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The so-called mixed feedback loop (MFL) is a small two-gene network where protein A regulates the
transcription of protein B and the two proteins form a heterodimer. It has been found to be statistically
over-represented in statistical analyses of gene and protein interaction databases and to lie at the core of several
computer-generated genetic networks. Here, we propose and mathematically study a model of the MFL and
show that, by itself, it can serve both as a bistable switch and as a clock (an oscillator) depending on kinetic
parameters. The MFL phase diagram as well as a detailed description of the nonlinear oscillation regime are
presented and some biological examples are discussed. The results emphasize the role of protein interactions in
the function of genetic modules and the usefulness of modeling RNA dynamics explicitly.
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I. INTRODUCTION

Biological cells rely on complex networks of biochemical
interactions. Large scale statistical analyses have revealed
that the transcriptional regulation networks and the networks
of protein-protein interaction for different organisms are far
from random and contain significantly recurring patterns [1]
or motifs. Mathematical modeling is useful to determine if
these motifs can by themselves fulfill useful functions and it
has, for instance, helped to show that the common ‘“feed
forward loop” motif in transcriptional regulation [1] can act
as a persistence detector [2]. More recently, a combined
analysis of protein-protein interactions and transcriptional
networks in yeast (Saccharomyces cerevisiae) has pointed
out several motifs of mixed interactions [3,4]. The simplest
such motif composed of both transcriptional and protein-
protein interactions is the two-protein mixed feedback loop
(MFL) depicted in Fig. 1. It is composed of a transcription
factor A, produced from gene g,, and of another protein B,
produced from gene g,,. A regulates the transcription of gene
g, and also directly interacts with protein B. The MFL has
independently been obtained as the core motif of several net-
works produced in a computer evolutionary search aiming at
designing small functional genetic modules performing spe-
cific functions [5]. Here, to better understand the possible
functions of this basic module, we propose a model of the
MFL based on the simplest biochemical interactions. This
mathematical model is described in Sec. II. This is used to
show that there exist wide ranges of kinetic parameters
where the MFL behaves either as a bistable switch or as an
oscillator. For the convenience of the reader, an overview of
the different dynamical regimes is provided in Sec. III. They
are delimited in parameter space and their main characteris-
tics are summarized. We then give detailed descriptions of
the bistable regime in Sec. IV and of the nonlinear oscilla-
tions in Sec. V. A comparison is also made with a simple
autoinhibitory gene model with delay. In the concluding sec-
tion, the important role played by protein dimerization and
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the usefulness of explicitly modeling mRNA dynamics are
underlined and biological examples of the two proposed
functions of the MFL are discussed.

II. A MATHEMATICAL MODEL OF THE MFL

A. Model formulation

As previously described, the MFL consists of two proteins
A and B and their genes g, and g,, such that A regulates the
transcription of gene g, and also directly interacts with B.
Our aim is to analyze the dynamics of this small genetic
module and see what can be achieved in the simplest setting.
Therefore, different cellular compartments and separate con-
centrations for the nucleus and cytoplasm are not considered
and biochemical reactions are modeled by simple rate equa-
tions.

The proposed MFL model is represented schematically in
Fig. 2 and consists of four equations that are described and
explained below. The concentration of a chemical species X
is denoted by square brackets and the cell volume is taken as
volume unit. So, [X] represents the effective number of X
molecules present in the cell.

The first two equations model the transcriptional regula-
tion of gene g, by protein A

% = 0[g,:A] - ofg,l[A], (1)
t
d[drtb] = plgpl + pplgp:Al = 6,11l @

where it is assumed that gene g, exists under two forms, with
A bound to its promoter with probability [g,:A] and without
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FIG. 1. Schematic representation of the over-represented MFL
motif [4]. The bold arrow represents a transcriptional regulation
interaction and the dashed double arrow represents a protein-protein
interaction.
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FIG. 2. The proposed model of the MFL motif. The Greek let-
ters denote the model’s different kinetic constants. The large crosses
symbolize the degradation of the corresponding species.

A with probability [g,]. Since [g,]+[g,:A]=1, the single Eq.
(1) is sufficient to describe the transition between the two
forms. Specifically, A proteins bind to the g, promoter at a
rate a and when bound they are released at a rate 6. The
regulation of transcription of gene g, by protein A is de-
scribed by Eq. (2) where r;, stands for g, transcripts. When A
is bound to the g, promoter, the transcription is initiated at a
rate p, and, otherwise, it is initiated at a rate p,. Thus, p,
>py corresponds to transcriptional activation by A and p,
<py to transcriptional repression. A first-order degradation
for g, mRNA at a constant rate J, has also been assumed. As
given, the description is strictly valid for a single copy gene.
However, it also applies for a gene with g, copy (e.g., go
=2) provided that p, and p, are understood to be go-fold
greater than the corresponding elementary rates.

The production of the A and B proteins and their com-
plexation are described by the following two equations that
complete our description of the MFL module:

% = pa— ABIA]- Si[A]+ Olgy:Al - alg, )AL (3)
d[B]
D7 Blry] — ABIA] - 5[ B], (4)

where [A] and [B], respectively, denote the concentration of
proteins A and B. Since regulation of gene g, is not consid-
ered, separate descriptions of its transcription and translation
are not needed and it is simply assumed in Eq. (3) that pro-
tein A is produced at a given basal rate p,. The second cru-
cial interaction of the MFL, the direct interaction between
protein A and B is taken into account by assuming that A and
B associate at a rate 7. It is assumed that B does not interact
with a protein A that is bound to the g, promoter. In addition,
Eq. (3) assumes a first-order degradation of protein A at a
constant rate &, and its last two terms come from the (small)
contribution to the concentration of A in solution of the bind-
ing (unbinding) of A to (from) the g, promoter. Equation (4)
assumes that B proteins are produced from the transcripts of
gene g, at a rate 8 and are degraded at a rate g in addition
to their association with A proteins.
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As described by Egs. (3) and (4), the complexation be-
tween A and B proteins proceeds at a rate y. For simplicity,
we suppose that the AB complex does not interact with genes
g, and g,, we neglect its dissociation [6] and simply assume
that it is fully degraded at a rate d,5 after its formation,

d[AB]
S = MBYAT - SulAB]. 5)
Since the complex AB does not feed back on the dynamics of
the other species, its concentration does not need to be moni-
tored and Eq. (5) is not explicitly considered in the follow-
ing.

B. Values of kinetic parameters and a small dimensionless
parameter

Even in this simple model, ten kinetic constants should be
specified. It is useful to consider the possible range of their
values both to assess the biological relevance of the different
dynamical regimes and to orient the model analysis.

Half-lives of mRNA range from a few minutes to several
hours and are peaked around 20 min in yeast [7]. Therefore,
5,=0.03 min~! can be taken as a typical value.

