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a b s t r a c t

Recently proposed phase-field models offer self-consistent descriptions of brittle

fracture. Here, we analyze these theories in the quasistatic regime of crack propagation.

We show how to derive the laws of crack motion either by using solvability conditions in

a perturbative treatment for slight departure from the Griffith threshold or by

generalizing the Eshelby tensor to phase-field models. The analysis provides a simple

physical interpretation of the second component of the classic Eshelby integral in the

limit of vanishing crack propagation velocity: it gives the elastic torque on the crack tip

that is needed to balance the Herring torque arising from the anisotropic surface energy.

This force-balance condition can be interpreted physically based on energetic

considerations in the traditional framework of continuum fracture mechanics, in

support of its general validity for real systems beyond the scope of phase-field models.

The obtained law of crack motion reduces in the quasistatic limit to the principle of local

symmetry in isotropic media and to the principle of maximum energy-release-rate for

smooth curvilinear cracks in anisotropic media. Analytical predictions of crack paths in

anisotropic media are validated by numerical simulations. Interestingly, for kinked

cracks in anisotropic media, force-balance gives significantly different predictions from

the principle of maximum energy-release-rate and the difference between the two

criteria can be numerically tested. Simulations also show that predictions obtained from

force-balance hold even if the phase-field dynamics is modified to make the failure

process irreversible. Finally, the role of dissipative forces on the process zone scale as

well as the extension of the results to motion of planar cracks under pure antiplane

shear are discussed.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The prediction of the path chosen by a crack as it propagates into a brittle material is a fundamental problem
of fracture mechanics. It has classically been addressed in a theoretical framework where the equations of linear
elasticity are solved with zero traction boundary conditions on crack surfaces that extend to a sharp tip (Broberg, 1999).
In this description, the stress distributions near the crack tip have the universal divergent forms (William, 1957; Irwin,
1957)

sm
ij ðr;YÞ ¼

Kmffiffiffiffiffiffiffiffi
2pr
p f m

ij ðYÞ, (1)
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where Km are the stress intensity factors (SIF) for the three standard modes I, II, or III of fracture (m ¼ 1;2 or 3), Y is the
angle between the radial vector of magnitude r with origin at the crack tip and the local crack direction and the explicit
expressions of the f ij’s are recalled in Appendix C (see Eq. (C.4)). The allied energy-release-rate (or crack extension force)
reads, for plane strain,

G ¼ aðK2
1 þ K2

2Þ þ K2
3=ð2mÞ, (2)

where n denotes Poisson’s ratio, m is the shear modulus, and a � ð1� nÞ=ð2mÞ. Following Griffith (1920), Irwin (1957)
postulated that for the crack to propagate, G must exceed some material-dependent threshold Gc that is theoretically equal
to twice the surface energy (Gc ¼ 2g), but often larger in practice. Griffith’s theory provide one criterion for crack
propagation but is insufficient to determine curvilinear crack paths or crack kinking and branching angles. Like other
problems in fracture, the prediction of the crack direction of propagation was first examined (Barenblatt and Cherepanov,
1961) for mode III which is simpler because the antiplane component of the displacement vector u3 is a purely scalar
Laplacian field. In this case, the stress distribution near the tip, can be expanded as

s3Y �
m
r

qu3

qY
¼

K3ffiffiffiffiffiffiffiffi
2pr
p cos

Y
2
� mA2 sinYþ � � � . (3)

The dominant divergent contribution is always symmetrical about the crack direction. As a consequence, the knowledge of
K3 alone cannot predict any other path than a straight one. To avoid this impasse, Barenblatt and Cherepanov (1961)
retained the subdominant sinY term, which breaks this symmetry. They hypothesized that a curvilinear crack propagates
along a direction where A2 ¼ 0, when the stress distribution is symmetrical about the crack direction. In subsequent
extensions of this work, several criteria have been proposed for plane loading, for which the tensorial nature of the stress
fields makes it possible to predict non-trivial crack paths purely from the knowledge of the SIFs (Goldstein and Salganik,
1974; Cotterell and Rice, 1980). The generally accepted condition ‘‘K2 ¼ 0’’ assumes that the crack propagates in a pure
opening mode with a symmetrical stress distribution about its local axis (Goldstein and Salganik, 1974) and is the direct
analog for plane strain ðu3 ¼ 0Þ of the condition A2 ¼ 0 for mode III. This ‘‘principle of local symmetry’’ has been
rationalized using plausible arguments (Cotterell and Rice, 1980) in the classical framework of fracture mechanics. It has
also been argued to follow from continuity of the chemical potential at the fracture tip, in a model that incorporates surface
diffusion (Brener and Marchenko, 1998). A full derivation requires an explicit description of the process zone, where elastic
strain energy is both dissipated and transformed nonlinearly into new fracture surfaces. As a result, how to extend this
principle to anisotropic materials, where symmetry considerations have no obvious generalization, is not clear (Marder,
2004a). This is also the case for curved three-dimensional fractures although this appears little-noted in the literature. In
addition, path prediction remains largely unexplored for mode III even for isotropic materials.

