mutant) appears in a resident population, it must either
fixate (i.e., it invades the whole population and becomes the resident type) if it has better fitness
or become extinct (i.e., no one in the population carries this type after some time) if its fitness is
lower. Therefore, in that low mutation and strong selection regime, the only possible evolutionary
paths are such that the fitness is always increasing. We say that such paths are open. In biology,
paths with increasing fitness values are also referred to as selectively accessible (see [6,16,17]).
The idea that the population moves as a whole along the vertices of the hypercube is also classical
and can be found in [9] or in [7]:

One can think of the adaptive process as a continuous time, discrete state Markov process, in which the entire
population is resident at one state and then jumps with fixed probabilities to each of its 1-step mutant fitter
variants.

Somewhere in the L0-dimensional hypercube, there is a type with the highest fitness. We call L

the distance between that type and the original one; that is, L is the number of mutated alleles in
the fittest type. A natural question is whether there is an open path from the original type to the
fittest. Such a path has at least L steps but may contain many more. Because of the low mutation
rate, evolution takes time, and we interest ourselves here only in the shortest open paths leading
to the fittest type, that is in the paths with exactly L steps, for which mutation never goes back:
a site can only change from the original type to the mutant one.

In that setting, it is thus sufficient to consider the L-dimensional hypercube which contains (as
opposing nodes) the original type, noted σ0 = (0,0, . . . ,0) and the fittest type σL = (1,1, . . . ,1).
We consider paths through that hypercube along the edges which always move further away from
the origin (i.e., at each step a 0 is changed into a 1 in the sequence) and, out of the L! possible
paths, we wish to count the number � of open paths, that is the number of paths such that the
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fitness values form an increasing sequence which represent a possible evolutionary history of the
organism towards its optimum fitness.

To count the number of open paths, we need to have a model for the fitness values xσ of all
the nodes. There are many choices as to how to do this. One could, for instance, choose xσ to be
the number of ones in σ . In that case, all direct paths from σ0 to σL are accessible. However this
corresponds to a very smooth, linear fitness landscape which does not match observations.

Instead, our choice is to pick the fitness values as independent random variables with a com-
mon distribution. As we are only interested in whether a sequence is increasing or not, the results
will not depend on the specific distribution (as long as it is atomless). We therefore choose to
give a fitness xσL

= 1 to the fittest node and to assign uniform random numbers between 0 and
1 to each other node. This is the so-called “House of Cards” model, which was introduced by
Kingman [10], which is also [2] the NK model studied by [9] in the limit K = N −1. The variant
we consider where xσ0 is not randomly picked but fixed to a given value x has also been con-
sidered recently [4,11]. In a follow-up paper [3], we explore the situation in which we authorize
arbitrary paths on the hypercube, and not only the shortest ones.

1.3. A toy model

The correlation structure of the hypercube raises significant technical challenges. As a first step,
we study the following simplified problem: instead of working on the L-dimensional hypercube
we chose to work on a deterministic rooted tree as in Figure 1 with arity decreasing from L to 1:
the root is connected to L first level nodes, each first level node is connected to L − 1 second
level nodes, etc. There are L levels in the tree and L! directed paths. The number of possible steps
at level k is then L − k, as on the hypercube. Each of the L! leaves of the tree (at level L) are
assigned the value 1. All the other nodes are assigned independent random numbers uniformly
drawn between 0 and 1, except perhaps the root to which we may choose to give a fixed value x.
We are interested in the number � of directed paths on the tree going from the root to one of the
leaves where the numbers assigned to the visited nodes form an increasing sequence. As before,
such a path is said to be open.

We mention that other models of paths with increasing fitness values on trees have also been
considered in the literature [5,13,15].

Figure 1. A tree for L = 4 and x = 0. The bold lines (also red in the online version) indicate the directed
paths going down from the root (at the top) and which visit an increasing sequence of numbers. There are
� = 2 paths going all the way down to the leaves of the tree.
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2. Main results

We call

� = number of open paths on the tree or the hypercube.

We want to describe the law of �. Whether we work on the tree or on the hypercube will always
be made clear from the context. The starting position for a path on the tree is the root of the tree;
by abuse of language we call “root of the hypercube” the starting position σ0 = (0,0, . . . ,0) of a
path on the hypercube. Throughout the paper, we use the following notations for the probability
of an event and for the expectation and the variance of a number:

P
x(·), E

x(·), Varx(·) when the root has value x,

P
∗(·) =

∫ 1

0
dxPx(·), E

∗(·) =
∫ 1

0
dxEx(·), Var∗(·)

when the root is uniform in [0,1].
Note that the size L of the tree or of the hypercube is implicit in the notation. The notation
aL ∼ bL, L → ∞ (which we write in words as “aL is equivalent to bL when L is large”) means
limL→∞ aL

bL
= 1.

Obtaining the expectation of the number of open paths when the starting value has the fixed
value x is easy: there are L! paths in the tree or the hypercube. Each path has probability (1 −
x)L−1 that the L − 1 intermediate numbers between the root and the leaf are between x and 1.
Furthermore, there is probability 1/(L − 1)! that these intermediate numbers form an increasing
sequence. Hence, the probability that a given path is open is (1 − x)L−1/(L − 1)! and thus

E
x(�) = L(1 − x)L−1 (2.1)

both for the tree and the hypercube.
Thus, if x = 0 there are on average L open paths, and if x > 0 the number of open paths goes

in probability to zero when L becomes large.
The most biologically relevant variant of the model is when x is also randomly picked as the

other nodes. The expectation of � (both on the tree and on the hypercube) is trivially obtained
by integrating (2.1):

E
∗(�) = 1, (2.2)

but the typical number of paths for L large is not of order 1, as can be seen by looking at the
variance of �:

lim
L→∞

Var∗(�)

L
= 1 on the tree. (2.3)

(All the variance computations on the tree are carried out in Section 5.) In fact, this can be
understood by considering starting values x scaling with the size L of the system as x = X/L

with X ≥ 0 fixed:
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Proposition 1. In the case of the tree,

lim
L→∞E

X/L(�/L) = e−X, lim
L→∞ VarX/L(�/L) = e−2X. (2.4)

In the case of the hypercube (Hegarty–Martinsson [8])

lim
L→∞E

X/L(�/L) = e−X, lim
L→∞ VarX/L(�/L) = 3e−2X. (2.5)

(Note that Hegarty–Martinsson consider a different scaling regime, but their proof can be
adapted without any modification to the result above.)

From Proposition 1 for x = X/L and L large, the variance of � scales like the square of the
expectation of �. This means that when the starting value x is O(1/L), the number � of open
paths is O(L), like its expectation. When x is chosen randomly, there is a probability O(1/L)

that x =O(1/L) yielding O(L) open paths. On average we thus expect O(1) open paths, with a
variance O(L), as in (2.3).

This heuristic can be made more precise.

Theorem 1. On the tree, for a starting value x = X/L (with X ≥ 0 fixed), the variable �/L

converges in law when L → ∞ to e−X multiplied by a standard exponential variable.

Theorem 2. On the hypercube, for a starting value x = X/L (with X ≥ 0 fixed), the variable
�/L converges in law when L → ∞ to e−X multiplied by the product of two independent stan-
dard exponential variables.

It will become apparent in the proofs that we get a product of two independent variables on
the hypercube because, locally near both corners (0,0, . . . ,0) and (1,1, . . . ,1), the hypercube
graph looks roughly like the tree.

We conclude with the following remark: when the starting value x is picked randomly, even
if the expectation and the variance of � is dominated by values of x = O(1/L), the probability
that there exists at least one open path is dominated by starting values x = (lnL)/L +O(1/L).
This was made clear on the hypercube in [8] and we here state the tree counterpart.