For the transcription factor-gene promoter interaction,
typical values appear to be a critical concentration 6/«
=[A], in the nanomolar range, a bound state lifetime of sev-
eral minutes and activated transcription rates of a few
mRNAs per minute. Therefore, we assume a= 6/40, that 6 is
of the same order as &, and p;and pj, range from 0.1 min~! to
10 min~".

Protein half-lives vary from a few minutes to several days
[8]. The hour appears as a typical value. We choose §,=
=0.01 min~" and more generally consider that the A and B
protein half-lives are of the same order or longer than that of
g, mRNA. For protein production, 8=3 protein molecules
per mRNA molecule per minute appears a plausible value for
an eucaryotic cell [9]. This gives p,==100 min~! when com-
bined with the previous values for mRNA production.

We assume that the protein interaction is essentially lim-
ited by diffusion. A diffusion constant D=2.5 um?s~' [10]
gives a time s?/D of about a minute for diffusion across a
cell of a size s=10 um. Therefore, we choose y==1 min~!.

It is convenient to introduce dimensionless variables [Egs.
(1)=(4)] to decrease as far as possible the number of inde-
pendent parameters.

We first normalize the g, mRNA concentration by the
concentration that gives a production of B protein equal to
that of A. Thus, we define the dimensionless concentration
r=p[r,]/ ps. We normalize the protein concentrations by the
equilibrium concentration resulting from productm a rate
p4 and dimerization at a rate y and define A=\vy/p,[A], B
=\y/ps[B]. We also take as the time unit the inverse of g,
mRNA degradation rate 1/5,. With these substitutions, Eqs.
(1)—(4) read,

L

g _ o _ A
dt—ﬁ{(l g) gAJ, (6)

031908-2



CORE GENETIC MODULE: THE MIXED FEEDBACK LOOP

B high

Bistability

FIG. 3. Different dynamical regimes of the MFL as p, and p;
are varied. The borders between different regimes are shown as
computed from numerical solutions of Egs. (18) and (31) for [
=1.33 (full lines) or 6=26.6 (dashed lines) as well as given by the
asymptotics expansions [Egs. (28), (30), (36), and (41)] for 6
=1.33 (+ symbols). Here, and in all the following figures, except
when explicitly specified, the other parameters are [A]y
=40 mol, =3 min™!, §,=0.03 min~!, §,=0.01 min~!, §3=0.01
min~!, p,=100 mol min~!, y=1 mol~! min~! where mol stands for
molecules and min for minutes. The corresponding dimensionless
parameters are 6=0.003, d,=d;,=0.33, Ag=4, u=0.31.

d

dB 1

Z = S(}"—AB) - d},B, (8)
dA 1 = A
E:E(I—AB)+,U/0|:(1_g)_gA_O:|_daA’ (9)

where we have defined the following rescaled parameters &

=8,/\pavs  P1=Bps/ (p45)),  po=Bps/ (p46,), 0=0616, n
=\l p4, d =684/ 6, and d,= S/ 5,. We have also introduced
the dimensionless critical binding concentration A,
=\y/ps6/ a. The model still depends on seven parameters.
In order to simplify its analysis, it is useful to note that J is
a small parameter (approximately equal to 3 X 1073 with the
previous estimations). The influence of three key parameters
of order one in Egs. (6)—(9) is particularly examined in the
following. These are p, and p; which measure the strengths
of the two possible states of B production (with or without A

bound to gene g;,) as compared to that of A, and 6 which
compares the rates of A unbinding from DNA to that of
mRNA degradation (« is supposed to vary with € to maintain
a fixed critical binding concentration A).

III. OVERVIEW OF THE DYNAMICS IN DIFFERENT
PARAMETER REGIMES

We provide here an overview of the different dynamical
regimes of the MFL, which are depicted in Fig. 3, and sum-
marize their characteristics. The behavior of the MFL de-
pends on whether protein A is a transcriptional activator or a
transcriptional repressor and on the strengths of the two tran-
scription rates of gene g, (i.e., with A bound or not to its
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promoter). More precisely, the key parameters are the
strengths of B protein production, Bp,/d, and Bp,/ 5, as
compared to the production rate p, of protein A. Therefore, it
is convenient to consider the previously introduced ratios
po=PBps/ (6,p4) and p,=Pp,/(5,p4)-

We have observed that depending on the values of p, and
p1 the MFL can be monostable, exhibit bistability, or display
oscillations. We qualitatively describe these three different
cases in the following. Their biological relevance is further
discussed in Sec. VI.

A. Monostable steady states

The simplest case occurs when the production rate of A is
higher or lower than the production rate of B, irrespective of
the state of the g, promoter. That is when both Bp,/ 5, and
Bpy/ o, are either higher or lower than p,. In this case, the
MFL has a single stable state to which it relaxes starting
from any initial conditions.

When both B production rates are higher than the produc-
tion rate of A (i.e., po>1 and p;>1), A proteins are quickly
complexed by B and are unable to interact with the g, pro-
moter. The concentration [A] of uncomplexed A proteins is,
therefore, low and results from a simple balance between
production and complexation. The high concentration of un-
complexed B proteins is the effective result from transcrip-
tion at the free g, promoter rate, complexation, and degrada-
tion,

[B]=5L<B%£—m>, [A]z%. (10)
B r

An equally simple but opposite result holds when both B
production rates are smaller than the production rate of A
(pp<1 and p; <1). Then, the concentration of uncomplexed
A is high, the g, promoter is occupied by A, and a low B
concentration results from a balance between complexation
and degradation,

1 Py ) Bpy
Al=—\ps—-B—Z )], |B]l= . 11
[A] 5A<PA 35r [B] 3[Aly (11)
The dynamics of the MFL is richer when the production
rate of A is intermediate between the two possible production
rates of B, Bp,/ 5, and Bp,/ 5, i.e., when either py>1>p, or
p1>1>py. We consider these two cases in turn.

B. Transcriptional repression and bistability

We first discuss the case when A is a transcriptional re-
pressor, po>>1>p,. Then, two stable steady states can coex-
ist. Let us suppose first that no A is bound to the g, promoter.
Then the production rate of B is larger than the production
rate of A, and all produced A proteins are quickly complexed.
This stably prevents the binding of A proteins to the g, pro-
moter and maintain a steady state with low A and high B
concentrations approximately equal to

(8], = (ﬁﬂ’f—m)i [A], =

: 12
5 5 (12)

_Pa_
B,
The second opposite possibility is that A is sufficiently abun-
dant to repress the transcription of gene g,. Then, since the
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FIG. 4. In the bistable regime, a graded increase of p,, the
production of A, results in a jump in A concentration. The param-
eters are p;=0.2 molmin™', p,=2 mol min~', and #=0.04 min~".
The other parameters are as in Fig. 3.

production rate of A has been supposed to be higher than the
production rate of B in the repressed state, B proteins are
quickly complexed but uncomplexed A proteins are present
to maintain the repression of the gene g, transcription. This
gives rise to a second stable state with high A and low B
concentrations approximately equal to