Continuum models of brittle fracture that describe both short scale failure and macroscopic linear elasticity within a
self-consistent set of equations have recently been proposed (Aranson et al., 2000; Karma et al., 2001; Eastgate et al., 2002;
Wang et al., 2002; Marconi and Jagla, 2005; Spatschek et al., 2006). These models have already shown their usefulness in
various numerical simulations. For both antiplane (Karma and Lobkovsky, 2004) and plane (Henry and Levine, 2004)
loading, they have proven capable to reproduce the onset of crack propagation at Griffith threshold as well as dynamical
branching (Karma and Lobkovsky, 2004; Henry, 2008) and oscillatory (Henry and Levine, 2004) instabilities. In a quasistatic
setting, this continuous media approach differs in spirit but has nonetheless much in common with a variational approach
to brittle fracture (Francfort and Marigo, 1998) proposed to overcome limitations of Griffith theory. This is especially
apparent when the latter is implemented numerically (Bourdin et al., 2000), using ideas (Ambrosio and Tortorelli, 1990)
initially developed for image segmentation (Mumford and Shah, 1989).

In this article, we analyze these self-consistent theories of brittle fracture for mode I/II cracks as well as for cracks
moving under pure antiplane shear (mode III) and show how to derive laws of motion for the crack tip. This provides, in
particular, relations which generalize the principle of local symmetry for an anisotropic material. Furthermore, we validate
these relations by phase-field simulations. This validation is carried out both for the traditional variational formulation of
the phase-field model with a so-called ‘‘gradient dynamics’’, which guarantees that the total energy of the system, i.e. the
sum of the elastic and cohesive energies, decreases monotonously in time, and for a simple modification of this dynamics
that makes the failure process irreversible. We find that both formulations yield essentially identical crack paths that are
well predicted by the laws of crack motion derived from the phase-field model.

In isotropic media, the principle of local symmetry and the principle of maximum energy-release-rate gives identical
prediction for smooth curvilinear cracks and very small differences for kinked angles (see e.g. Cotterell and Rice, 1980;
Hutchinson and Suo, 1992; Amestoy and Leblond, 1992). This makes it difficult to numerically distinguish these two
criteria. Thus, for kinked cracks, it has remained somewhat unclear what happens for stresses in the gap above the
maximum energy-release-rate threshold stress (where energetic considerations alone appear to require crack propagation)
but below the minimal stress where propagation with local symmetry/force-balance is possible. Interestingly, we find that
the force-balance and maximum energy-release-rate principles can give significantly distinct predictions in anisotropic
media for some choices of surface energy anisotropy and loading conditions. Numerical simulations, which are at the limit
of what is computationally feasible with a finite-difference implementation of the phase-field equations on a regular mesh,
show that kink cracks emerge from the main crack tip at an initial angle, which appears close to the one predicted by
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maximum energy-release-rate, and turn on the process zone length scale towards the angle predicted by force-balance for
straight kinks.

For clarity of exposition, the relations derived from the phase-field model are summarized first in Section 2 and
interpreted physically in the context of previous results from the fracture community. This section stresses why the second
component of the Eshelby configurational force perpendicular to the crack axis is both physically meaningful and
important for the determination of crack paths.

Our approach is applicable to a large class of diffuse interface descriptions of brittle fracture. However, for clarity of
exposition, we base our derivation on the phase-field model introduced by Karma et al. (2001). As recalled in Section 3, in
this description, the displacement field is coupled to a single scalar order parameter or ‘‘phase-field’’ f, which describes a
smooth transition in space between unbroken ðf ¼ 1Þ and broken states ðf ¼ 0Þ of the material. We focus on quasistatic
fracture in a macroscopically isotropic elastic medium with negligible inertial effects. Material anisotropy is simply
included by making the surface energy gðyÞ, dependent on the orientation y of the crack direction with respect to some
underlying crystal axis. In Section 4, we analyze the quasistatic motion of a crack propagating in mode I/II, perturbatively
for small departure from Griffith threshold ðjG� Gcj=Gc51Þ and small anisotropy. The crack laws of motion are shown to be
determined in a usual manner by solvability conditions, coming from translation invariance parallel and perpendicular to
the crack tip axis. A different derivation is provided in Section 5 by generalizing Eshelby (1975) tensor to phase-field
theories. The relation and differences between force-balance and maximum energy-release-rate criteria are then
considered. The particular case of motion under pure antiplane shear is discussed in Section 6. Our analytical predictions
are compared with numerical phase-field simulations in Section 7 where we also examine the sensitivity of the results to
the irreversibility of the failure process. Our conclusions and some further perspectives of this work are then presented in
Section 8. Further information on the phase-field model of Karma et al. (2001) is provided in Appendix A in the simple
context of a stretched one-dimensional band. Details of some of our calculations are provided in Appendices B and C.
A short version of this work has been published in Hakim and Karma (2005).

2. An overview of the physical picture and main results in the classical fracture formalism

In the formalism of continuum fracture mechanics, crack propagation has been traditionally analyzed by considering
the crack extension force G defined by Eq. (2). This is a purely configurational force that points along the crack axis in the
direction of propagation where Gdl is the amount elastic energy released when the crack advances infinitesimally along this
axis by a distance dl. When considering the propagation of a general curvilinear crack, however, it is necessary to consider
the extension of a crack at some small infinitesimally angle dy with respect to its current axis as depicted schematically in
Fig. 1. Physically, one would expect a configurational force, distinct from G, to be associated with the extra amount of elastic
energy that is released if the crack propagates by dl along this new direction, denoted here by t̂, as opposed to propagating
the same distance along its current axis, denoted by x̂1.

