
August 2020

EPL, 131 (2020) 40002 www.epljournal.org
doi: 10.1209/0295-5075/131/40002

How to generate the tip of branching random walks evolved
to large times
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Abstract – In a branching process, the number of particles increases exponentially with time,
which makes numerical simulations for large times difficult. In many applications, however, only
the region close to the extremal particles is relevant (the “tip”). We present a simple algorithm
which allows to simulate a branching random walk in one dimension, keeping only the particles
that arrive within some distance of the rightmost particle at a predefined time T . The complexity
of the algorithm grows linearly with T . We can furthermore choose to require that the realizations
have their rightmost particle arbitrarily far on the right from its typical position. We illustrate
our algorithm by evaluating an observable for which no other practical method is known.
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Introduction. – The branching Brownian motion
(BBM) [1] and branching random walks (BRW) are
stochastic processes [2] describing the time evolution of
increasingly many particles characterized by their spatial
positions [3]. These processes, supplemented or not by
some selection mechanism [4], can model a range of phe-
nomena in different fields of science, including physics [5],
biology [6] and chemistry [7], computer science [8], and
even economics [9].

In many applications of these branching processes in
one space dimension, it is important to characterize the
“tip” of the process, i.e., the distribution of particles
close to the rightmost particle, in typical and in rare
events [10–12]. Many properties of the tip can be deduced
from solutions to nonlinear evolution equations; in the case
of the BBM, the relevant equation [13] is a partial differen-
tial equation named after Fisher, Kolmogorov, Petrovsky,
Piscounov [14,15] (FKPP):

∂tu =
1
2
∂2

xu + u − u2. (1)
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For instance, the quantity P(Rt ≥ x), with Rt the position
of the rightmost particle at time t, is given by the solu-
tion to (1) for a step initial condition u(0, x) = 1{x≤0}.
More sophisticated observables can also be expressed; for
example, if n is the number of particles at time T on the
right of RT − a, then one can show [10] that 〈e−λn〉 =
1−∫

dx ∂au(T, x), where u(t, x) is the solution to (1) with
initial condition u(0, x) = 1{x≤0} + (1 − e−λ)1{x∈(0,a]}.

This method has however some limitations: obtaining
the tail of the distribution of n is impractical; other ob-
servables, such as the genealogical tree of the rightmost
particles [16] cannot be obtained in this way.

Because the number of particles in a branching process
increases exponentially fast with time, direct Monte Carlo
simulations are ill-suited except for small times. Further-
more, they would not allow to study rare events in which
the rightmost particle sits at a position very different from
its expected position.

In this letter, we present an algorithm designed to only
generate the particles ending in an interval [X − Δ, +∞)
at time T , in unbiased realizations conditioned to ei-
ther possess at least one particle to the right of X , or
to have their rightmost particle at position X exactly.
This algorithm allows to study the properties of the
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tip in rare or typical realizations evolved to very large
times.

While reminiscent of the classical spinal decomposition
of the BBM [17,18], our method is actually quite different
as we follow a tree of “special” particles.

We shall start by exposing the algorithm in the case
of a particular BRW which is easy to implement numeri-
cally. In a second section, we provide a formulation for the
BBM. A third section exposes briefly a variant of our algo-
rithm, and we conclude by showing the numerical calcula-
tion of an observable for which the algorithm is especially
efficient.

Generating realizations of a BRW with a particle
beyond a given point. – We consider a branching ran-
dom walk (BRW) on a spatial lattice with step δx, and in
discrete time with step δt. The system starts at time t = 0
with one single particle at the origin. During each time
step, a particle in the system evolves with the following
rules: it can

⎧⎪⎪⎨
⎪⎪⎩

jump from x to x + δx, probability pr,

jump from x to x − δx, probability pl,

duplicate without moving, probability r,

with pl + pr + r = 1. When a particle duplicates (or
branches), it is replaced by two particles at the same po-
sition which evolve independently afterwards.

We let Rt be the position of the rightmost particle at
time t, and we introduce u(t, x) = P(Rt ≥ x). The proba-
bility u satisfies the following discretization of (1):

u(t + δt, x) = pru(t, x − δx) + plu(t, x + δx)
+ru(t, x)[2 − u(t, x)], (2)

with initial condition u(0, x) = 1{x≤0}.
From standard results on FKPP [19], u evolves at large

time as a front centered around position mt = 〈Rt〉. (We
use 〈 · 〉 to denote expectations.) When t is large, mt =
v0t − 3

2γ0
log t + const + o(1), where v0 and γ0 are given

by v0 = v(γ0) = minγ v(γ), with v(γ) = 1
γ δt log(pre

γ δx +
ple

−γ δx + 2r); for a review see [20].
Pick a time horizon T and a target X . We introduce

“red particles” in the BRW in the following way:

Definition 1. A particle is red if its rightmost offspring
at time T lies in [X, ∞).