Theorem 3. On the tree, when the starting value is x = (lnL + X)/L

lim
L→∞E

(lnL+X)/L(�) = e−X, lim
L→∞ Var(lnL+X)/L(�) = e−2X + e−X. (2.6)

When the starting value x is chosen at random uniformly in [0,1], the probability to have no
open path goes to 1 as L → ∞ and

P
∗(� ≥ 1) ∼ lnL

L
as L → ∞. (2.7)

The rest of the paper is organized as follows: we start by proving Theorem 3 in Section 3 as
it is the simplest, and then we prove Theorem 1 in Section 4. The proofs rely on Proposition 1
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which is itself proven in Section 5 for the tree. In Section 6, we introduce the notion of Poisson
cascade, which allows to give a probabilistic interpretation of one of the main objects introduced
in our proofs. Finally, Theorem 2 (on the hypercube) is proven in Section 7.

3. Proof of Theorem 3

In (2.6), the result on the expectation is trivial from (2.1), and the result on the variance is ob-
tained in Section 5. In this section, we prove (2.7).

Let us start with the upper bound. Markov’s inequality with (2.1) leads to

P
x(� ≥ 1) ≤ min

[
1,L(1 − x)L−1]. (3.1)

We split the integral P∗(� ≥ 1) = ∫ 1
0 P

x(� ≥ 1)dx at x0 = 1 − exp[−(lnL)/(L − 1)] since that
is the point such that L(1 − x0)

L−1 = 1. We end up with

P
∗(� ≥ 1) ≤ 1 − exp

[
− lnL

L − 1

]
+ exp

[
− L

L − 1
lnL

]
= lnL

L
+O

(
1

L

)
. (3.2)

We now turn to the lower bound. Let L 	→ f (L) be a function diverging more slowly than
lnL:

lim
L→∞f (L) = ∞, 0 ≤ f (L) ≤ lnL, lim

L→∞
f (L)

lnL
= 0. (3.3)

It is sufficient to show that

lim
L→∞P

(lnL−f (L))/L(� ≥ 1) = 1, (3.4)

because

P
∗(� ≥ 1) ≥

∫ (lnL−f (L))/L

0
P

x(� ≥ 1)dx ≥ lnL − f (L)

L
P

(lnL−f (L))/L(� ≥ 1), (3.5)

where we used that x 	→ P
x(� ≥ 1) is a non-increasing function. Taking L large in (3.5) assum-

ing (3.4) gives the lower bound.
It now remains to show (3.4). We consider a tree started from x = [lnL − f (L)]/L, and

call m the number of nodes at the first level with a value between x and (lnL)/L. One has
m ∼ Bin(L,f (L)/L), that is m is a binomial of parameters L and f (L)/L. Conditionally on m,
the probability to have no open path in the tree is smaller than the probability to have no open
path through these m specific nodes. Thus by summing over all possible values of m, we get:

P
(lnL−f (L))/L(� = 0)

(3.6)

≤
L∑

m=0

(
L

m

)(
f (L)

L

)m(
1 − f (L)

L

)L−m[
P

(lnL)/L;L−1(� = 0)
]m

,
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where we used P
x(� = 0) ≤ P

(lnL)/L(� = 0) for x ≤ (lnL)/L. Note the obvious extension to
the notation to mark that the probability on the right-hand side is for a tree of size L − 1 and not
L as on the left-hand side. Summing (3.6), one gets

P
(lnL−f (L))/L(� = 0) ≤

[
1 − f (L)

L

(
1 − P

(lnL)/L;L−1(� = 0)
)]L

. (3.7)

But from Cauchy–Schwarz (applied to � and 1(� ≥ 1)) and (2.6), which is proved in Sec-
tion 5.3, one has

P
(lnL)/L(� ≥ 1) ≥ E

(lnL)/L(�)2

E(lnL)/L(�2)
−→
L→∞

1

3
, (3.8)

so that, for L large enough

P
(lnL)/L;L−1(� ≥ 1) ≥ P

(ln(L−1))/(L−1);L−1(� ≥ 1) ≥ 0.33, (3.9)

and thus, for L large enough

P
(lnL−f (L))/L(� = 0) ≤

[
1 − f (L)

L
P

(lnL)/L;L−1(� ≥ 1)

]L

≤
[

1 − 0.33
f (L)

L

]L

(3.10)

which goes to zero as L → ∞, as required.

4. Proof of Theorem 1

In this section, we consider the case of the tree with a starting value x which scales as x = X/L,
X ≥ 0 being a fixed number. The natural starting point for a proof would be to introduce G, the
generating function of �:

G(λ,x,L) = E
x
(
e−λ�

)
, (4.1)

with parameter λ ≥ 0, for which it is very easy to show from the tree geometry (each of the L

nodes at the first level is the root of an independent tree of size L − 1) that:

G(λ,x,1) = e−λ, G(λ, x,L) =
[
x +

∫ 1

x

dyG(λ,y,L − 1)

]L

for L > 1. (4.2)

However, extracting the limiting distribution directly from (4.2) seems difficult because the num-
ber of levels and the size of each level increase together and because the fixed point equation
does not give the λ dependence of the result. We shall rather use an idea which proved to be very
generic and powerful in branching processes: the value of a random variable is decided during
the early stages of a branching process; at later stages the law of large numbers kicks in (see,
e.g., [12]).

Assume that all the information at the first k levels of the tree is known, and call �k the
expected number of paths given that information:

�k = E(�|Fk), (4.3)
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where Fk is the available information up to level k. For instance, consider the tree of Figure 1
up to level k = 2. There are three paths still open with end values (at level 2) given by 0.22, 0.66
and 0.95. Therefore from (2.1), �2 = 2(1 − 0.22) + 2(1 − 0.48) + 2(1 − 0.66) + 2(1 − 0.95) =
3.38. Similarly, �1 = 3(1 − 0.59)2 + 3(1 − 0.90)2 + 3(1 − 0.01)2 + 3(1 − 0.83)2 ≈ 3.56 and
�3 = �4 = � = 2. A general expression of �k for k < L is

�k =
∑
|σ |=k

1{σ open}(L − k)(1 − xσ )L−k−1, (4.4)

where we sum over all nodes σ at level |σ | = k in the tree, xσ is the value of the node σ and the
event {σ open} is the F|σ |-measurable event that the path from the root to node σ is open.

Heuristically, one expects that � and �k are of order L. When k is small, � has no reason
to be close to �k . However when k is large, there are many paths open up to level k which all
contribute to the value of �. The law of large numbers leads to a small variance, given Fk , of
�/L and �k/L becomes a good approximation of �/L. The advantage of this approach is that
one can take the L → ∞ limit for a fixed k (keeping the depth of the tree constant) and then take
the k → ∞ limit.

Our proof consists then in two steps:

• first we show that

lim
L→∞P

X/L

(
�

L
≤ z

)
= lim

k→∞ lim
L→∞P

X/L

(
�k

L
≤ z

)
, (4.5)

which means that �/L for a starting point X/L and L large has the same distribution as
�k/L with the same starting point for large L and then for large k;

• then we make use of a generating function similar to (4.1) to show that the distribution of
�k/L after taking the limits is given by an exponential law.

4.1. Proof of (4.5)

Pick δ > 0. Observe that

P

(
�

L
≤ z

∣∣∣Fk

)
≤ 1

(
�k

L
≤ z + δ

)
+ P

( |� − �k|
L

≥ δ

∣∣∣Fk

)
,

(4.6)

P

(
�

L
≤ z

∣∣∣Fk

)
≥ 1

(
�k

L
≤ z − δ

)
− P

( |� − �k|
L

≥ δ

∣∣∣Fk

)
.