This additional force on the crack tip was considered by Eshelby (1975). It can be interpreted physically as producing a
torque on the crack tip that changes the crack propagation direction so as to maximize the elastic energy released. The force
that produces this torque must act perpendicularly to the crack propagation direction and its magnitude is simply

Gy � lim
dy!0

dG

dy
, (4)

where dG is the difference between the crack extension force along the new direction and the old direction, i.e. along t̂ and
x̂1 in Fig. 1. This torque is analogous to the well-known ‘‘Herring (1951, p. 143) torque’’ acting on the junction of three crystal
grains of different orientations in a polycrystalline material, with the main difference that Gy is a configurational force in
the present fracture context while the Herring torque is produced by a physical force associated with the grain boundary
energy, ggbðyÞ, which is generally anisotropic. This force acts perpendicularly to each grain boundary segment at the
junction of three grains with a magnitude dggb=dy.

ARTICLE IN PRESS

Fig. 1. Schematic representation of an infinitesimal extension P1P2 of the crack of length dl at and angle dy measured with respect to the crack axis. The

arrows pointing perpendicular to the crack denote the two analogs Gy and Gcy of the Herring torque associated with the directional dependence of the

crack extension force and the fracture energy around the crack axis, respectively.
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This analogy suggests that there should generally be two torques acting on the crack tip. The first, already mentioned, is
Eshelby’s configurational elastic torque Gy associated with the directional dependence of the crack extension force in
reference to the local crack axis. The second is the physical torque associated with the directional dependence of the
fracture energy, defined here by GcðyÞ, which should have a magnitude dGcðyÞ=dy � Gcy by direct translation of Herring’s
result for fracture. It follows that the balance of forces at the crack tip should yield two conditions. The first is the standard
condition of the classical fracture formalism associated with the balance of forces along the crack axis, G ¼ Gc . The second
is the condition

Gy ¼ Gcy ¼ 2gy, (5)

which corresponds physically to the balance of the two aforementioned torques acting on the crack tip. While Gy
pulls the crack in a direction that tends to maximize the release of elastic energy, Gcy pulls the crack in a direction
that minimizes the energy cost of creating new fracture surfaces. The second equality on the right-hand side (r.h.s.)
of Eq. (5) only holds in some ideal brittle limit where the fracture energy is equal to twice the surface energy, defined here
by gðyÞ, and gy � dgðyÞ=dy. We note that this ideal brittle limit is exact for the class of phase-field models analyzed in this
paper but at best only approximate even for a strongly brittle material such as glass. The issue of the quantitative
evaluation of Gcy, however, should be kept separate from its role in crack path prediction that is our main focus in this
paper.

To see how this torque balance condition provides an explicit prediction for the crack path, it is useful to derive an
expression for Gy by elementary means, directly from the definition of Eq. (4), instead of by evaluating an Eshelby–Rice type
integral around the crack tip (Rice, 1968; Eshelby, 1975), as done later in this paper (see Section 5 and Appendix C); while
both methods yield the same answer, the former is more physically transparent. For this purpose, we use the known
expressions for the new SIFs K̃1 and K̃2 at the tip (corresponding to P2 in Fig. 1) of an infinitesimally small kink extension of
length dl of a semi-infinite crack (Amestoy and Leblond, 1992). In the limit of vanishing kink angle, these expressions are
given by

K̃1 ¼ K1 � 3K2dy=2þ � � � , (6)

K̃2 ¼ K2 þ K1dy=2þ � � � (7)

to linear order in dy independently of dl, where K1 and K2 are the SIFs at the tip (corresponding to P1 in Fig. 1) of the
original straight crack. Using Eq. (2) with these new SIFs to define GðdyÞ, we obtain at once that dG ¼ GðdyÞ � Gð0Þ ¼
�2aK1K2dy, and hence using Eq. (4), that Gy ¼ �2aK1K2. Substituting this expression for Gy in the torque balance condition
(5), we obtain the condition

K2 ¼ �
Gcy

2aK1
¼ �

gy
aK1

, (8)

where second equality only holds in the ideal brittle limit as before. In the isotropic limit where Gcy vanishes, this condition
reduces to the principle of local symmetry which assumes that the crack propagates in a pure opening mode ðK2 ¼ 0Þ. In
contrast, for an anisotropic material, K2 is finite with a magnitude that depends both on K1 and the local crack propagation
direction, i.e. Gcy depends on the direction of the crack with respect to some fixed crystal axis in a crystalline material. For
simplicity, we have restricted our derivation to a situation where linear elasticity is isotropic (e.g. hexagonal symmetry in
two dimensions), but Eq. (8) could straightforwardly be extended to a more general situation where linear elasticity is also
anisotropic.

The recognition that the torque balance condition (5) can be used to determine the general path of a crack in a brittle
material is the central result of this paper. This condition sheds light on the physical origin of the principle of local
symmetry in the isotropic limit and shows how it can be generalized quantitatively to anisotropic materials. Although the
configurational force perpendicular to the crack tip was considered explicitly by Eshelby (1975) it has been largely ignored
until recently. This is perhaps because the displacement of a small segment of crack perpendicular to itself, which one
might naively expect to result from such a force, would appear unphysical and unreconcilable with the irreversibility of the
fracture process. While such a motion is unphysical, it should be clear from the present considerations that all the torques
acting on the crack tip, both the elastic configurational torque Gy and the physical torque Gcy linked to fracture energy
anisotropy, have been obtained solely from the consideration of an infinitesimal, physically admissible, extension of the
crack at a small angle from its axis. In equating these two torques at the crack tip, the main assumption made is that the
dynamics on the process zone scale is able to sample different possible microscopic states so as to permit local relaxation to
mechanical equilibrium.