A first goal of the algorithm is to follow the trajectories
of all the red particles in the BRW conditioned on the
event that the initial particle is red. The algorithm works
for typical realizations if X−mT = O(1) or for rare events
if X − mT � 1.

Introduce U(t, x) as the probability that a given particle
at (t, x) is red. By definition of u:

U(t, x) := P( is red) = u(T − t, X − x). (3)

The probability that a particle at (t, x) is red and jumps
to the lattice site on its right is

P( ; is red) = prU(t + δt, x + δx).

(We write P(A; B) to mean P(A and B).) Then, the prob-
ability that the particle at (t, x) jumps right given that it
is red can be written as

P( | is red) = pr
U(t + δt, x + δx)

U(t, x)
. (4)

(We write P(A | B) = P(A; B)/P(B) for the conditional
probability of A given that B is realized.) Similarly, the
conditional probability of jumping left is

P( | is red) = pl
U(t + δt, x − δx)

U(t, x)
. (5)

We now turn to branching. Consider a particle branching
at (t, x), being thus replaced by two children at (t+ δt, x).
The probability that both these children are red is U(t +
δt, x)2 and the probability that exactly one of them is red
is 2U(t + δt, x)[1 − U(t + δt, x)]. Thus, the probability to
be red and branch into two red is

P

(
red
red ; is red

)
= rU(t + δt, x)2,

and the conditional probability is

P

(
red
red | is red

)
= r

U(t + δt, x)2

U(t, x)
. (6)

Similarly, the conditional probability, given that it is red,
that a particle branches into one red and one non-red is

P

(
red
non-red | is red

)
=

r
2U(t + δt, x)[1 − U(t + δt, x)]

U(t, x)
. (7)

One checks with (2) that the sum of the conditional prob-
abilities in (4), (5), (6) and (7) is 1. With these equations,
it is possible to generate realizations of the trajectories of
all the red particles given that the initial particle is red:
we simply start with a red particle at x = 0; then, any
red particle can either jump right or left with probabili-
ties (4) and (5), branch into two red with probability (6)
or do nothing with probability (7). (In the latter case,
the particle is actually branching into a red particle and a
non-red particle that we ignore.) The price to be paid is
that the probabilities of the different events are now time-
and space-dependent.

The mechanism can be extended to furthermore follow
the trajectories of all the particles arriving in [X − Δ, X)
for some length Δ. Introduce orange and blue particles:

Definition 2. A particle is orange if its rightmost off-
spring at time T lies in [X − Δ, X).

Definition 3. A particle is blue if its rightmost offspring
at time T lies in (−∞, X − Δ).

(Then, all non-red particles are either orange or blue.)
Introduce VΔ(t, x) as the probability that a particle at
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Fig. 1: A realization of the red (dark) and orange (light) par-
ticles in the BRW up to T = 50 with X = 85.1 � mT + 3

√
T

and Δ = 5, compared to the curve mt. The inset is a zoom of
the final times.

(t, x) is orange. By definition of u and U , one has

VΔ(t, x) := P( is orange) = U(t, x + Δ) − U(t, x).

An orange particle can be created by the branching of a
red particle: we replace (7) by the probability for a red to
branch into a red and an orange

P

(
red
orange | is red

)
= r

2U(t + δt, x)VΔ(t + δt, x)
U(t, x)

,

(8)
and the probability to branch into a red and a blue

P

(
red
blue | is red

)
=

r
2U(t + δt, x)[1 − U(t + δt, x + Δ)]

U(t, x)
. (9)

Once orange particles are created, we need to follow their
trajectories. Conditioned on the event that a particle is
orange, the probabilities that it jumps right, jumps left or
branches into two orange particles are given, respectively,
by (4), (5) and (6) with U replaced by VΔ. The probability
that an orange branches into one orange and one blue
is, similarly to (9), r × 2VΔ(t + δt, x)[1 − U(t + δt, x +
Δ)]/VΔ(t, x).

To implement our algorithm, we represent the state of
the system at a given time t by two arrays indexed by
x containing the numbers of red and orange particles. To
forward the system to time t+δt, one observes that on each
site in each set, the numbers of particles undergoing the
different possible events obey multinomial laws with pa-
rameters that we can compute from u(t, x). This requires
to integrate numerically (2) before the event generation
begins.