The first inequality follows from the simple remark that it is obviously true when �k/L ≤ z + δ

and that, when �k/L > z+ δ, it is necessary to have (�k −�)/L ≥ δ to get �/L ≤ z. Similarly,
the lower bound in the next line is trivial when �k/L > z − δ and it is sufficient to have (� −
�k)/L < δ when �k/L ≤ z − δ.

As �k is the expectation of � given Fk , one has from Chebyshev’s inequality:

P

( |� − �k|
L

≥ δ

∣∣∣Fk

)
≤ Var(�|Fk)

L2δ2
. (4.7)
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We substitute (4.7) into (4.6) and then take the expectation (over Fk):

P
X/L

(
�

L
≤ z

)
≥ P

X/L

(
�k

L
≤ z − δ

)
− E

X/L[Var(�|Fk)]
L2δ2

,

P
X/L

(
�

L
≤ z

)
≤ P

X/L

(
�k

L
≤ z + δ

)
+ E

X/L[Var(�|Fk)]
L2δ2

.

Therefore to show (4.5), it is sufficient to have

lim
k→∞ lim sup

L→∞
1

L2
E

X/L
[
Var(�|Fk)

] = 0, (4.8)

as well as the existence and continuity of the right-hand side limit of (4.5).
In Section 5.5, we will show by direct analysis of the second moment that

lim
L→∞

1

L2
E

X/L
[
Var(�|Fk)

] = e−2X

2k
, (4.9)

which yields (4.8). We now compute the distribution of �k/L in the double limit L → ∞ and
k → ∞ and, as the result is a continuous function of z, this completes the proof.

4.2. Distribution of �k

Similarly to (4.1), we define Gk(λ, x,L) the generating function of �k for a tree of size L and a
value x at the root:

Gk(λ, x,L) = E
x
(
e−λ�k

)
. (4.10)

As �0 = E
x(�) = L(1 − x)L−1 one has

G0(λ, x,L) = exp
[−λL(1 − x)L−1], (4.11)

and the recursion relation

Gk(λ, x,L) =
[
x +

∫ 1

x

dyGk−1(λ, y,L − 1)

]L

(4.12)

=
[

1 −
∫ 1

x

dy
(
1 − Gk−1(λ, y,L − 1)

)]L

,

to be compared to (4.2).
This relation is obtained by decomposing on what happens at the first splitting. For a node σ

connected to the root let �k(σ) be the conditional expectation given Fk of the number of open
paths going through σ . The {�k(σ)}|σ |=1 is a collection of L independent Fk-measurable inde-
pendent variables, hence:

Gk(λ, x,L) = [
E

x
(
e−λ�k(σ )

)]L
, (4.13)

where σ is a given node in the first generation.
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Let us evaluate E
x(e−λ�k(σ )). If xσ < x, then �k(σ) = 0 and since this event has probability

x it contribute xe−λ0 = x to the expectation. With a probability dy for y ∈ [x,1] the value at the
node lies in (y, y + dy) and some paths might go through that node. The subtree rooted at σ is
like the initial tree but of dimension L − 1 and we want to evaluate the average number of paths
in that subtree given the information after k − 1 steps, hence the term in the integral of (4.12).

The strategy is to take the L → ∞ limit at fixed k in (4.11) and (4.12) after a proper rescaling,
then to let k → ∞. We only consider λ ≥ 0; it is sufficient to characterize the distribution, and it
simplifies the arguments below.

Step 1. We first show that the following limit exists (for μ ≥ 0):

∀a, b, Gk

(
μ

L + a
,

X

L + b
,L

)
−→
L→∞ G̃k(μ,X), (4.14)

and that the limit satisfies

G̃k(μ,X) = exp

[
−

∫ ∞

X

[
1 − G̃k−1(μ,Y )

]
dY

]
, G̃0(μ,X) = exp

[−μe−X
]
. (4.15)

From (4.11), it is obvious that (4.14) holds for k = 0 with the limit given in (4.15). Choosing
k > 0, we assume that (4.14) holds for Gk−1. Then, after a change of variables in (4.12),

Gk

(
μ

L + a
,

X

L + b
,L

)
=

[
1 − 1

L + b

∫ L+b

X

dY

(
1 − Gk−1

(
μ

L + a
,

Y

L + b
,L − 1

))]L

.

The Gk−1 on the right-hand side has an L → ∞ limit. From its definition (4.10), one has

1 ≥ Gk(λ, x,L) ≥ 1 − λEx(�k) = 1 − λEx(�) = 1 − λL(1 − x)L−1. (4.16)

Then, assuming μ ≥ 0, for all a and b, one has for L large enough (depending on a and b):

1 ≥ Gk−1

(
μ

L + a
,

Y

L + b
,L − 1

)
≥ 1 − 2μe−Y/2. (4.17)

Thus, from the dominated convergence theorem, we have

∫ L+b

X

dY

(
1 − Gk−1

(
μ

L + a
,

Y

L + b
,L − 1

))
−→
L→∞

∫ ∞

X

dY
(
1 − G̃k−1(μ,Y )

)
, (4.18)

and thus (4.14) holds for Gk with the relation (4.15).
Step 2. The fact that (4.14) holds means that when starting with x = X/L, the random vari-

able �k/L has a well defined limit as L goes to infinity, and that the generating function of that
limit is G̃k . We now use the recurrence (4.15) to take the k → ∞ limit which will show that
limL→∞ �k/L converges (when k → ∞) to an exponential variable. This task is greatly sim-
plified by noticing (by a simple recurrence) that one can write G̃k as a function of one variable
only:

G̃k(μ,X) = Fk

(
μe−X

)
(4.19)
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with

Fk(z) = exp

[
−

∫ z

0

1 − Fk−1(z
′)

z′ dz′
]
, F0(z) = e−z. (4.20)

We shall show that the solution to (4.20) satisfies

Fk(z) −→
k→∞

1

1 + z
for z > −1, (4.21)

which implies that limL→∞ �k/L converges weakly when k → ∞ to an exponential distribution
of expectation e−X . Note that we only need to consider z ≥ 0 and, in fact, we proved (4.20) only
for z ≥ 0, but (4.21) holds for the solution to (4.20) for z ∈ (−1,∞).

Defining δk(z) for z > −1 and z 
= 0 by

Fk(z) = 1

1 + z
− z2

(1 + z)3

δk(z)

2k
, (4.22)

it is easy to see that there exists a constant M such that for all k and all z > −1

0 ≤ δk(z) ≤ M. (4.23)

Indeed, for k = 0,

δ0(z) = (1 + z)3

z2

(
1

1 + z
− e−z

)
, (4.24)

δ0(z) ≥ 0 for z > −1 because ez ≥ 1 + z by convexity. Furthermore, δ0(z) can be defined by
continuity at z = 0, has a limit in z = +∞ and in z = −1 and reaches therefore a maximum M

on (−1,∞), which initializes (4.23).
Assuming now (4.23) at order k − 1, one has

Fk(z) = 1

1 + z
exp

[
−

∫ z

0

z′

(1 + z′)3

δk−1(z
′)

2k−1
dz′

]
, (4.25)

leading to

1

1 + z
≥ Fk(z) ≥ 1

1 + z

[
1 − M

2k−1

∫ z

0

z′

(1 + z′)3
dz′

]
= 1

1 + z

[
1 − M

2k−1

z2

2(1 + z)2

]
,

which gives (4.23) at order k. Hence, the limit (4.21) holds. This completes the proof of Theo-
rem 1.