There have been more recent attempts to incorporate the Eshelby elastic torque in the classical fracture formalism,
where fracture surfaces are treated as mathematically sharp boundaries extending to the crack tip (Adda-Bedia et al., 1999;
Oleaga, 2001; Marder, 2004a). In particular, based on energetic considerations, Marder (2004b) has proposed an equation
of motion that reduces to Eq. (8) for smooth curvilinear cracks, albeit not for kinked cracks, in the limit when a
phenomenologically introduced relaxation length scale (Hodgdon and Sethna, 1993) vanishes. In the context of these
previous studies, the phase-field approach has the important advantage of removing many of the ambiguities that arise
when considering the motion of the crack tip in the classical fracture formalism. In particular, it makes it possible to
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rigorously derive a force (torque) balance condition from the condition for the existence of a propagating crack
solution that is spatially diffuse on the inner scale of the process zone and that must match smoothly to the standard
solution of linear elasticity on the outer scale of the sample size. This condition reduces to Eq. (5) (or Eq. (8) for isotropic
elasticity) in the limit of vanishing crack velocity. Furthermore, it holds generally for both smooth and kinked cracks and
predicts kink angles that differ from those predicted by maximum energy-release-rate. Furthermore, this force-balance
condition contains additional contributions for finite crack velocity associated with dissipative forces on the process
zone scale.

Interestingly, the results of the phase-field analysis show that the component of the dissipative force perpendicular to
the crack tip vanishes for propagation in isotropic media because both the stress distribution and the phase field are
symmetrical about the crack axis in this case. Consequently, within the phase-field framework, dissipative forces do not
change the condition K2 ¼ 0 for crack propagation in isotropic media. For propagation in anisotropic media, in contrast,
small velocity-dependent correction to the torque balance condition (8) arise because this symmetry is broken.

3. The KKL phase-field model of fracture

Fracture is generally described in diffuse interface models (Aranson et al., 2000; Karma et al., 2001; Eastgate et al., 2002;
Wang et al., 2002; Marconi and Jagla, 2005) as a softening of the elastic moduli at large strains. This can be done purely in
term of the strain tensor but it produces field equations with derivative of high order (Marconi and Jagla, 2005). Here, we
adopt the alternative approach of introducing a supplementary field f, a scalar order parameter or ‘‘phase field’’, that
describes the state of the material and smoothly interpolates between intact ðf ¼ 1Þ and fully broken ðf ¼ 0Þ states. For
definiteness, we base our derivation on the specific model proposed by Karma et al. (2001) with energy density E,

E ¼ Epf ðfqjfgÞ þ gðfÞðEstrain � EcÞ þ Ec , (9)

where qj � q=qxj denotes the partial derivative with respect to the cartesian coordinate xj (j ¼ 1;2;3) and Estrain is the
elastic energy of the intact material. The equations of motion are derived variationally from the total energy of the system
that is the spatial integral

E ¼

Z
d3xE (10)

of the energy density. In the quasistatic case, these are

0 ¼ �
dE

duk
¼ qj

qE
q½qjuk�

�
qE
quk

, (11)

w�1qtf ¼ �
dE

df
¼ qj

qE
q½qjf�

�
qE
qf

. (12)

The three Euler–Lagrange equation (11) for the cartesian components uk of the displacement vector ðk ¼ 1;2;3Þ are simply
the static equilibrium conditions that the sum of all forces on any material element vanish. The fourth equation (12) for f is
the standard Ginzburg–Landau form that governs the phase-field evolution, with w a kinetic coefficient that controls the
rate of energy dissipation in the process zone, i.e. it follows from Eqs. (11) and (12) that

dE

dt
¼ �w

Z
d3x

dE

df

� �2

p0. (13)

In the simplest case of an isotropic elastic medium and isotropic f, the phase field and strain energy are simply

Epf ðfqjfgÞ ¼
k
2
ðrfÞ2, (14)

EstrainðfuijgÞ ¼
l
2
ðuiiÞ

2
þ muijuij, (15)

where uij ¼ ðqiuj þ qjuiÞ=2 is the usual strain tensor of linear elasticity. No asymmetry between dilation and compression is
included since this is not necessary for our present purposes. The broken state of the material becomes energetically
favored when Estrain exceeds the threshold Ec and gðfÞ is a monotonically increasing function of f that describes the
softening of the elastic energy at large strain ðgð0Þ ¼ 0Þ and produces the usual elastic behavior for the intact material
ðgð1Þ ¼ 1; g0ð1Þ ¼ 0Þ. In addition, the release of bulk stress by a crack requires the function gðfÞ to vanish faster than f2 for
small f, as recalled in Appendix A. We therefore choose gðfÞ ¼ 4f3

� 3f4, as in Karma et al. (2001), Karma and Lobkovsky
(2004), and Henry and Levine (2004). With these choices, the isotropic surface energy is equal to

g0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2kEc

p Z 1

0
df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gðfÞ

p
’ 0:7165

ffiffiffiffiffiffiffiffiffiffiffiffi
2kEc

p
, (16)

as shown in Appendix A (Eq. (A.22)), by repeating the analysis of Karma et al. (2001).
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In the present paper, we analyze the case of a phase-field energy Epf ðfqjfgÞwithout rotational symmetry which gives an
anisotropic surface energy. A simple example used for concreteness and for the numerical simulations is provided by a
simple two-fold anisotropy in the phase-field energy1

Epf ¼
k
2
ðjrfj2 þ �q1fq2fÞ. (17)