We have set the probabilities of the elementary pro-
cesses to r = δt, pr = pl = 1

2 (1 − δt), and the lattice sizes
to δt = 0.01 and δx = 0.1; with this choice of parameters,
the BRW is a discretized version of the BBM. A realization
of this conditioned BRW is displayed in fig. 1.

In order to validate our algorithm and its implementa-
tion, we have measured the expected number of particles

Fig. 2: The expected number 〈n(a)〉 of particles at site RT −
a, multiplied by e−γ0a (where γ0 = 1.43195 . . . in the model
used here), as a function of a, for T = 400 and two values
of X. The dots are obtained from 3 106 realizations of the
algorithm outlined in this letter. The lines are from a numerical
integration following the methods of [10]. For a = 0, we have
removed 1 to the count of particles.

at distance a from the lead particle, because this quan-
tity can also be evaluated from the formalism developed
in [10] by solving numerically an equation related to (2).
(See also the discussion in the introduction.) The results
displayed in fig. 2 show a perfect agreement between both
methods within statistical uncertainties.

Continuous limit: conditioning the BBM. – The
branching Brownian motion (BBM) is the continuous ver-
sion of the BRW. The particles in a BBM perform inde-
pendent Brownian motions and branch with rate 1 (so that
during each infinitesimal time dt, each particle is replaced
by two particles with probability dt).

The method described in the previous section can be
adapted to the BBM; the goal is not necessarily to gener-
ate realizations, but to offer a starting point to analytical
studies of the tip in typical and extreme events.

Introduce as before u(t, x) = P(Rt ≥ x) as the proba-
bility that the rightmost particle at time t is on the right
of x. It satisfies the FKPP equation (1) with initial condi-
tion u(0, x) = 1{x≤0}. Introduce also red particles in the
BBM, as in the BRW. The probability that a particle is
red is still U(t, x) = u(T − t, X −x). We first consider the
probability that a particle, conditioned to be red, branches
into two red particles between t and t+ δt. The reasoning
leading to (6) is still valid and gives, to leading order in δt,

P

(
red
red | is red

)
= δt U(t, x) + O(δt2). (10)

(Compare to (6) with r = δt.) Similarly, the conditional
probability for branching into a red and a non-red is

P

(
red
non-red | is red

)
= δt 2[1 − U(t, x)] + O(δt2).

(Compare to (7).) We now turn to the motion of one
single red particle during a time δt � 1. As branching
occurs with small probability of order δt, we ignore this
possibility in the discussion below. The probability that a
particle at (t, x) moves during δt by Δx ∈ [ε, ε+dε] (which
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we write for short Δx ∈ dε) and is red is

P(Δx ∈ dε ; is red) =
e− ε2

2 δt√
2π δt

dε × U(t + δt, x + ε).

Dividing by U(t, x) gives P(Δx ∈ dε | is red); then, mul-
tiplying by ε and integrating over ε, we obtain after chang-
ing variable ε = z

√
δt and expanding for small δt,

〈Δx | is red〉 = δt ∂x ln U(t, x) + O(δt2). (11)

With (11) and (10), we thus obtain the following result:
The trajectories of the particles in a BBM ending on

the right of X at time T , conditioned on the event that
there is at least one of them, is a BBM with a space- and
time-dependent drift ∂x ln U(t, x) and a space- and time-
dependent branching rate U(t, x).

If orange particles are needed, one checks that a red
particle branches out an orange particle at rate 2VΔ(t, x),
that an orange particle branches into two orange at
rate VΔ(t, x) and that orange particles have a drift
∂x ln VΔ(t, x).

There is another way to construct the tree of red par-
ticles in the BBM. Consider a particle at (t, x) and call
(τ1, ξ1) the time and place of the next branching event (so
that τ1 > t). One has, for x1 ∈ R and t1 > t,

P(τ1 ∈ dt1; ξ1 ∈ dx1) = e−(t1−t)dt1 × e
− (x1−x)2

2(t1−t)√
2π(t1 − t)

dx1.