AR Bps
[Al (PA B5r> PN (B, YALLS, (13)
The bistability domain is only exactly given by the simple
inequalities py>1 and p; <1 when the ratio 6 of g, mRNA
degradation rate over the effective protein dynamics rate is
vanishingly small. As shown in Sec. IV and in Fig. 3, for
small values of ¢, it is more accurately given by

po > 1+2V(1 = p))SplAg, pr=<1,
’/—
p1<1-2V(py= 1Ay, po=1. (14)

In this intermediate range of production of A proteins, the
network reaches one or the other fixed points, depending on
its initial condition. The existence of this bistability domain
can serve to convert a graded increase in A production in a
much more abrupt switchlike response in A (and B) concen-
tration as shown in Fig. 4. The usefulness of this general
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FIG. 5. The oscillation domain for the same parameters as in
Fig. 3 but for a larger domain of py, the ratio of activated production
of B to that of A. As in Fig. 3, the short-dashed line marks the
boundary of the domain where the steady stable is unstable to os-
cillations for #=26.6. Numerical simulations (diamonds) show that
the oscillating regime is stable up to the long-dashed line. There-
fore, both the limit cycle and the fixed point are stable attractors for

6=26.6 in the region between the short-dashed and long-dashed
lines.
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FIG. 6. MFL in the oscillatory regime. The concentrations of the
different species are shown as a function of time and display sus-
tained oscillations. Constants are the same as in Fig. 4 except that
pa=100 mol min~!, pr=0.1 mol min~', and p,=5 mol min~".

feature of multistability has been recently discussed in dif-
ferent contexts [11,12].

C. Transcriptional activation and oscillations

When A is a transcriptional activator, the complexation of
B with A acts as a negative feedback and can serve to dimin-
ish the variation in B protein concentration when A varies.
This leads also to oscillations when A production lies in the
intermediate range p;>1>p,. This oscillatory behavior
mainly depends on the ratios of protein production p,, p;
and exists for a large range of DNA-protein interaction ki-
netics. However, a faster kinetics leads to a smaller oscilla-
tory domain as shown in Fig. 3. Oscillations cannot be sus-

tained when 6 becomes large and comparable to 1/6 (with
A, fixed) or equivalently when 6~ &8,/ 5. It can also be noted
that for a sufficiently large activation of transcription by A,
there exists a domain of coexistence between oscillations and
steady behavior as shown in Fig. 5, i.e., depending on the
initial conditions, concentrations will oscillate in time or
reach steady levels.

For small &, oscillations are nonlinear for most param-
eters. As can be seen in Fig. 6, an oscillation cycle comprises
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two phases in succession, a first phase of duration 7', when
the concentration of protein A is high followed by a second
phase of duration 7, where the concentration of B is high. A
full oscillation cycle of period T=T;+T, proceeds as fol-
lows. Let us start with low concentrations of A and B pro-
teins at the beginning of the first phase. When no A is bound
to the g; promoter, the B production rate is lower than the A
production rate and complexation cannot prevent the in-
crease of A concentration. When the concentration of A has
reached a critical level, A starts to bind to the g, promoter
and activate transcription. This results in a higher production
of B than A and the diminution of free A by complexation.
Since the A concentration is high, the produced Bs are
quickly complexed and the concentration of uncomplexed Bs
remain low. Eventually, the A concentration drops below the
binding level and no longer activates the g, transcription.
This marks the transition between the two parts of the oscil-
lation cycle. B continues for a while to be produced from the
transcripts, and since few As are present, this now leads to a
rise of the concentration of free Bs. Finally, the concentra-
tions of B transcripts and B proteins drop and phase II of the
oscillation cycle terminates. A new cycle begins with low
concentrations of A and B proteins.

One remarkable feature of the nonlinear oscillations com-
ing from the smallness of the parameter & is that the concen-
trations of A and B proteins in their respective high phase
depend weakly on the complex association rate 7, as long as
it is not too small for the oscillation to exist, and that the
period of the oscillations is strikingly insensitive to the exact
value of vy. For the parameters of Fig. 6, the oscillation pe-
riod only changes by about 1% when v is reduced from
1 min™! to 2 X 1072 min~!. This remains true even if the for-
mation of the complex AB is not irreversible as is supposed
in the present model. We have checked that the case when
the complex AB forms with an association rate vy, dissociates
with a rate vy, and is degraded with a rate 8,5 is well de-
scribed by the present model when one takes the effective
rate y=,6,p/ (y,+ S4p) for the irreversible formation of the
complex (as obtained from a quasiequilibrium assumption).

In Secs. IV and V, we provide a more detailed analysis of
the MFL different dynamical regimes and derivations of the
results here summarized.

IV. THE SWITCH REGIME

We first determine the possible steady states for the MFL.
The free gene, mRNA, and B protein concentrations are
given in a steady state as a function of the A concentration
by,

Ap
= s 15
T A+A, (15)
A+
r=P]—P(y% (16)
A+A,
A+
=p1—poz%. (17)
(A+Ay(A + &dy)

The concentration of A itself satisfies the following equation:
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(p1A + ppAg)A

1= 8dA+ (A+A)A+dy)

(18)
For 6=0, the right-hand side (rhs) goes monotonically from
po at small A to p, at large A and a solution, A,=A(pgy
—1)/(1-p,) exists only when p,<1<p, or p;<1<p,. For
small &, two other steady states are possible. A steady state
with a small concentration of A, A;=&d,/(py—1), exists
when p,> 1. Inversely a steady state with a large concentra-
tion of A, A3=(1-p,)/(6d,) exists when p, <1. Therefore,
Eq. (18) has multiple (i.e., three) fixed points only when A is
a transcriptional repressor in the region p; <1<p,. This is
the parameter regime, which we examine in Secs.
IV A-IV C.

A. The high A state

We show that the state with a high concentration of A
proteins is stable. The forms of Egs. (8) and (9) suggest
simplifying the analysis by using the fact that the protein
quickly reach a quasiequilibrium state. However, both pro-
teins cannot be in quasiequilibrium at the same time. For
instance, when proteins A> B, only B is in quasiequilibrium
and A scales as 1/6. When the A concentration is high, in the
limit of small &, we set a=J8A. Substitution in Egs. (6) and
(8) shows that g and B reach on a fast time scale their qua-
siequilibrium concentration

g = dAyla, (19)

B = érla. (20)

Therefore, the dynamics of the MFL reduces to the fol-
lowing two equations in the limit 6—0:

dr
—=p, -7, 21
dt p1—r (21)

da
—=1-r-d,a. (22)
dt
Equations (21) and (22) clearly show that the high A fixed
point is stable and, as found above, satisfies r=p;, B=g
=0, a=(1-p,)/d, at the lowest order. This steady state is
possible only if p; <1, that is when the B production rate is
not high enough to titrate A and to prevent the repression by
A.