The surface energy of a straight fracture interface oriented at an angle y with the x-axis arises from the variation of the
elastic and phase fields in a direction transverse to the fracture, namely with fðx; yÞ ¼ f½�x sinðyÞ þ y cosðyÞ�. Therefore,
the only difference between Eqs. (14) and (17) in this one-dimensional calculation of the surface energy (Appendix A) is the
replacement of k by k½1� ð�=2Þ sin 2y� in the anisotropic case. The allied anisotropic surface energy thus follows directly
from the isotropic expression (16) and reads

gðyÞ ¼ g0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�=2Þ sin 2y

q
. (18)

It reduces of course to the isotropic surface energy g0 of Eq. (16) in the �! 0 limit.
With the specific energies of Eqs. (15) and (17), the variational phase-field equations read

qj½sijgðfÞ� ¼ 0,

k½r2fþ �qxyf� � g0ðfÞðEstrain � EcÞ ¼
1

wqtf, (19)

where sij is the usual stress tensor for an isotropic medium

sij ¼ lukkdi;j þ 2muij. (20)

Our aim in the following sections is to analyze the laws that govern the motion of a crack tip in this self-consistent
description.

4. Laws of crack motion as solvability conditions

4.1. The tip inner problem

In the phase-field description, the obtention of laws of motion for a crack tip can be viewed as an ‘‘inner–outer’’
matching problem. The phase-field equation (19) introduce an intrinsic process zone scale x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ð2EcÞ

p
. The ‘‘inner’’

problem consists in the determination of a solution of Eq. (19) at the process zone scale x. The boundary conditions on this
inner problem are imposed at a distance from the crack tip much greater than the process zone scale ðrbxÞ and much
smaller than any macroscopic length. They should coincide with the short-distance asymptotics of the ‘‘outer’’ problem,
namely the usual determination of the elastic field for the crack under consideration. Therefore, the imposed boundary
conditions on Eq. (19) are (i) that the material is intact ðf! 1Þ away from the crack itself and (ii) that for mixed mode I/II
conditions, as considered in this section and the next one, the asymptotic behavior of the displacement field is

uiðr;YÞ�
1

4m

ffiffiffiffiffiffi
r

2p

r
½K1 dI

iðY; nÞ þ K2 dII
i ðY; nÞ�, (21)

where m is the shear modulus and the functions dm
i are directly related to the universal divergent forms of the stress

(Eq. (1)) and are explicitly given (in polar coordinates) by Eqs. (C.6) and (C.7) of Appendix C. The values of K1 and K2 are
imposed by the boundary conditions at the macroscopic scale and do not significantly vary when the crack tip advances by
a distance of order x. In the frame of the crack tip moving at velocity v, Eqs. (19) thus read

qj½sijgðfÞ� ¼ 0,

kr2f� g0ðfÞðEstrain � EcÞ ¼ �
v

w
qxf� �kqxyf. (22)

4.2. Perturbative formalism and solvability conditions

Our first approach for obtaining the laws of crack tip motion consists in analyzing the slowly moving solutions of
Eq. (22) with boundary conditions (21) perturbatively around an immobile Griffith crack. For isotropic elastic
and phase-field energies and a pure opening mode, this Griffith crack corresponds to the stationary solution that
exists for aðKc

1Þ
2
¼ Gc. Accordingly, we consider, for a small departure from Griffith threshold, dK1 ¼ jK1 � Kc

1j=Kc
151 and
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ð1� �=2Þðqy0fÞ2.
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for a small K25Kc
1, a slowly moving crack with a small (two-fold) anisotropy in f-energy (Eq. (18)). Our aim is to find the

relations between K2 and the anisotropy, as well as between K1;K2 and the velocity v, required for the solution existence.
Linearization of Eqs. (22) around the isotropic Griffith crack uð0Þi ;fð0Þ with the substitutions ui ¼ uð0Þi þ uð1Þi ;f ¼

fð0Þ þ fð1Þ, gives

qj½sð1Þij gðfð0ÞÞ� þ qj½sð0Þij g0ðfð0ÞÞfð1Þ� ¼ 0,

kr2fð1Þ � g0ðfð0ÞÞsð0Þij uð1Þij � g00ðfð0ÞÞfð1Þ½Estrain � Ec� ¼ �
v

w
qxf

ð0Þ
� �kqxyf

ð0Þ. (23)

This can symbolically be written as

L

uð1Þ1

uð1Þ2

fð1Þ

0
BB@

1
CCA ¼ � v

w

0

0

qxf
ð0Þ

0
B@

1
CA� �k

0

0

qxyf
ð0Þ

0
B@

1
CA, (24)

where L is the linear operator on the left-hand side (l.h.s.) of Eq. (23). The boundary conditions at infinity are that fð1Þ

vanishes and that uð1Þ behaves asymptotically as in Eq. (21) but with K1 replaced by dK1, the small departure from Griffith
threshold, and K2 is also assumed to be small.

The linear operator L possesses two right zero-modes, that arise from the invariance of the zeroth-order problem under
x and y translations, and can be explicitly obtained by infinitesimal translation of the immobile Griffith crack. For a general
linear operator, the determination of the left zero-modes would nonetheless be a difficult problem. However, the
variational character of the equations of motion imposes quite generally that L is self-adjoint (see Appendix B) and that
left zero-modes are identical to right zero-modes. Thus, taking the scalar product of the two sides of Eq. (24) with the two
translation zero-modes provides two explicit solvability conditions for Eq. (24).