5. Results on the second moment for the tree

The goal of this section is to prove the second moment results (2.3), (2.4), (2.6) and (4.9) which
were used in the proofs of Theorems 1 and 3.
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5.1. Exact expression of the second moment

The expectation of �2 is the sum, over all pairs of paths, of the probability that both paths are
open. There are L!2 pairs of paths in the system. For a given pair, the probability that they are
both open depends on the number q ∈ {0,1,2, . . . ,L−2,L} of bonds shared by the paths. (Note:
two paths cannot have exactly L − 1 bonds in common.) The following facts are clear:

• the number of pairs of paths which coincide all the way (q = L) is L!;
• the probability that “both” paths in such a pair are open is (1 − x)L−1/(L − 1)!;
• the number of pairs of paths which coincide for q = 0,1, . . . ,L− 2 steps and then branch is

L!(L− q − 1)(L− q − 1)! (Remark: 1 · 1!+ 2 · 2!+ 3 · 3!+ · · ·+ (L− 1)(L− 1)! = L!− 1,
hence, one recovers that the total number of pairs of path is L!2.);

• the probability that both paths in such a pair are open is

(1 − x)2L−q−2

(2L − q − 2)!
(

2L − 2q − 2

L − q − 1

)
. (5.1)

Indeed, excluding the starting and end points, there are 2L − q − 2 total different nodes in
such a pair of paths. All these nodes must be larger than x, hence the (1 − x)2L−q−2 term.
This is however not sufficient because the values on the nodes must be correctly ordered.
Out of the (2L − q − 2)! possible orderings (see the denominator), the only good ones are
those such that the q smallest terms are in their correct order in the shared segment (only one
choice), and the 2L− 2q − 2 remaining terms are separated into two well ordered blocks of
L − q − 1 terms, one for each path; the only freedom is to choose which terms go to which
path, hence the binomial coefficient.

This leads to

E
x
(
�2) =

L−2∑
q=0

a(L,q)(1 − x)2L−q−2 + L(1 − x)L−1, (5.2)

where

a(L,q) = L!(2L − 2q − 2)!
(L − q − 2)!(2L − q − 2)! . (5.3)

The isolated term in (5.2) corresponds to the pairs of identical paths and is equal to E
x(�).

5.2. Estimates and bounds on the a(L,q)

Expanding the factorials in a(L,q), one gets

a(L,q) = L2

2q

(1 − 1/L)(1 − 2/L) · · · (1 − (q + 1)/L)

(1 − (q + 2)/(2L))(1 − (q + 3)/(2L)) · · · (1 − (2q + 1)/(2L))
. (5.4)
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From this expression, one gets the following equivalent when L → ∞ and q � √
L:

a(L,q) = L2

2q

[
1 +O

(
q2/L

)]
. (5.5)

For q close to L, one has the values a(L,L − 2) = 2, a(L,L − 3) = 24/(L + 1), a(L,L − 4) =
360/[(L + 1)(L + 2)], etc.

We want to find a good upper bound for a(L,q). We first show that q 	→ lna(L,q) is a convex
function for L ≥ q + 3. Indeed

lna(L,q) − lna(L,q − 1) = ln
(L − q − 1)(2L − q − 1)

(2L − 2q)(2L − 2q − 1)
(5.6)

so that
[
lna(L,q) − lna(L,q − 1)

] − [
lna(L,q − 1) − lna(L,q − 2)

]
(5.7)

= ln
(L − q − 1)(2L − q − 1)(2L − 2q + 2)(2L − 2q + 1)

(2L − 2q)(2L − 2q − 1)(L − q)(2L − q)
.

Since the denominator is clearly positive as soon as L ≥ q + 1 we see that lna(L,q) is convex
if in (5.7) the numerator is bigger than the denominator. This condition leads to

(L − q)2(2L − 1) − (2L − q − 1)(2L − 2q + 1) ≥ 0, (5.8)

which holds as soon as L − q ≥ 3.
Assume L ≥ 12 so that a(L,L − 3) ≤ 2 and let

q0(L) =
⌈

ln(L2)

ln 2
+ 1

⌉
. (5.9)

From (5.4), one has

a(L,q) ≤ L2

2q

1

(1 − (2q + 1)/(2L))q
. (5.10)

Applying this to q = q0(L), one easily gets a(L,q0(L)) ≤ 1 for L large enough. (The term
L2/2q0 is smaller than 1/2, and the parenthesis converges to 1.)

By using the convexity of lna(L,q), one has

lna(L,q) ≤
⎧⎨
⎩

lna(L,0) + q

q0(L)

[
lna

(
L,q0(L)

) − lna(L,0)
]
, for 0 ≤ q ≤ q0(L),

ln 2, for q0(L) ≤ q ≤ L − 2.

But lna(L,q0(L)) ≤ 0 so that

a(L,q) ≤
⎧⎨
⎩

a(L,0) exp

[
− lna(L,0)

q0(L)
q

]
, for 0 ≤ q ≤ q0(L),

2, for q0(L) ≤ q ≤ L − 2.
(5.11)
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Remark now that a(L,0) = L(L−1) < L2 and lna(L,0)/q0(L) → ln 2 as L → ∞. This implies
that, for L large enough, lna(L,0)/q0(L) > ln 1.99 and that

a(L,q) ≤
{

L21.99−q, for 0 ≤ q ≤ q0(L),

2, for q0(L) ≤ q ≤ L − 2.
(5.12)

5.3. Proofs of the limits (2.3), (2.4) and (2.6) of Var(�)

The second moment (5.2) is written as a sum from q = 0 to q = L − 2. To prove the various
limits we need, the strategy is always the same:

(1) Split the sum over q into two parts; one going from 0 to q0(L) and one going from q0(L)+
1 to L − 2.

(2) In the first sum, replace a(L,q) by its equivalent (5.5); this is justified with the dominated
convergence theorem, using the bound (5.12).

(3) Show that the second sum does not contribute using the bound (5.12).

Proof of (2.3). Integrating (5.2) over x and using E
∗(�) = 1, one gets

Var∗(�)

L
= E

∗(�2) −E
∗(�)2

L
=

L−2∑
q=0

a(L,q)/L

2L − q − 1

=
q0(L)∑
q=0

a(L,q)/L2

2 − (q + 1)/L
+

L−2∑
q=q0(L)+1

a(L,q)/L

2L − q − 1
.

In the first sum, the running term is equivalent to 2−q/2 when L is large and is dominated by
1.99−q for L large enough. Therefore, this first sum converges to 1. In the second sum, the
running term is smaller than 2/L2, implying that the whole second sum is smaller than 2/L and
thus vanishes in the large L limit. �

Proof of (2.4). We divide (5.2) by L2, replace x by X/L and split the sum:

E
X/L(�2)

L2
=

q0(L)∑
q=0

a(L,q)

L2

(
1 − X

L

)2L−q−2

(5.13)

+
L−2∑

q=q0(L)+1

a(L,q)

L2

(
1 − X

L

)2L−q−2

+ (1 − X/L)L−1

L
.

The running term in the first sum is equivalent to 2−qe−2X and is dominated by 1.99−q , therefore
the first term converges to 2e−2X as L → ∞. The running term in the second sum is smaller than
2/L2 implying that the whole second sum is smaller than 2/L and thus vanishes in the large L
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limit. The isolated term goes also to zero. Therefore, the whole expression converges to 2e−2X

and one recovers the variance in (2.4) after subtracting E
X/L(�/L)2. �

Proof of (2.6). We now take x = (lnL + X)/L and split again the sum in (5.2) into two parts:

E
x
(
�2) =

q0(L)∑
q=0

a(L,q)

L2
× L2(1 − x)2L−q−2

(5.14)

+
L−2∑

q=q0(L)+1

a(L,q)(1 − x)2L−q−2 + L(1 − x)L−1.