B. The high B state

The high B state can be analyzed in a very similar way in
the limit of small 6. When the B concentration is high, we
define b=0B. In that case, A quickly reaches its quasiequi-
librium concentration,

A= lb, (23)

and the MFL dynamics reduces to the following three equa-
tions:
dg

E=0(1—g), (24)
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dr

—=pog+p(1-g)—r, 25

5 = Pos pi(1-g)-r (25)
db 1—d,b. (26)
@ _
dt b

The concentrations tend toward those of the high B fixed
point g=1, r=py, b=(py—1)/d, A=0. This steady state
exists only if py>1, when the production of B proteins is
high enough to titrate A proteins and to prevent transcrip-
tional repression by A.

C. Bifurcation between the monostable and bistable regimes

The previous analysis has shown that bistability exists in
the domain py>1>p; when 6<1. We analyze more pre-
cisely the nature and position of the bifurcations between the
monostable and bistable regimes.

We consider first the transition between the bistable re-
gion and the monostable region with a high concentration of
A (bottom-left corner in Fig. 3). It follows from Eq. (18) that
the low (A;) and middle (4,) A concentration fixed points
coalesce and dlsappear when p)— 1=0(\/8) and both A, and
A, are of order yé. For A~ Eq. (18) becomes at the
dominant order after expansion,

A d,
—1=(1-p)—+5—. 27
po=1=(1-p)p-+ 5 @7)

For a given repression strength p; <1, the rhs has a mini-
mum for A=+/8d,Ay/(1-p,) (that is of order VS as assumed)

such that
sdy(1 -
p0=1+2\/¥+0(5). (28)
0

Above this value of py, Eq. (27) has two solutions and below
it has none. Therefore, Eq. (28) marks the saddle-node bifur-
cation line that separates the bistable domain from the
monostable domain with a high A concentration fixed point.
For 6—0, the zeroth order boundary py,=1 is, of course,
retrieved.

The approximate expression (28) agrees well with an ex-
act numerical determination of the bifurcation line as shown
in Fig. 3.

The transition between the bistable regime and the low A
concentration monostable regime (top-right corner of Fig. 3)
can be similarly analyzed. The high (A;) and middle (A,) A
concentration fixed points can coalesce when for both the
concentratlon A is of order 1/1/5. Expansion of Eq. (18) for

~1/\s gives

1-p=(po- 1)_ + OdsA. (29)
For Mhe rhs of Eq. (29) is the minimum for
A=+\Ay(py—1)/(8d,) and at this minimum, p, is equal to
R
p1=1-2Vd,Asd(po—1). (30)

For p; smaller than this value, Eq. (29) has two roots corre-
sponding to A, and As. The two roots merge and disappear
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on the saddle-node bifurcation line (30) that marks the
boundary between the bistable domain and the low A con-
centration monostable regime. Comparison between the ap-
proximate expression (30) and an exact numerical determi-
nation of the bifurcation line is shown in Fig. 3.

V. THE OSCILLATOR REGIME

We consider now the case when A is a transcriptional
activator, that is when py<<p,. In this case, the MFL has a
single steady state since the rhs of Eq. (18) is a monotoni-
cally increasing function. However, as we show below, this
steady state is unstable in a large domain of parameters and
the MFL behaves as an oscillator.

A. The linear oscillatory instability

We begin by analyzing the linear stability of the fixed
point (g",r",B",A”) where A" is the single solution of Eq.
(18) and g", r*, and B" are given as functions of A* by Egs.
(15)—(17). After linearization of the MFL dynamics [Egs.
(6)—(9)] around this fixed point, the complex growth rates o
of perturbations growing (or decreasing) exponentially in
time like exp(o7) are found to be the roots of the following
characteristic polynomial:

[a+5<1+§—:)}[a+1]
(e )-22]
X|\o+d,+ < |\o+d,+— | -—3

S o 5

= A—O{E(Po—m) - po(o+ 1)<¢T+ dy+ g)}

(€2))

Again, the fact that J is small simplifies the analysis. We
consider first the case when the rescaled concentrations
g, r", B, A" are of order one. This corresponds to the fixed
point A, of the previous part in the parameter regime p
<1<p;, with A"=Ay(1-py)/(p;—=1), B"=1/A", and g"
=(p;—1)/(p;—py)- Let us assume that the roots o diverge as
6 tends to zero. Then, Eq. (31) reduces at dominant order to

* 7w

" ~ A0
60+ A"+ B) =" (g ). (32)
0

Therefore, three roots oy, k=0, 1, 2, are of order &~ 13 and
proportional to the three cubic roots j* of unity

A* *
-k o -
[A +B Ao (pl

1/3
po)] , k=0,1,2. (33)

The fourth root o is of order 1/ 6 and corresponds to a stable
mode of real part —(A“+B")/ 8. The two roots o and o, are
complex conjugates and have a positive real part. Thus, in
this parameter domain, the MFL fixed point is oscillatory
unstable. The dynamics tends toward an attractive limit cycle
that we will analyze in Sec. V B. When A™ or B” grows (i.e.,
when p;— 1 or py— 1) the fixed point instability disappears
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via a Hopf bifurcation. We analyze these two boundaries in
turn.

1. A™ high
When p, — 1, A" becomes large and the real parts of the
roots become of order one. Thus, Eq. (31) needs to be ap-
proximated in a different way. We neglect 8(o+d,,) and B” as
compared to A™ in Eq. (31) and obtain

E(Pl -1

, (34
o, (34)

<G'+ 5u)(0'+ (o+d,)=-
p1—1

where we have replaced A” and g” by their expressions at the
A, fixed point. When the rhs is the dominant constant in Eq.
(34), its three roots are proportional as above to the three
roots of (minus) unity and two of them have positive real
parts. On the contrary, when p; becomes sufficiently close to
1, the rhs of Eq. (34) becomes negligible and Eq. (34) has
obviously three real negative roots. Therefore, when p; — 1,
one traverses the boundary of the linearly unstable region.
Two roots of Eq. (34) traverse the imaginary axis on this
boundary in a Hopf bifurcation. Assuming (and checking af-
terward) that, on this boundary, these roots are small com-
pared with 1/(p;—1), their expressions are found perturba-
tively by expanding the first factor in Eq. (34),

ed,  (0=1' i [(pim1)
- 2 2(p1 - po)ongé - 2 AO(pl - p0)6

(35)

This provides the location of the stability boundary,

p1 =1+ (86A4(d,+1)(p; - po))'". (36)

In the limit 6—0 the zeroth order boundary p;=1 is of
course retrieved. It can be checked that the obtained result
pi—1~6" justifies a posteriori the use of the
A, &-independent expression for the fixed point. This fixed
point linear stability boundary (36) can also be directly ob-
tained from the Routh-Hurwitz condition [14] on the third
degree polynomial (34). Comparison of the small & [Eq.
(36)] with the exact linear stability boundary is provided in
Fig. 3.