The scalar product with a left zero-mode ðuL
1;u

L
2;f

L
Þ can generally be written as

ZZ
dx dy ðuL

1;u
L
2;f

L
ÞL

uð1Þ1

uð1Þ2

fð1Þ

0
BB@

1
CCA ¼ �

ZZ
dx dy fL v

wqxf
ð0Þ
þ �kqxyf

ð0Þ
� �

. (25)

Since the left vector is a zero-mode of L, the only contribution to the l.h.s. of Eq. (25) comes from boundary terms,

ZZ
dx dy ðuL

1;u
L
2;f

L
ÞL

uð1Þ1

uð1Þ2

fð1Þ

0
BBB@

1
CCCA ¼

I
ds njf½u

L
i s
ð1Þ
ij � uð1Þi sL

ij� gðfð0ÞÞ

þ ½uL
i f
ð1Þ
� uð1Þi fL

�g0ðfð0ÞÞsð0Þij þ k½f
Lqif

ð1Þ
�fð1Þqif

L
�g, (26)

where n is the outward contour normal and the contour integral is taken counterclockwise along a circle (of radius r)
centered on the fracture tip.

4.3. Translations along x and crack velocity

The zero-mode corresponding to translations along x is ðqxuð0Þ1 ;qxuð0Þ2 ;qxf
ð0Þ
Þ. On the r.h.s. of Eq. (25), the term

proportional to the anisotropy � vanishes (by symmetry or explicit integration). The r.h.s. of Eq. (26) can be simplified since
on a circle of a large enough radius, gðfð0ÞÞ equals unity everywhere except in the region where the circle cuts the fracture
lips. This region of non-constant f is far away from the crack tip where the crack is to a very good approximation invariant
by translation along x and qxf ’ qxu ’ 0. Therefore,

ZZ
dx dyðqxuð0Þ1 ; qxuð0Þ2 ;qxf

ð0Þ
ÞL

uð1Þ1

uð1Þ2

fð1Þ

0
BBB@

1
CCCA ¼

I
ds ni½u

ðx;IÞ
i sð1Þij � uð1Þi sðx;IÞij �

¼ �
K1dK1

m ð1� nÞ, (27)

where the explicit formulas (C.6), (C.7) for the elastic displacements around a straight crack, have been used to obtain the
last equality as detailed in Appendix C (see Eq. (C.14)). Comparison between Eqs. (27) and (25) finally provides the natural
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result that the crack velocity is proportional to the departure from Griffith threshold,

v

w

ZZ
dx dy½qxf

ð0Þ
�2 ¼

K1 dK1

m
ð1� nÞ ¼ dG. (28)

4.4. Translations along y and crack direction

A second condition on crack motion arises from the zero-mode corresponding to translations along y,
ðqyuð0Þ1 ; qyuð0Þ2 ; qyf

ð0Þ
Þ. In this case, only the term proportional to the anisotropy � contributes to the l.h.s. of Eq. (26).ZZ

dx dyqyf
ð0ÞÞqxyf

ð0ÞÞ
¼ �

1

2

Z
dy½qyf

ð0ÞÞ
jx¼�1�

2. (29)

Similarly to Eq. (27), the r.h.s. of Eq. (26) simplifies when the integration contour is a large enough circle

ZZ
dx dyðqyuð0Þ1 ; qyuð0Þ2 ; qyf

ð0Þ
ÞL

uð1Þ1

uð1Þ2

fð1Þ

0
BBB@

1
CCCA ¼

I
ds ni½u

ðy;IÞ
i sð1Þij � uð1Þi sðy;IÞij �

¼
K1 K2

m
ð1� nÞ, (30)

where again the explicit evaluation in the last equality is detailed in Appendix C (see Eq. (C.20)). Thus, the second relation
of crack motion reads

K1 K2

m ð1� nÞ ¼ �k
2

Z þ1
�1

dy½qyf
ð0ÞÞ
jx¼�1�

2. (31)

Eq. (31) reduces to the principle of local symmetry (i.e. K2 ¼ 0) for an isotropic medium and provides the appropriate
generalization for the considered anisotropy. Before further discussing these results and their physical consequences, we
present a different derivation in the next section.

5. Generalized Eshelby–Rice integrals

The second approach, which we pursue here, directly exploits the variational character of the equations of motion and
their invariance under translation. It yields identical solvability conditions as the approach of Section 4 when G� Gc and
symmetry breaking perturbations are small, but it is more general since it does not require these quantities to be small.

5.1. The generalized Eshelby tensor

As shown by Noether (1918) in her classic work, to each continuous symmetry of variational equations is associated a
conserved quantity (charge) and an allied divergenceless current. Space (and time) translation invariance are well known to
give the divergenceless energy–momentum tensor in field theories (Landau and Lifshitz, 1975). Eshelby (1951) and
following authors (Rice, 1968; Eshelby, 1975; Gurtin and Podio-Guidugli, 1998; Adda-Bedia et al., 1999; Oleaga, 2001) have
shown the usefulness of the analogous tensor for classical elasticity theory. Here, we consider the generalized
energy–momentum (GEM) tensor which extends the Eshelby (1975) tensor for linear elastic fields by incorporating short-
scale physics through its additional dependence on the phase-field f.