Using

lim
L→∞L2

(
1 − lnL + X

L

)2L−q−2

= e−2X, (5.15)

into (5.14), the running term in the first sum is equivalent to 2−qe−2X and is dominated by
1.99−q(e−2X + 1) for L large enough (because L2(1 − x)2L−q−2 ≤ L2(1 − x)2L−q0(L)−2, which
becomes close to its limit when L gets large). Therefore, the first sum converges to 2e−2X . We
write an upper bound of the second sum of (5.14) using a(L,q) ≤ 2 and then extending the sum
to the interval [0,L − 1]:

L−2∑
q=q0(L)+1

a(L,q)(1 − x)2L−q−2 ≤ 2(1 − x)2L−2 (1 − x)−L − 1

(1 − x)−1 − 1
(5.16)

≤ 2
(1 − x)L−1

x
∼ 2

e−X

lnL
,

which goes to zero for L large. Finally, the last term in (5.14) converges to e−X ; putting things
together, one finds E

(lnL+X)/L(�2) → 2e−2X + e−X . Removing the expectation squared, one
recovers (2.6). �

5.4. Exact expression for E
x[Var(�|Fk)]

The number � of paths given Fk is the sum over all the nodes at level k of the number of paths
through that node. These variables are independent; therefore

Var(�|Fk) =
∑
|σ |=k

1{σ open}v(xσ ,L − k), (5.17)

where v(x,L) is the variance of � for a tree of size L started at x

v(x,L) := E
x
(
�2) −E

x(�)2

(5.18)

= −L(1 − x)2L−2 +
L−2∑
q=1

a(L,q)(1 − x)2L−q−2 + L(1 − x)L−1.
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Taking the expectation over Fk , one gets

E
x
[
Var(�|Fk)

] = L!
(L − k)!

∫ 1

x

dxσ

(xσ − x)k−1

(k − 1)! v(xσ ,L − k), (5.19)

where L!/(L − k)! is the number of terms in the sum and where the fraction in the integral is the
probability that σ is open given the value of xσ > x.

In (5.19), we replace v by its expression given in (5.18), and we integrate each term in the sum
to find

Ex
[
Var(�|Fk)

] = − L!(2L − 2k)!
(L − k − 1)!(2L − k − 2)! (1 − x)2L−k−2

+
L−2∑
q=1

a(L − k, q)
(2L − 2k − q − 2)!L!

(L − k)!(2L − k − q − 2)! (1 − x)2L−k−q−2

+ L(1 − x)L−1,

where we have used the formula
∫ 1
x

dz(z − x)m(1 − z)n = m!n!
(m+n+1)! (1 − x)m+n+1. Then, after

changing q into q − k and using extensively the expression (5.3) of a(L,q) we obtain

E
x
[
Var(�|Fk)

] = − a(L, k)

L − k − 1
(1 − x)2L−k−2

(5.20)

+
L−2∑

q=k+1

a(L,q)(1 − x)2L−q−2 + L(1 − x)L−1.

Note that apart from the first term, this is exactly the same as the full variance v(x,L) except that
the sum over q begins at k + 1 instead of at 1.

5.5. Proof of (4.9)

We now divide (5.20) by L2, set x = X/L and consider L large. We only need an upper bound,
but it is as easy to calculate the exact limit. As in Section 5.3, we split the sum into two parts;
one where the index q runs from k + 1 to q0(L) and one from q0(L) + 1 to L − 2. In the first
part, using the dominated convergence theorem with the bound (5.12):

lim
L→∞

q0(L)∑
q=k+1

a(L,q)

L2

(
1 − X

L

)2L−q−2

=
∞∑

q=k+1

1

2q
e−2X = 1

2k
e−2X. (5.21)

Also using the bound (5.12), the second part of the sum goes to zero:

1

L2

L−2∑
q=q0(L)+1

a(L,q)

(
1 − X

L

)2L−q−2

≤ 1

L2
× L × 2. (5.22)
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It is very easy to check that in (5.20) the two isolated terms (divided by L2, of course) go also to
zero, so that one finally obtains (4.9).

6. A relation with Poisson cascades

Our model is closely related to cascades of Poisson processes. In fact, the arguments we used in
Section 4 can be presented in terms of Poisson cascades. Let us make a brief description.

We recall the sequence of functions Fk , k ≥ 0, defined in (4.20):

Fk(z) = exp

[
−

∫ z

0

1 − Fk−1(z
′)

z′ dz′
]
, F0(z) = e−z. (6.1)

It is clear that F0(z) is the Laplace transform of the Dirac measure at 1, and that F1 is the
Laplace transform of

∑∞
j=1 Xj , where (Xj , j ≥ 1) is a Poisson process on (0,1] with intensity

1(0,1](x) dx
x

.
We now define a cascade of Poisson processes. At generation k = 0, there is only one particle at

position 1. At generation k = 1, this particle is replaced by the atoms (X
(1)
j , j ≥ 1) of a Poisson

process on (0,1] with intensity 1(0,1](x) dx
x

. At generation k = 2, for each j , the particle at

position X
(1)
j is replaced by (X

(1)
j X

(2)
j,�, � ≥ 1), where (X

(2)
j,�, � ≥ 1) is another Poisson process

with intensity 1(0,1](x) dx
x

(all the Poisson processes are assumed to be independent). Iterating
the procedure results in a cascade of Poisson processes. We readily check, by induction on k, that
Fk is the Laplace transform of Yk , the sum of the positions at the kth generation of the Poisson
cascade.

What was proved in Section 4 can be stated in terms of the cascade of Poisson processes.
Recall from (4.3) that �k = E(�|Fk).

Theorem 4. (i) For any k ≥ 0 and for x = X/L, �k

L
converges weakly, when L → ∞, to e−XYk .

(ii) When k → ∞, Yk converges weakly to the standard exponential law.

7. Proof of Theorem 2

In this section, we adapt the methods used in Section 4 to obtain the distribution of the number
of open paths on the hypercube when L goes to infinity.

In the large L limit, both the width (the number of possible moves at each step) and the depth
(the number of steps) on the hypercube go to infinity, which makes studying the limit difficult.
We worked around that problem on the tree by introducing �k , the expected number of paths
given the information Fk after k steps, and by sending first L (now representing only the width
of the tree) and then k (the depth) to infinity.

We use the same trick on the hypercube, but with a twist: the hypercube is symmetrical when
exchanging the starting and end points, and there is no reason to privilege one or the other.
Therefore, we call �k the expected number of paths in the hypercube given the information Fk

at the first k levels from both extremities of the hypercube.
To write an expression for �k similar to (4.4), we introduce the following notations:
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• The
(
L
k

)
nodes k steps away from the starting point are indexed by σ and, as usual, their

values are written xσ .
• Similarly, τ indexes the

(
L
k

)
nodes k steps away from the end point and we note their values

1 − yτ .
• nσ ∈ {0,1, . . . , k!} is the number of open paths from the starting point to node σ . (Contrary

to the tree, there are several paths leading to each node σ .)
• Similarly, mτ is the number of open paths from node τ to the end point.
• 1(σ � τ) indicates whether there is at least one directed path (open or not) from node σ to

node τ .

Then,

�k =
∑
|σ |=k

∑
|τ |=L−k

nσ mτ1(σ � τ)(L − 2k)(1 − yτ − xσ )L−2k−11(xσ + yτ ≤ 1), (7.1)

where 1(σ � τ )(L − 2k)(1 − yτ − xσ )L−2k−11(xσ + yτ < 1) is the expected number of open
paths from σ to τ given the values xσ and yτ .