2. A" small

We now consider the upper boundary (p,~ 1) of the lin-
early unstable region. When p, tends toward 1, B* grows as
1/(py—1) and becomes large compared to &(o+d,) and A”.
Equation (31) then simplifies and reduces at leading order to

(c+0)(c+1)(oc+d,)=—E (37)
with
A9
E=m(m -1). (38)

Again when E is large the roots are proportional to the three
roots of —1 and two have positive real parts. On the contrary,
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the three roots are real and negative when E vanishes. There
is a critical value E, such that for E<E, the fixed point is
linearly stable. This occurs when the real part of the two
complex conjugate roots becomes negative at the value E,
given by the Routh-Hurwitz criterion [14],

E.=(dy+ 1+ 60)(0+d,+d,6) —d,6. (39)

The allied value of A at the fixed point concentration is ob-
tained from Eq. (38),

A= 4 /FL‘)&. (40)
0(p, - 1)

Using the fixed point Eq. (18), this in turn corresponds to the
line in parameter space

7
1—0E } (41)

Equation (41), of course, reduces to the zeroth order bound-
ary po=1 when 6— 0. Comparison of the small-& asymptotic
expression (41) with the exact linear stability line is provided
in Fig. 3.

B. A description of the nonlinear oscillations

The MFL oscillations quickly become strongly nonlinear
away from threshold (or, of course, when the bifurcation is
subcritical). As there are no autoregulatory direct or indirect
positive feedback loops in the MFL, two-variable reductions
have a negative divergence. It follows from the well-known
Bendixson’s criterion [13], that they cannot be used to de-
scribe the oscillatory regime. It is, for instance, not possible
to properly describe the oscillations by only focusing on the
protein dynamics. A specific analysis, therefore, is required
and developed in this section.

A full period of the nonlinear oscillations can be split into
two parts: a first phase with A> 1, and a second phase with
B>1 (see Fig. 7).

In the following, these two main phases of the limit cycle
are described. We use simple continuity arguments to match
the two phases and obtain a description of the whole limit
cycle. The oscillation period is computed (at the lowest order
in &). A full justification of this simple matching procedure
and a detailed study of the transition regimes between the
two main phases are provided in the Appendix using
matched asymptotic techniques.

1. Phase I: High A, Low B phase

This phase is defined as the fraction of the limit cycle
where the concentration of protein A is larger than [A],, i.e.,
when A> 1> B. Equation (9) leads us to assume that A is of
the order 1/6. So we define a=6A. In the limit of small &, as
A scales as 1/, both the binding to the g promoter and the
dynamics of B resulting from its complexation with A are
fast compared to that of mRNA and A. Consequently, g and
B are in quasiequilibrium and obey at the lowest order in 9,

g=dAya, (42)
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FIG. 7. Distinction between the two phases for the dimension-
less equations [Eqgs. (6)-(9)]. Top panel: oscillation of r. Bottom
panel: oscillations for A (full line) and B (dotted line). In order to
clearly depict phases I and II of an oscillation cycle, the parameters
are here chosen so that the two phases have similar durations: &

=0.001, p,=1.5, py=0, =2, Ag=1, pu=1, and d,=d,=0.

B=érla. (43)

The dynamics of the MFL, therefore, reduces to the follow-
ing two equations at lowest order in &

dr
—=p -7, 44
d pr—r (44)

da
—=1-r-d,a. (45)
dt

The beginning of phase I coincides with the end of phase II
where, as explained below, A concentration is small. There-
fore, continuity requires that a vanishes at the start of phase
I (a detailed study of the transition region between the two
phases is provided in the Appendix). Denoting by r, the
value of r at the start of phase I, an easy integration of the
linear Egs. (44) and (45) gives,

ri(t) = p; + (ry=—ppe”’, (46)

1-p —dy, TP gy

a [1-¢ ]+da_1[e e, (47)
Subscript I has been added to r and a in Egs. (46) and (47) to
emphasize that the corresponding expressions are valid dur-
ing phase I only. Phase I ends with the fall of A concentra-
tion, after a time #; such that a;(¢;)=0. The mRNA concen-
tration is then equal to r,(f;)=r,.

One can note that the rise and fall of the concentration of
protein A imposes restrictions on the parameters. The rise at
the beginning of phase I is possible only if A production
dominates over its complexation with B, that is, if r; <1 [Eq.
(45)]. The following fall requires the reverse which can only
happen if B production becomes sufficiently important,
namely r> 1. This requires r,>1 and a fortiori p,>1 [Eq.

(44)].

a/t) =
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2. Phase II: High B phase

This second phase is defined as the part of the limit cycle
where the concentration of protein A falls below [A]y, i.e.,
B>1>A. The form of Eq. (8) leads us to assume that B
scales as 1/6 and we define b=5B.

In the limit of small &, the dynamics of A is fast compared
to that of the other species and A is in quasiequilibrium. At
the lowest order, its concentration reads,

A=8lb. (48)

Thus, the dynamics of the MFL reduces, at the lowest order
in &, to the following three equations:

dg ~
—=60(1-g), 49
” (1-¢g) (49)
dr
—=pg+p(l—g) —r, 50
5 =P8 pi(l-g)—r (50)
db
—=r-1-d,b. 51
dt r b (51)

Continuity with the previous phase I leads us to require that
at the beginning of phase II =0, r=r,, and g=0 (see the
Appendix for a detailed justification). With these boundary
conditions, the linear Egs. (49)—(51) can readily be inte-
grated to obtain

it

gu)=1-¢",

~ s

Pr—Po| 4 P1—Po _p
ru(f)=Po+lV2—Po+~—} "

6-1 -1
-1 _ —dpt _ —g't
by(t) = =1 — iy - L POEZC
b 0—-1 0-d,
—dpt —t
— e b — e
+ ”2—P0+pl i (52)
0-1 1-d,

Since b vanishes at the beginning of phase II, » should start
by rising. This imposes that B production dominates over
complexation and requires that the concentration r at the
beginning of phase II is greater than 1, i.e., r,>1 [see Eq.
(51)]. Thus, r always remains larger than p, and would de-
crease toward p, for a long enough phase II [Egs. (50) and
(52)]. At the end of phase II, b should decrease to 0 to con-
tinuously match the beginning of phase 1. This requires that
the complexation then dominates over production of B, that
is, r<1 [Eq. (51)], and it is only possible when p,<1. With
these conditions met, phase II lasts a time #, and ends when
by(t,)=0.