We find it convenient to define the four-dimensional vector field ca
¼ ua for 1pap3 and ca

¼ f for a ¼ 4, where ua are
the components of the standard displacement field. The inner problem Eq. (22) can then be rewritten in the condensed
form

�da;4 vw�1q1f ¼ qj
qE

q½qjc
a
�
�

qE
qca ; a ¼ 1; . . . ;4, (32)

where here and in the following summation is implied on repeated indices (from 1 to 3 on roman indices and from 1 to 4
on greek ones). Chain rule differentiation provides the simple equality,

qiE ¼
qE
qca qic

a
þ

qE
q½qjc

a
�
qjqic

a. (33)

Using Eq. (32) to eliminate qE=qca from the r.h.s. of Eq. (33), we obtain

qj Tij ¼
v

w q1fqif for i ¼ 1;2, (34)
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where the GEM tensor Tij reads

Tij � Edij �
qE

q½qjc
a
�
qic

a. (35)

The GEM tensor Tij is the sought extension of the classical Eshelby (1951) tensor TE
ij of classical linear elasticity

TE
ij ¼ Estraindij � sjkqiuk. (36)

The GEM tensor Tij reduces identically to TE
ij in the intact material where the phase-field is constant (f ¼ 1). Both tensors

are non-symmetric in their two indices. The divergence of the GEM tensor taken on its second indice vanishes in the zero-
velocity limit, when dissipation in the process zone also vanishes.

5.2. Laws of crack motion

In order to take advantage of Eq. (34), we integrate the divergence of the GEM tensor over a large disk O centered on the
crack tip (see Fig. 2), following Eshelby (1975) computation of the configurational force on the crack tip treated as a defect
in a linear elastic field and subsequent attempts to derive criteria for crack propagation and stability (Gurtin and Podio-
Guidugli, 1998; Adda-Bedia et al., 1999; Oleaga, 2001). The important difference with these previous computations is that,
here, the GEM tensor (35) is well defined everywhere, so that the crack itself is included in the domain of integration. The
integral of the divergence of the GEM tensor can be written as a contour integral over the large circle qO bounding the disk
O,

Fi ¼

Z
CA!B

ds Tij nj þ

Z
B!A

ds Tijnj �
v

w

Z
O

d~xq1fqif ¼ 0. (37)

We have decomposed the circle qO into: (i) a large loop CA!B around the tip in the unbroken material, where A (B) is at a
height h below (above) the crack axis that is much larger than the process zone size but much smaller than the radius R of
the contour, x5h5R and (ii) the segment ðB! AÞ that traverses the crack from B to A behind the tip, as illustrated in Fig. 2.
In both integrals, ds is the contour arclength element and nj the components of its outward normal.

Eq. (37) provides an alternative basis to predict the crack speed and its path for quasistatic fracture. The Fi’s can be
interpreted as the parallel ði ¼ 1Þ and perpendicular ði ¼ 2Þ components with respect to the crack direction, of the sum of all
forces acting on the crack tip. In Eq. (37), the three integrals terms from left to right, respectively, represent configurational,
cohesive, and dissipative forces. We examine them in turn.

5.2.1. Configurational forces and Eshelby torque

We take A and B far back from the tip and close to the crack on a macroscopic scale but with the distance 2h between A

and B much larger than the process zone scale. Namely, we consider the mathematical limit h!þ1; R!þ1 with
h=R! 0 where R is the distance from A and B to the crack tip. In this limit, the first integral in Eq. (37) is taken on a path
that is entirely in the unbroken material where f is constant and equal to unity. Thus, the tensor Tij reduces to the classical
Eshelby tensor TE

ij (Eq. (36)) the first integral in Eq. (37) yields the two components of the usual configurational forces Fðconf Þ
i ,

Fðconf Þ
i ¼

Z
CA!B

ds TE
ij nj. (38)

The first component, Fðconf Þ
1 , is the crack extension force and also Rice’s (1968) J integral,

Fðconf Þ
1 ¼

Z
CA!B

ds TE
1j nj. (39)
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Fig. 2. Spatially diffuse crack tip region with f ¼ 1
2 contour separating broken and unbroken material (thick solid line).
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With the known forms of the elastic displacement fields near the crack tip, as detailed in Appendix C (see Eq. (C.28)), one
obtains the well-known expression (2) of the crack extension force,

Fðconf Þ
1 ¼ G ¼ aðK2

1 þ K2
2Þ. (40)

The second component Fðconf Þ
2 can be computed in an analogous way from the elastic displacement fields near the crack tip,

(Eq. (C.29)) and one obtains

Fðconf Þ
2 ¼ �2aK1K2. (41)

As discussed earlier, Fðconf Þ
2 is the Eshelby (1975) torque that can be interpreted physically if one imagine extending the

crack tip by a small amount at a small angle y from the main tip axis. Then Fðconf Þ
2 is equal to the angular derivative of the

crack extension force GðyÞ at y ¼ 0.
This equality can be seen in two ways. First, we can use the general properties of the Eshelby tensor. We denote with a

tilde the elastic quantities corresponding to the crack with the small extension of length s at an angle y. Since the crack
extension is along the direction ðcosðyÞ; sinðyÞÞ, we consider the allied vector obtained from the Eshelby tensor,
T̃

E
yj � cosðyÞT̃E

1j þ sinðyÞT̃E
2j. The flux of this vector vanishes when taken through the contour that goes along the great circle

from A to B and then continues in a classical way along the lips of the extended crack, as drawn in Fig. 3.Z
CA!B

þ

Z
B!C
þ

Z
C!D
þ

Z
CD!E

þ

Z
E!F
þ

Z
F!A

� �
ds T̃

E
yj nj ¼ 0. (42)