Our proof can be decomposed into three steps:

• First, we show that, as in the tree, the distribution of �/L as L → ∞ is the same as the
distribution of �k/L as L → ∞ and then k → ∞.

• Then, we show that the double sum in (7.1) can be modified (without changing the limit, of
course) into a product of two sums. This means that asymptotically �k can be written as a
contribution from the k first levels (the sum on σ ) times an independent contribution from
the k last levels (the sum on τ ).

• Finally, we show that each of these two contributions is asymptotically identical in distribu-
tion to what we computed on the tree.

7.1. First step: �k and � have asymptotically the same distribution

We show in this section that, when the starting point scales with L as x = X/L for X fixed,

lim
L→∞

�k

L

weakly−→
k→∞ lim

L→∞
�

L
. (7.2)

Following the same argument as on the tree, it is sufficient to show that �k/L has a weak limit
(when L → ∞ and then k → ∞) and that

lim
k→∞ lim sup

L→∞
1

L2
E

X/L
[
Var(�|Fk)

] = 0. (7.3)

First, remark that

E
x
[
Var(�|Fk)

] = E
x
[
�2] −E

x
[
�2

k

]
, (7.4)

where we used �k = E[�|Fk].
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Second moments as in (7.4) can be written as sums over pairs of paths. For a given path α, we
call xα

i the value on the node at step i on path α (0 ≤ i ≤ L, with xα
0 = x and xα

L = 1) and ξα
i,j

the indicator function that path α is open from steps i to j :

ξα
i,j = 1

(
xα
i ≤ xα

i+1 ≤ xα
i+2 ≤ · · · ≤ xα

j

)
. (7.5)

Clearly,

� =
∑
α

ξα
0,L, �k =

∑
α

E
[
ξα

0,L|Fk

]
. (7.6)

We now have the following expression for the second moment:

E
x
[
�2] =

∑
α,β

E
x
[
ξα

0,Lξ
β

0,L

] = L!
∑
α

E
x
[
ξα

0,Lξ0
0,L

]
, (7.7)

where, by symmetry, we chose one particular arbitrary fixed path which bears the index 0. Simi-
larly,

E
x
[
�2

k

] = L!
∑
α

E
x
[
E

[
ξα

0,L|Fk

]
E

[
ξ0

0,L|Fk

]]
. (7.8)

We write now ξα
0,L = ξα

0,kξ
α
k,L−kξ

α
L−k,L. The first and last terms are Fk-measurable, hence

E
x
[
�2

k

] = L!
∑
α

E
x
[
ξα

0,kξ
0
0,kE

[
ξα
k,L−k|Fk

]
E

[
ξ0
k,L−k|Fk

]
ξα
L−k,Lξ0

L−k,L

]
. (7.9)

We make the same decomposition on ξα
0,L in (7.7). Writing E

x[·] = E
x[E[·|Fk]] and pushing out

of the inner expectation the Fk-measurable terms, one gets

E
x
[
�2] = L!

∑
α

E
x
[
ξα

0,kξ
0
0,kE

[
ξα
k,L−kξ

0
k,L−k|Fk

]
ξα
L−k,Lξ0

L−k,L

]
. (7.10)

Using (7.4),

E
x
[
Var(�|Fk)

]
= L!

∑
α

E
x
[
ξα

0,kξ
0
0,k

(
E

[
ξα
k,L−kξ

0
k,L−k|Fk

]
(7.11)

−E
[
ξα
k,L−k|Fk

]
E

[
ξ0
k,L−k|Fk

])
ξα
L−k,Lξ0

L−k,L

]
.

For a given path α, the central term (in parenthesis) in the last expression is a kind of covariance.
Clearly, if the paths α and 0 do not meet in the interval {k, . . . ,L − k}, the variables ξα

k,L−k and

ξ0
k,L−k are independent and the covariance is zero. Therefore, we can restrict the sum over α

in (7.11) to the paths which cross at least once the path 0 in the interval {k, . . . ,L− k}. With this
modified sum, we can now find an upper bound on (7.4). Dropping all the negative terms and
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undoing the decomposition of ξα
0,L into three parts, we get

E
x
[
Var(�|Fk)

] ≤ L!
∑
α

′
E

x
[
ξα

0,Lξ0
0,L

]
, (7.12)

where the prime on the sum indicates that α runs only over all the paths that meet path 0 at least
once in {k, . . . ,L − k}.

We now bound (7.12). Let Ip,q be the set of all the paths such that

• the p + 1 first nodes (including the origin) are the same as for path 0 (in other words, the
first p steps are the same as in path 0),

• the next L − p − q − 1 nodes are different from those of path 0,
• the next q + 1 nodes (thus including the end point) are the same as for path 0.

By construction, for p < k and q < k, a path in Ip,q do not meet path 0 in {k, . . . ,L − k}.
Therefore

E
x
[
Var(�|Fk)

] ≤ L!
∑
α

E
x
[
ξα

0,Lξ0
0,L

] − L!
k−1∑
p=0

k−1∑
q=0

∑
α∈Ip,q

E
x
[
ξα

0,Lξ0
0,L

]
. (7.13)

Notice that the first sum is not primed; it runs over all the L! possible paths α. The inequality
holds because in (7.12) we were summing over all the paths except all of those not crossing
path 0 in {k, . . . ,L − k}, while in (7.13) we sum over all the paths except some of those not
crossing path 0 in {k, . . . ,L − k}.

Heuristically, the reason for which this bound is sufficient can be read in Hegarty–Martinsson’s
paper [8]: they showed that the second moment of � is dominated by all the pairs of paths that
follow each other for some time, diverge close to the start point, travel separately for most of
the hypercube, meet again close to the end point and then stick together. The second term in the
right-hand side of (7.13) for large k are precisely those paths, and their contribution therefore
sums up to the whole second moment.

The first term in (7.13) is simply E
x[�2], see (7.7). From [8] and (2.5), it has the following

large L limit

lim
L→∞

1

L2
E

X/L
[
�2] = lim

L→∞
1

L2
L!

∑
α

E
X/L

[
ξα

0,Lξ0
0,L

] = 4e−2X. (7.14)

We now focus on the second term. For a path α in Ip,q , a direct calculation shows that

E
x
[
ξα

0,Lξ0
0,L

] = (1 − x)2L−p−q−2

(2L − p − q − 2)!
(

2L − 2p − 2q − 2

L − p − q − 1

)
. (7.15)

Indeed, excluding the starting and end points, there are 2(L − 1) − p − q total different nodes in
the paths α and 0. All these nodes must be larger than x, hence the (1 − x)2L−p−q−2 term. This
is however not sufficient because the values on the nodes must be correctly ordered. Out of the
(2L − p − q − 2)! possible orderings (see the denominator), the only good ones are those such
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that the p smallest terms be in their correct order in the first shared segment (only one choice),
the q largest terms be well ordered in the second shared segment (only one choice), and the
2L − 2p − 2q − 2 remaining terms be separated into two well ordered blocks of L − p − q − 1
terms, one for each path; the only freedom is to choose which terms go to path α and which to
path 0, hence the binomial coefficient.