3. Matching of the two phases and period determination

In order to complete the description of the limit cycle, it
remains to determine the four unknowns ry, r,, t;, and £,
from the four conditions coming from the continuity of pro-
teins and mRNA concentrations,
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FIG. 8. Comparison between the lowest-order theoretical res-
caled period T, (bold line), the approximate expression for large p;
[Eq. (61)] (dashed line) and numerically computed periods for dif-
ferent values of &, as a function of parameter p;. Other parameters

are 6=10, Ag=10, u=1, and d,=d,=0.

ri(t) =ry,  a)(t;) =0, (53)

ri(ty) =ry, byt =0. (54)

One possibility to solve these equations is to use Eq. (53) to
express rq and r, as a function of #;. It is then not difficult to
see that the third equation [(54)] implicitly determines #, as a
function of #,. Once ry, r,, and t, are obtained as functions of
t,, the last equation b(¢,)=0 can be solved for #; by a one-
dimensional root finding algorithm. In this way, we have
determined r|, r,, t;, t, for different sets of kinetic constants
and obtained the rescaled period of oscillation,

T,.=t1+t2, (55)

the dimensionful period being =T,/ §,. Results are shown in
Fig. 8 and Fig. 9. The analytical period compares well to
results obtained by direct numerical integration of Egs.
(6)—(9) for different values of & with, of course, a closer
agreement for smaller 6.

Equations (53) and (54) are difficult to solve analytically
but analytic expressions can be obtained for various limiting
cases. For instance, if the degradation of protein B is negli-
gible (d;,=0), Eq. (52) simplifies to

by(t) = (po - D)t — =Ly _ =)
(6-1)6
+ {rz—pww}(l —e).  (56)

If we further consider the limit of large p;, the condition
by(t,)=0 gives the following estimate for the duration of
phase II, up to exponentially small terms,

2= Po P1— Po

fz = + — N (57)

I=po  6(1-p,y)
as well as the transcript concentration at the end of phase II
't = Po- (58)

Similarly, the condition a;(¢;)=0 together with Eq. (47) show
that #; is small for large p;,
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FIG. 9. Comparison between the full dynamics (+) symbols and
the asymptotic description at order V& (dashed and dotted lines)
during one oscillation cycle. (a) Concentration of mRNA behavior.
Phase I asymptotics (dotted lines) and phase II asymptotics (dashed
lines) are shown separately. The product AB/f is also plotted (full
line). The quasistatic assumption is seen to be well-satisfied away
from the transition regions between the two phases. (b) Concentra-
tion of protein B. (c) Concentration of protein A. Parameters are as
in Fig. 6.

ty =2(1=r)/p; =2(1 - py)/py, (59)

where expression (58) has been used in the second equality.
Given the duration (59) of phase I, the concentration r, of the
transcript at its end is directly obtained from Egs. (46) and
(58)

7222—p0. (60)

This finally provides the estimate of the period for large p;,
(with d;,=0),

T,=1,=24+ PO 61)

(1 — po)

A comparison between Eq. (61) and numerically deter-
mined oscillation periods is provided in Fig. 8

C. Comparison with a simple delayed negative feedback

Popular models for genetic oscillators consist in a protein
repressing its own production with a phenomenological de-
lay [15-17]. Using a Hill function to model this repression,
the simplest model of this kind reads,

031908-9



P. FRANCOIS AND V. HAKIM

dB(1) p
dt  1+[B(t-DIB]"

—-¢B, (62)

where p is the protein production rate, ¢ the protein degra-
dation rate, and 7 the phenomenological delay for repression.
The phase diagram of this simple oscillator can be computed
[18]. In the limit of long delays (c7> 1), the oscillations are
nonlinear. In an expansion in the small parameter e=1/c7,
their period 7 is

K
TIr=2+4+—+ """, (63)
CcT
where « is a constant which is approximately equal to 2 for
n=2 and p/c of order one [19].

It is interesting to note some analogies between this
simple model with delay and the previously studied MFL.
When 7> 1/¢, the period of the delayed model scales as 7
while the period of the MFL scales as 8.'. The mRNA half-
life in the MFL thus plays the role of the phenomenological
delay in Eq. (62). This is in line with the mRNA being the
major pacemaker of the MFL oscillator. The rescaled param-
eter € in the simple model with delay plays a role similar to
the rescaled parameter o in the MFL in the sense that, first,
for high values of e, oscillations disappear [18], and for
small values of this parameter, the period of the oscillations
is independent of 1/c7 at dominant order. In the delayed
model, € represents the ratio between the typical lifetime of
protein over the delay, while in the MFL, & represents the
ratio between the typical time scale of protein production and
sequestration over the typical lifetime of RNA. These analo-
gies show that for the MFL \"m plays the role of the protein
degradation constant ¢ in the delayed model. Thus protein
sequestration by complexation is the MFL analog of protein
degradation in the simple model with delay. The fastness of
both these processes relative to a slow mechanism (delay 7,
RNA dynamics) ensures the flipping of both oscillators be-
tween two states (two concentrations of B for the delayed
model, A high and B high for the MFL).

VI. DISCUSSION

We have proposed a simple model of the mixed feedback
loop, an over-represented motif in different genomes. We
have shown that by itself this motif can serve as a bistable
switch or can generate oscillations.

A. Importance of dimerization and of RNA dynamics

The MFL dynamics crucially depends on the post-
transcriptional interaction between A and B proteins. The dy-
namics of dimerization is fast and allows a high concentra-
tion of only one of the two proteins, thus effectively creating
a dynamical switch between the two species. If, for instance,
A proteins are present at a higher concentration than B pro-
teins, all Bs are quickly titrated and there only remains free A
and AB dimers.

A bistable system is obtained by coupling this post-
transcriptional mechanism to a transcriptional repression.
The created bistable switch is quite different from the clas-
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sical “toggle switch” [20], which is based on reciprocal tran-
scriptional repressions between two genes. In the MFL
model, the single transcriptional repression of gene g, is suf-
ficient for a working switch. Moreover, dimerization by-
passes the need for cooperativity in the toggle switch [21]
and may render the present module simpler to implement in
a biological system.

When the dimerization between A and B is coupled to a
transcriptional activation, the system behaves as an oscillator
if the production of A proteins is intermediate between the
two possible for B. Then, the level of g, transcripts controls
A protein dimerization and, of course, B production rates. At
the beginning of the derepression phase (phase I), the low
level of transcripts leads to a small production of B proteins
and to a rise of A concentration. This first phase ends when
the subsequent high production and accumulation of g, tran-
scripts give rise to a production of B proteins sufficient for
the titration of all free As. During the ensuing repression
phase (phase II), the g, transcription rate is low and the
transcripts degradation produces a continuous decrease of
their concentration. The parallel decrease of the B production
rate ultimately leads to the end of this second phase when the
B production rate is no longer sufficient for the titration of all
produced free As.

In summary, the core mechanism of the clock is built by
coupling the rapid switch at the protein level to the slow
mRNA dynamics. The protein switch in turn controls mRNA
dynamics via transcriptional activation.