For t1 < T , the probability that the particle that just
branched is furthermore red is obtained by multiplying the
right hand side by U(t1, x1)[2−U(t1, x1)], the probability
that at least one of the two children is red. Then, dividing
by U(t, x) we obtain the conditional probability

P(τ1 ∈ dt1; ξ1 ∈ dx1 | is red) = e−(t1−t)dt1

× e
− (x1−x)2

2(t1−t)√
2π(t1 − t)

dx1 × U(t1, x1)[2 − U(t1, x1)]
U(t, x)

. (12)

Note that this probability is not normalized: the integral
of (12) on x1 ∈ R and on t1 ∈ [t, T ] is smaller than 1, and
the remaining probability corresponds to the event that
the next branching occurs after the time horizon T . In
that case, the trajectory up to time T of the red particle
is simply a Brownian motion (no branching) conditioned
to finish on the right of X .

With (12) one can draw the coordinates (τ1, ξ1) of the
next branching event. The trajectory between t and τ1
is then a Brownian motion conditioned to be at position
(τ1, ξ1). It remains to determine the type of branching at
time τ1. With no conditioning, the probability to branch
into two red is U2, writing for short U instead of U(τ1, ξ1),
and the probability to branch into one red and one non-
red is 2U(1 − U). Then, given that the branching particle
is red, the probability that it branches into two red is
U/(2 − U). With the complementary probability, only
one red particle remains. In either case, the algorithm is
restarted from (τ1, ξ1).

Variant: fixing the exact position of the right-
most particle. – We briefly present a variant of our al-
gorithm. The idea is to condition the red particles at
time T to be exactly at position X , rather than in [X, ∞).
In the BRW, the probability for a particle at (t, x) to
have its rightmost offspring at time T exactly on lattice
site X is

Ũ(t, x) := u(T − t, X − x) − u(T − t, X − x + δx).

Compare to (3). Then, following the same argument as
above, the evolution probabilities for these “new red” par-
ticles are given by (4), (5), (6) and (8) with U replaced by
Ũ and by (9) with the two U outside the square brackets
replaced by Ũ . With these new equations, one can follow
the “new red” (and the orange) particles.

This variant is a bit more difficult to implement cor-
rectly, because it is harder to obtain a good numerical
precision for Ũ than for U . Its advantage is that it allows
to generate unbiased realizations of all the particles on the
right of RT − Δ in a BRW. To do this, for each realiza-
tion, we first draw the value of RT ; as we need anyway
to compute u(T, x) = P(RT ≥ x), this operation is easy.
Then, we run the variant of our algorithm with X = RT

to generate the “new red” particles (ending at X) and
the orange particles (ending in [X − Δ, X)). The result-
ing particles form an unbiased realization of the tip of the
BRW.

For the BBM, the same variant can also be used; the
probability of ending in dX is ∂xU(t, x) dX , and one finds
that the “new red” particle follows a Brownian motion
with drift ∂x ln[∂xU(t, x)], compare to (11). This particle
branches out particles conditioned to end to the left of X
with rate 2[1−U(t, x)]. (More precisely, it branches orange
particles with rate 2VΔ(t, x) and blue particles with rate
2[1 − U(t, x) − VΔ(t, x)] = 2[1 − U(t, x + Δ)].) It cannot
branch into two “new red” particles, because there is a
probability zero that a second particle ends up exactly at
position X . This description of the BBM, with exactly
one marked particle branching BBMs conditioned to not
overtake it, is the same as the spine description [17].

Conclusion and outlook. – We have presented a
simple algorithm to generate only the tip (the rightmost
particles) in realizations of BRW in which the rightmost
particle is constrained to be on the right of an arbitrary
position X at an arbitrary time T or, in a variant, to be
exactly at X . We have validated it by comparing Monte
Carlo calculations obtained with this algorithm to predic-
tions obtained by a different method.

When X is large compared to the expected position mT

of the rightmost particle at time T , our algorithm allows to
study rare realizations. When X is close to mT , it allows
to generate more typical realizations.

Our algorithm enables the study of observables of the tip
region of the BRW for which no other method is available
to date. For example, we have measured numerically the
distribution of the number of particles at distance a to
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Fig. 3: Rescaled tail distribution P(n ≥ 〈n〉z) as a function of z
for the number n of particles at position RT − a with T = 400,
for two values of X and three values of a. These probabilities
were measured from the same realizations as for fig. 2. The
distribution of n is roughly exponential for X = mT , but it
exhibits a much fatter tail when X = mT + 3

√
T .

the left of the rightmost, in typical and rare realizations,
see fig. 3, and this will allow to check a recent heuristic
calculation in [21].

Among the further developments made possible by this
algorithm, we intend to investigate observables such as the
distribution of the genealogical tree of the particles in the
tip [16,22].

While our main focus has been the BRW, we have also
given a theoretical description of the conditioned BBM
which may be useful to give a mathematical description of
the tip along lines similar to [11].
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