To count the number of paths α in Ip,q , observe that the p first steps and the q last steps of
α are fixed and one only has to choose the order in which the L − p − q intermediary steps
are taken. We thus write B(L − p − q) for the cardinal of Ip,q where B(n) is the number of
permutations of n elements such that for any m in {1, . . . , n−1} the image of {1, . . . ,m} through
the permutation is not {1, . . . ,m} (this ensures that α does not meet the distinguished path at the
mth intermediary step). The function B(n) is defined in [14] and the first terms of the sequence
are B(1) = 1, B(2) = 1, B(3) = 3, B(4) = 13, B(5) = 71. Hegarty–Martinsson [8] call this
T (n,1) and show (Proposition 2.5) that B(n) ∼ n!. Then

L!
∑

α∈Ip,q

E
x
[
ξα

0,Lξ0
0,L

]

= L!
(L − p − q − 1)! × (2L − 2p − 2q − 2)!

(2L − p − q − 2)! × B(L − p − q)

(L − p − q − 1)! × (1 − x)2L−p−q−2.

Take x = X/L and L large with p and q fixed. The terms on the right-hand side are respectively
equivalent to Lp+q+1, (2L)−p−q , L and e−2X , so that

lim
L→∞

1

L2
L!

∑
α∈Ip,q

E
X/L

[
ξα

0,Lξ0
0,L

] = e−2X

2p+q
, (7.16)

and

lim
L→∞

1

L2
L!

k−1∑
p=0

k−1∑
q=0

∑
α∈Ip,q

E
X/L

[
ξα

0,Lξ0
0,L

] = e−2X4
(
1 − 2−k+1 + 4−k

)
. (7.17)

Using (7.14) and (7.17) in (7.13), we finally get

lim sup
L→∞

1

L2
E

X/L
[
Var(�|Fk)

] ≤ 8e−2X

2k
, (7.18)

from which one gets (7.3). We are now going to show that �k/L has a weak limit (which we
compute) thus yielding the weak limit of �/L by (7.2).

7.2. Second step: Separating the start and the end of the hypercube

We go back to the expression �k given in (7.1):

�k =
∑
|σ |=k

∑
|τ |=L−k

nσ mτ1(σ � τ)(L − 2k)(1 − yτ − xσ )L−2k−11(xσ + yτ ≤ 1), (7.19)
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and we introduce the following slightly different quantity

�̃k =
∑
|σ |=k

∑
|τ |=L−k

nσ mτL(1 − yτ − xσ + xσ yτ )
L−2k−1. (7.20)

(Compared to �k , this one has no 1(σ � τ), no 1(xσ + yτ ≤ 1), a factor L instead of L− 2k and
an extra xσ yτ in the power.) Clearly, �k ≤ �̃k . Furthermore, we know that Ex[�k] = E

x[�] =
L(1 − x)L−1 so that

lim
L→∞E

X/L

[
�k

L

]
= e−X. (7.21)

Let us compute the same expectation for �̃k . Using

E
x(nσ |xσ ) = k(xσ − x)k−11(xσ ≥ x), E

x(mτ |yτ ) = k(yτ )
k−1, (7.22)

one gets

E
x

[
�̃k

L

]
=

(
L

k

)(
L

k

)∫ 1

x

dxσ

∫ 1

0
dyτ k(xσ − x)k−1k(yτ )

k−1(1 − yτ − xσ + xσ yτ )
L−2k−1

(7.23)

=
[

L!(L − 2k − 1)!
(L − k)!(L − k − 1)!

]2

(1 − x)L−k−1,

so that

lim
L→∞E

X/L

[
�̃k

L

]
= e−X. (7.24)

Finally, �̃k/L − �k/L is a non-negative random variable with an expectation going to zero; it
thus converges to zero in probability. Therefore, in the L → ∞ limit by Slutsky’s theorem, �̃k/L

and �k/L have the same distribution as soon as one of the limits exists.
It now simply remains to notice that

�̃k

L
=

( ∑
|σ |=k

nσ (1 − xσ )L−2k−1
)( ∑

|τ |=L−k

mτ (1 − yτ )
L−2k−1

)
, (7.25)

which means that �̃k/L can be written has a contribution coming from the k first steps of the
hypercube times an independent contribution coming from the k last steps. The contribution from
the start depends on the value x of the origin. By symmetry, the contribution from the end has
the same law as the contribution from the start with x = 0.

7.3. Third step: The start of the hypercube is like a tree

We now focus on the first term in (7.25):

φk =
∑
|σ |=k

nσ (1 − xσ )L−2k−1. (7.26)
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First, notice that from (7.24) and (7.25) one has

lim
L→∞E

X/L(φk)E
0(φk) = e−X (7.27)

because the sum over τ in (7.25) is by symmetry equal in law to φk with a starting point equal
to 0. By taking X = 0, this implies that

lim
L→∞E

X/L(φk) = e−X. (7.28)

The goal is to show that for a starting point x = X/L, in the large L limit then in the large k limit,
this φk converges weakly to e−X times an exponential distribution. Our strategy is to compare
φk (defined on the first k levels of the hypercube) to the �k/L of the tree by showing that in the
L → ∞ limit the two quantities have the same generating function.

The difficulty, of course, is that one cannot write directly a recursion on the generating function
of φk as we did on the tree because the paths after the first step are not independent. To overcome
this, we introduce another quantity φ̃k(b) which is (in a sense) nearly equal to φk :

φ̃k(b) =
∑
|σ |=k

ñσ (b)(1 − xσ )L, (7.29)

where we will shortly explain the meaning of the parameter b and give the definition of ñσ (b).
For now, let us just say that ñσ (b) ≤ nσ ; in other words, we discard some open paths when
computing φ̃k(b). It is clear that

φ̃k(b) ≤ φk (7.30)

and we will choose ñσ (b) in such a way that

lim
L→∞E

X/L
[
φ̃k(b)

] = lim
L→∞E

X/L[φk] = e−X. (7.31)

With the same argument as before, (7.30) and (7.31) will be sufficient to conclude that if
limL→∞ φ̃k(b) exists (we will show it is the case), then limL→∞ φk exists as well and has the
same distribution. Then, we will be able to write a recursion for the generating function of φ̃k(b)

and solve it in the L → ∞ limit.
It has been pointed out to us by an anonymous referee that an alternative way to obtain con-

vergence of φk is to use the objective method as in Aldous–Steele [1] and prove that the rescaled
weighted hypercube {xσ L,σ ∈ {0,1}L} converges weakly to the so-called Poisson Weighted In-
finite Tree. This will make the Poisson cascade representation in Section 6 more intuitive.

Let us recall the following standard representation of the hypercube: to each node of the hy-
percube, we associate a different binary word with L bits (digits) in such a way that the starting
point is (0,0, . . . ,0), the end point is (1,1, . . . ,1) and making a step is changing a single zero
into a one. A node σ at level k has a label with exactly k ones.

We can now define b and ñσ (b). The parameter b is a set of forbidden bits. Any path going
through any bit in b is automatically discarded. In other words, ñσ (b) = 0 if σ has any bit equal
to 1 which is in b. The parameter ñσ (b) is 1 or 0, depending on whether there is an “interesting”
path or not to σ . An interesting path is defined recursively in the following way:
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• From the origin, we consider which nodes amongst the L − |b| reachable first level nodes
have a value which is smaller than (lnL)/L; these are the “interesting” nodes at first level,
and only the paths going through these interesting nodes are deemed interesting and are
counted in ñσ .

• Let b′ be the bits corresponding to all the interesting nodes at first level. After the first step,
these b′ bits are now forbidden for all interesting paths.

• Given the forbidden bits, the region of the hypercube reachable from each interesting node
at first level is a sub-hypercube of dimension L − |b| − |b′|. All these hypercubes are non-
overlapping. The construction of the interesting paths from each first level interesting node
is now done recursively in the same way on each corresponding sub-hypercube.

Notice that by construction ñσ (b) = 0 if xσ > (lnL)/L. This is a small price to pay as we expect
that only the xσ of order 1/L contribute. Furthermore, at each step we exclude O(lnL) bits. For
each open paths, at step k, there will therefore be kO(lnL) forbidden bits. This is very small
compared to L and will become negligible in the large L limit.