It is interesting to note that the MFL model in the simple
form analyzed here provides a genetic network that oscillates
without the need for several specific features previously con-
sidered in the literature for related networks. As already men-
tioned, oscillations require neither an additional positive
feedback loop [22], nor the self-activation of gene A [23],
nor a highly cooperative binding [24] of transcription factors
to gene promoters. Similarly, an explicit delay is not needed
although delays of various origins have been considered in
models of oscillatory genetic networks in different contexts,
as is further discussed below.

Besides the motif topology, one feature of the present
MFL model that renders this possible is the explicit descrip-
tion of transcription and translation. The condensed represen-
tation of protein production by a single effective process that
is often used, would necessitate supplementary interactions
to make oscillations possible. The description of mRNA was
for instance omitted in the first version of a previously pro-
posed evolutionary algorithm [5]. Oscillatory networks with
core MFL motifs were nonetheless produced but much less
easily than in a refined second version that incorporates
mRNA dynamics. This role of mRNA dynamics may well be
worth bearing in mind when considering the elaborate regu-
lation of translation that is presently being uncovered [25].

B. Biological MFL oscillators and switches

Given the proposed functions for the MFL motif, it is of
primary interest to know whether cases of its use as an os-
cillator or a switch are already documented. The oscillator
function seems the clearest. Circadian clocks are genetic os-
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TABLE 1. Some biological examples of MFL motifs. The yeast motifs are reproduced from Ref. [3]. An

annotation taken from the SGD database [32] has been added.

A species

B species

Main biological functions

Bistable systems

Lac Repressor Allolactose Lactose metabolism
Oscillators
WC-1, WC-2 FRQ Neurospora circadian clock
dCLK PER, TIM Drosophila circadian clock
CLOCK, BMAL PER, CRY Mammals circadian clock
pS3 Mdm2 Stress response oscillators
Detected Yeast MFLs
Swib Swi4 G1/S transition
Gal4 Gal80 Galactose metabolism
Gal4 Gal3 Galactose metabolism
Gal4 Gall Galactose metabolism
Imel Riml11 Meiose activation
Ume6 Imel Meiose activation
Stel12 Fus3 Pseudohyphal growth
Stel12 Farl Pseudohyphal growth
Cbfl Met28 Sulfur metabolism
Met4 Met28 Sulfur metabolism
Swi4 Clb2 Cell cycle
Mbpl CIb5 G1/S transition
Stb1 Cln1
Stb1 Cln2

cillators which generate endogenous rhythms with a period
close to 24 h and which are locked to an exact 24 h period by
the alternation of day and night. A MFL motif is found at the
core of all known eucaryotic circadian oscillators. Taking,
for illustrative purposes, the fungus Neurospora crassa, one
of the best studied model organisms, it has been established
that a dimer of white-collar proteins (WCC) plays the role of
A and activates the transcription of the frequency gene, the
gene g, in this example. In turn, the frequency (FRQ) protein
interacts with WCC and prevents this activation [26]. Analo-
gous motifs are found in the circadian genetic networks of
flies and mammals, as shown in Table I. The p53/Mdm?2
module [27] provides a different example. The p53 protein is
a key tumor suppressor protein and an important role is
played in its regulation by the Mdm?2 protein. On the one
hand, p53, similar to the A protein, binds to the Mdm2 gene
and activates its transcription. On the other hand, the Mdm?2
protein, as the B protein, binds to p53 and both blocks tran-
scriptional activation by p53 and promotes its rapid pro-
teolytic degradation. Cells exposed to stress have indeed
been observed to present oscillations in both p53 and Mdm?2
levels [27]. In both these examples, many other genetic in-
teractions exist besides the above described MFL motifs and
have been thought to provide delays necessary for oscilla-
tions. These have been postulated to come from chains of
phosphorylations in circadian networks [28] or from a yet

unknown intermediate species [27] in the p53-Mdm?2 system.
The realization that the MFL can lead to oscillations without
further interactions may be useful in suggesting alternative
models of these particular genetic networks or in reassessing
the role of known interactions. For instance, this has led one
of us to formulate a model of the Neurospora crassa circa-
dian clock [29] in which kinases and phosphorylation influ-
ence the cycle period by modifying protein degradation rates
but in which phosphorylation is not needed to create key
delays. The prevalence of the MFL motif probably arises
from the usefulness of negative feedback, but it may also
imply that oscillations in the genetic network are more com-
mon than is usually thought.

The evidence for uses of the MFL motif as a switch ap-
pears less clear cut at present. The classic case of the E. coli
lactose operon [30] can be thought of as an effective version
of a bistable MFL. The lac repressor represses the lac gene
and plays the role of A in the MFL. The lac gene directs the
production of a membrane permease, which itself drives the
absorption of external lactose. Since allolactose binding to
the lac repressor blocks its transcriptional activity, allolactose
effectively plays the same role as B in the MFL. The search
for a more direct switch example has led us to consider the
different MFL motifs in yeast as reported in [3] and repro-
duced in Table I. It was noted in [3] that most of these MFL
motifs were central modules in biochemical pathways. Most
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of them take part in the cell cycle or in differentiation path-
ways, which certainly are processes where the cell switches
from one function to another. However, we have found it
difficult to disentangle the MFLs from numerous other
known interactions and to confidently conclude that any of
these motifs implements the proposed switch function. Simi-
lar difficulties have been recently emphasized for general
motifs determined on purely statistical grounds and have led
to the questioning of their functional significance [31]. In the
present case, the difficulty of identifying biological cases of
MFL switches, of course, arises from our own very partial
knowledge of the networks listed in Table I, but it may also
be due to the fact that the possible role of the MFL module as
a switch was not fully realized in previous investigations.
The present study will hopefully help and trigger direct ex-
perimental investigations of these questions.

APPENDIX: TRANSITIONS BETWEEN THE TWO _
PHASES OF AN OSCILLATION CYCLE AND §&
CORRECTION TO THE PERIOD

In the following, we analyze the transitions between
phase I and phase II of an oscillation period and use matched
asymptotics to precisely justify the assumptions made in Sec.
V. This also provides the leading order (V) correction to the
zeroth order results of Sec. V.

1. From phase I to phase II

We consider the transition between the end of the
high A/low B phase I and the start of the high B/low A
phase II. This protein switch occurs on a time scale of order
6/ 6,. On this fast time scale the mRNA concentration does
not have time to change. Thus, in Egs. (6)—(9), we assume
r=r, and introduce 7=¢/4. Equations (8) and (9) simply be-
come at dominant order,

dB
—=r,—AB, (A1)
dr
dA
—=1-AB. (A2)
dr

The imposed boundary conditions are

A= (1=r)(r=m)+0(l), B—0atr==cx, (A3)

B—(r,—1)(7—m)+0(l), A—O0at7— +o (A4)

with the dimensionless transcript concentration r,>1 (see
Sec. VB 1) and 7; and 7, two constants to be determined.
Equations (A1) and (A2) are autonomous in time and, there-
fore, invariant by time translation. For general nonintegrable
equations, numerical integration would be required to obtain
the difference 7,— 7;. Here, however, the difference of pro-
tein concentrations, A — B, is easily integrated across the tran-
sition region. Fixing the time origin at the instant when A
=B, one readily obtains the exact formula

A-B=(1-ry)T. (A5)

Comparison with Egs. (A3) and (A4) shows that with this
choice of time origin 7,=7,=0 (and more generally 7,=7,).
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FIG. 10. The evolution of A given by the Riccati Eq. (A6) (+) is
compared to that given by the complete MFL dynamics (dashed)
during the transition from phase I to phase II. Parameters are as in
Fig. 6.