The definition of ñσ (b) leads directly to a recursion on φ̃k(b):

φ̃k(b, starting point = x) =
∑
ρ∈b′

1(x ≤ xρ)φ̃
(ρ)
k−1

(
b ∪ b′, starting point = xρ

)
, (7.32)

where b′ is the (random) set of interesting first level nodes, those with a value smaller than
(lnL)/L which avoid the b forbidden bits. Given b′, for each bit ρ ∈ b′, φ̃

(ρ)
k−1 is an independent

copy of the variable defined in (7.29) with a different starting point. The recursion is initialized
by

φ̃0(b) = (1 − x)L, (7.33)

which is non-random and independent of b.
Before computing the expectation and the generating function, remark that the distribution of

φ̃k(b) depends only on the number |b| of forbidden bits, not on the bits themselves. We will
abuse this remark and consider from now on that in the expression E

x[φ̃k(b)], the parameter b is
actually the number of forbidden bits.

Let us now compute the expectation of φ̃k(b). The distribution of the number b′ of interesting
nodes is binomial and we call p(b′) its law:

p
(
b′) =

(
L − b

b′
)(

lnL

L

)b′(
1 − lnL

L

)L−b−b′

. (7.34)

Then from (7.32)

E
x
[
φ̃k(b)

] =
L−b∑
b′=0

p
(
b′) × b′

∫ (lnL)/L

x

Ldy

lnL
E

y
[
φ̃k−1

(
b + b′)]. (7.35)

We will show by recurrence that the dependence in b can be written as

E
x
[
φ̃k(b)

] = (L − b)!
(L − b − k)!Lk

ψk(x,L). (7.36)
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It is obvious from (7.33) that this works for k = 0. Assume that it works at level k − 1. Then

E
x
[
φ̃k(b)

] = 1

Lk−1

L−b∑
b′=0

p
(
b′) (L − b − b′)!

(L − b − b′ − k + 1)!b
′
∫ (lnL)/L

x

Ldy

lnL
ψk−1(y,L). (7.37)

The sum on b′ decouples from the integral and can be computed; one finds

L−b∑
b′=0

p
(
b′) (L − b − b′)!

(L − b − b′ − k + 1)!b
′ = (L − b)!

(L − b − k)!
lnL

L

(
1 − lnL

L

)k−1

(7.38)

and one recovers (7.36) with

ψk(x,L) =
(

1 − lnL

L

)k−1 ∫ (lnL)/L

x

Ldyψk−1(y,L) (7.39)

or

ψk

(
X

L
,L

)
=

(
1 − lnL

L

)k−1 ∫ lnL

X

dYψk−1

(
Y

L
,L

)
. (7.40)

From here and ψ0(x,L) = (1 − x)L, it is straightforward to show by recurrence that

ψk(X/L,L) ≤ e−X. (7.41)

Then, with this bound and the dominated convergence theorem, the limit of the integral
in (7.40) is the integral of the limit and one shows by another straightforward recurrence that
limL→∞ ψk(X/L,L) = e−X .

Going back to (7.36), one then gets for any function b(L) such that b(L) = o(L)

E
X/L

[
φ̃k(b)

] ≤ e−X, lim
L→∞E

X/L
[
φ̃k

(
b(L)

)] = e−X. (7.42)

This completes the proof that φ̃k(b) and φk have the same distribution in the L → ∞ limit if that
limit exists.

We now compute the distribution of φ̃k(b) by writing a generating function. For μ ≥ 0, let

Gk(μ,x,L,b) = E
x
[
exp

(−μφ̃k(b)
)]

. (7.43)

(Here again, we consider that the parameter b of Gk is a number.) From (7.32),

Gk(μ,x,L,b) =
L−b∑
b′=0

p
(
b′)[ L

lnL

(
x +

∫ (lnL)/L

x

dyGk−1
(
μ,y,L,b + b′))]b′

(7.44)

=
L−b∑
b′=0

p
(
b′)[1 − L

lnL

∫ (lnL)/L

x

dy
[
1 − Gk−1

(
μ,y,L,b + b′)]]b′

.
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So

Gk

(
μ,

X

L
,L,b

)
=

L−b∑
b′=0

p
(
b′)[1 − 1

lnL

∫ lnL

X

dY

[
1 − Gk−1

(
μ,

Y

L
,L,b + b′

)]]b′

. (7.45)

If the Gk−1(· · ·) on the right-hand side did not depend on b′, one could compute exactly the sum
on b′ using Newton’s binomial formula. We will write bounds on Gk−1 using quantities that do
not depend on b′ and compute this sum.

To do this, remark that Gk is an increasing function of b. Indeed, as we forbid more bits (b
increases), we close more open paths, φ̃k(b) decreases (or remains constant) and, from (7.43),
Gk increases.

Therefore, a lower bound is easy: Gk−1(μ,Y/L,L,b + b′) ≥ Gk−1(μ,Y/L,L,b) and

Gk

(
μ,

X

L
,L,b

)
≥

[
1 − 1

L

∫ lnL

X

dY

[
1 − Gk−1

(
μ,

Y

L
,L,b

)]]L−b

. (7.46)

To obtain an upper bound, we use the fact that according to p, the probability that b′ is larger
than ln2 L is very small. Then, in (7.45), we cut the sum over b′ into two contributions. In the
first part b′ runs from 0 to �ln2 L� and in the second part it runs from �ln2 L�+ 1 to L− b. In the
first part, we write Gk−1(μ,Y/L,L,b + b′) ≤ Gk−1(μ,Y/L,L,b + �ln2 L�) and extend again
the sum to L − b. In the second part, we write that the term multiplying p(b′) is smaller than 1.
Hence,

Gk

(
μ,

X

L
,L,b

)
≤

[
1 − 1

L

∫ lnL

X

dY

[
1 − Gk−1

(
μ,

Y

L
,L,b + ⌊

ln2 L
⌋)]]L−b

(7.47)

+
L−b∑

b′=�ln2 L�+1

p
(
b′).

The remaining sum is of course the probability that b′ is larger than ln2 L, which is vanishingly
small as b′ is binomial of average and of variance smaller than lnL.

We can now show that Gk(μ,X/L,L,b) has a large L limit by recurrence. More precisely,
we will show that for any function b(L) which is a o(L),

G̃k(μ,X) := lim
L→∞Gk

(
μ,

X

L
,L,b(L)

)
(7.48)

exists and is independent of b(L).
This is obvious for k = 0 as G0(μ,x,L,b) = exp[−μ(1 − x)L], so that

G̃0(μ,X) = exp
[−μe−X

]
. (7.49)

Suppose that (7.48) holds up to level k − 1. Then for any function b(L) = o(L), the function
b(L) + �ln2 L� is also an o(L). We know from (7.43) and (7.42) that Gk(μ,X/L,L,b) ≥ 1 −
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μEX/L[φ̃k(b)] ≥ 1 − μe−X , so that we can use the dominated convergence theorem and obtain

lim
L→∞

∫ lnL

X

dY

[
1 − Gk−1

(
μ,

Y

L
,L,o(L)

)]
=

∫ ∞

X

dY
[
1 − G̃k−1(μ,Y )

]
. (7.50)

It is then straightforward from (7.46) and (7.47) to see that (7.48) holds at level k and that

G̃k(μ,X) = exp

[
−

∫ ∞

X

dY
[
1 − G̃k−1(μ,Y )

]]
. (7.51)

Equations (7.49) and (7.51) are the same as (4.15), which completes the proof.
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