The asymptotic conditions (A3) and (A4) coincide with the
limiting behavior of a,(¢)/ S at the end of phase I near r=t,,
and with the limiting behavior of by(¢) at the beginning of
phase II near =0, provided that a,(t;)=b;(0)=0 as was re-
quired in the main text. Thus, Eqs. (A1) and (A2) provide a
uniform approximation of A(¢) and B(¢) throughout the tran-
sition from phase I to phase II. Given the exact result (A5),
the integration of Egs. (A1) and (A2) can in fact be replaced
to the integration of the single following Riccati equation:

dA

0 —-[A+(r,-1)7]A.

(A6)

A comparison between Eq. (A6) and full numerical evolution
is shown in Fig. 10. There is one subtlety, however. The
quasiequilibrium approximation for g [Eq. (42)] diverges at
the end of phase I when A— 0 and g becomes larger than 1
before the transition region (A1) and (A2) of order 8. This
clearly signals the breakdown of the approximation (42) in a
larger intermediate region at the end of phase I. In a region
of size t;,—t~ 5, the evolution of g reduces to

(A7)

Indeed, taking a:(l—rz)(t]—t)+o(\s"_5) shows that all three
terms kept in Eq. (A7) are of the same magnitude when g
~t1—t~\e“r5 and that the additional term g in Eq. (6) is
negligible. Explicit integration in this intermediate region
gives

0
du exp(ryu?)

g(t)) — g(texp[— ka(t; — 1)*] = EJ

=t

(A8)

where k,=60(1-r,)/(2A8). In particular, the limit 71— —o
determines the value of g at the end of phase I and beginning

of phase II
W)
H)=g= - .-
8(t) =g ‘\/2(r2_1)

Equation (A9) is the source of a correction of order \e“'_5 to
the asymptotic result (55) as will be shown below.

(A9)
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2. From phase II to phase 1

The transition from phase II to phase I can be analyzed
quite similarly to the transition from phase I to phase II. In a
time of order &/, at the end of phase II, r has no time to
change and the transition is described by Egs. (A1) and (A2)
with r, replaced by r; <1 (see Sec. V B 1) and the boundary
conditions

B=(r - 1)(7- Ti)+0(l), A—0at r=—0o,

(A10)

A= -r)(r=7)+0(l), B—0at 7=+,

(A11)

Again, 7;=7,=0 if the time origin is taken when A=B. This
transition regime is followed by a longer transition on a time
scale r—1, ~ & where g decreases from a value of order one
to values of order & characteristic of phase I. This reflects the
fact that the binding of protein A to the promoter of gene g,
is not instantaneous and requires some accumulation of pro-
tein A at the beginning of phase I. Taking A=(1-r))t/8, g
evolution is described in this intermediate regime by

dg g }
=0 1=-t(1=-r)—=|.
dt { « rl)Aoﬁ

The corresponding evolution of g is

(A12)

g(1) =exp(- Kltz)lg1+5j du exp(Kluz)], (A13)
0

where x;=6(1-r;)/(2A,6). It indeed describes the transition
from g,=1—exp(8r,), the value of g at the end of phase II, to
the quasiequilibrium regime since the asymptotic behavior of
Eq. (A13) for r> 4 is

(I-rpt’

g(1) ~ (A14)

3. Dominant correction to the oscillation period

The form of Egs. (6)—(9) could lead one to think that the
oscillation period has an expansion in powers of the small
parameter 6. However, here as often, boundary layers lead to
more complicated expansions. The two transition regimes of
duration V'8 give rise to a dominant correction of order \'8 to
the oscillation period.

As pointed out above, due to the transition regime at the
end of phase I, the starting value of g in phase Il is g, [Eq.
(A9)] of order V8. Therefore, the first Eq. (52) is replaced at
order & by the corrected evolution,

g0 =1-(1-g)exp(- 0r). (A15)

This leads in turn to corrected evolutions ry; (r) and by (1)
for the mRNA and B protein concentrations that are obtained
by simply replacing (p;—po) by (p1=po)(1-g;) in the ex-
pressions (52) of the zeroth-order expressions ry(¢) and
by(1).
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FIG. 11. Comparison of [g,] obtained from a full numerical
integration (+) with the uniform approximation obtained by match-
ing the different transition regimes (bold line). The exponential re-
laxation in phase II [Eq. (A15)] is also shown (dashed). An enlarg-
ment of phase I and the transition regimes is shown in the inset.
Parameters are as in Fig. 6.

The other transition regime between phase II and phase I
does not lead to modifications of the form of Egs. (46) and
(47) describing the evolutions of mRNA and A protein dur-
ing the bulk of phase I. Instead, it results in a difference of
order & between ri1.(t) and r| the effective concentrations
of transcripts at the start of phase I. The transcript concen-
tration depends on the promoter states at previous times. So,
integrating Eq. (7) from the end of phase II, one obtains

r()=p + [’”Il,c(fz) - pilexp(-1)

+(po— p1)exp(=1) f duexp(u)g(u). (A16)
0

Replacing g(¢) by its expression (A12) during the transition
regime at the start of phase I leads for 1> to

r(t)=p; + [”ll,c(tz) -8\ i(Pl - po) — Pl}eXp(— 1.

(A17)
Namely, the previous Eq. (46) but with
a
r =ryt) -8 4_(131 = po)- (A18)
Ki

Note that only the g; term between the square brackets in Eq.
(A12) contributes to Eq. (A17), the integral term giving a
subdominant contribution.

Finally, the durations 7} and T, of both phases and the
total period T,=T,+T, are obtained to & accuracy by solv-
ing as before
aft;)=0

r(t) = ra, (A19)

together with the corrected version of Eq. (54), namely Eq.
(A18) and by; (1,)=0.

The asymptotic description of g, evolution agrees well
with numerical sirmulations of the full MFL model as shown
in Fig. 11. The & correction terms lengthen the zeroth-order
asymptotic estimation. For a moderate value of &, a numeri-
cally comparable contribution, however, is coming from
higher-order terms that tend to lengthen the period [coming,
for instance, from the breakdown of the quasiequilibrium
approximation for g, Eq. (42)] as can be seen in Fig. 8.
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