The two integrals on the fracture lips from C to D and E to F do not contribute since the integrand vanishes: the y direction
is along the path and the normal stresses vanish on the fracture lips. The same argument shows that the integrand is simply
equal to�Ẽstrain sinðyÞ for the integrals from B to C and F to A along the lips of the original fracture. The integral on the small
circle around the extended crack tip CD!E is equal to �G̃ðyÞ where G̃ðyÞ is the energy-release-rate at the end of the small
crack extension. Eq. (42) thus reduces to

Z
CA!B

½cosðyÞT̃E
1j þ sinðyÞT̃E

2j�nj ¼ G̃ðyÞ þ
Z 0

R
dx sinðyÞ½Ẽ

þ

strainðxÞ � Ẽ
�

strainðxÞ�, (43)

where Ẽ
þ

strain and Ẽ
�

strain, respectively, denote the elastic strain energy densities on the upper and lower fracture lips. The
required identity between Fðconf Þ

2 and the angular derivative of dG̃=dyjy¼0 follows from differentiation of Eq. (43) with
respect to y at y ¼ 0. When this is performed, there are two kinds of terms. Terms coming from the differentiation of the
explicit trigonometric functions in Eq. (43) and terms coming from the implicit dependence upon y of tilde quantities.
However, in the integral on the l.h.s of Eq. (43), these implicit terms vanish as the length s of the extension is taken to zero,
and in the integral on the r.h.s. they are multiplied by a vanishing sine function. Moreover, for the straight fracture at y ¼ 0,
only sxx is non-zero on the fracture lips and it is of opposite sign on the upper and lower fracture lips (Eq. (C.4)). The strain
energy densities which are quadratic in the stress sxx are therefore equal on the upper and lower fracture lips and after
differentiation, the contribution of integral term on the r.h.s. of Eq. (43) vanishes at zero.2 Finally, in the limit of a vanishing
extension length ðs! 0Þ tilde quantity tend toward their (non-tilde) values on the original fracture and one obtains

Fðconf Þ
2 ¼

Z
CA!B

TE
2jnj ¼ lim

s!0

dG̃ðyÞ
dy

����
y¼0

� Gyð0Þ. (44)
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Fig. 3. Sketch showing the contour integral decomposition in Eq. (42). The crack with its virtual extension at an angle y is depicted by the thick bold line.

The integral contour follows the great circle from A to B; it continues along the upper lip of the crack from B to C and then along the upper lip of the virtual

extension from C to D; it then encircles the extended crack tip following the small circle from D to E; finally it comes back to A along the lower crack lips

via F.

2 Subdominant terms, coming for instance from a macroscopic curvature of the crack, could be different on the two crack lips but note that the

integral range is on a length scale that is vanishingly small on a macroscopic scale.
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This relation between the second component Fðconf Þ
2 and the angular derivative of GðyÞ can also be obtained by comparing

their explicit expressions in term of the SIF K1 and K2. As it is well known, the SIF K̃1 and K̃2 at the end of a small extension
can be expressed as linear combination of K1 and K2 (Amestoy and Leblond, 1992)

K̃1 ¼ F11ðyÞK1 þ F12ðyÞK2,

K̃2 ¼ F21ðyÞK1 þ F22ðyÞK2, (45)

with clearly F11ð0Þ ¼ F22ð0Þ ¼ 1 and F12ð0Þ ¼ F21ð0Þ ¼ 0 and the derivative at y ¼ 0, F 011ð0Þ ¼ F 022ðyÞ ¼ 0, as already
mentioned in Section 2 (Eqs. (6) and (7)). A detailed computation (Amestoy and Leblond, 1992) provides the other two
derivatives F 012ð0Þ ¼ �

3
2 and F 021ð0Þ ¼

1
2. Therefore, one obtains

lim
s!0

dG̃ðyÞ
dy

����
y¼0

¼ 2aK1K2½F
0
12ð0Þ þ F 021ð0Þ� ¼ �2aK1K2. (46)

This is indeed identical to the expression of Fðconf Þ
2 obtained by a direct computation (Eq. (41)) and it provides a second

derivation of Eq. (44).

5.2.2. Cohesive forces

An important new ingredient in Eq. (37) is the second portion of the line integral ð
R

B!AÞ of the GEM tensor that traverses
the crack. This integral represents physically the contributions of cohesive forces inside the process zone. To see this, we
first note that the profiles of the phase field and the three components of the displacement can be made to depend only on
x2 provided that the contour is chosen much larger than the process zone size and to traverse the crack perpendicularly
from B to A. With this choice, we have that n1 ¼ �1, n2 ¼ 0, along this contour and therefore that, for i ¼ 1

FðcohÞ
1 ¼

Z
B!A

ds T1jnj ¼ �

Z þh

�h
dx2 T11. (47)

The spatial gradients parallel to the crack direction ðq1c
k
Þ give vanishingly small contributions in the limit h=x!þ1 and

R=x!þ1 with h=R! 0. Thus, the integrand on the r.h.s. of Eq. (47) reduces to the energy of a one-dimensional crack
which, as recalled in Appendix A (Eq. (A.22)), is itself independent of the strain and can be identified to twice the surface
energy g

FðcohÞ
1 ¼ �

Z þh

�h
dx2 Eðf; q2f;q2u2Þ ¼ �2g. (48)

This yields the expected result that cohesive forces along the crack direction exert a force opposite to the crack extension
force with a magnitude equal to twice the surface energy.

One similarly obtains for i ¼ 2, in the same limit x5h5R, the other component FðcohÞ
2 of the force perpendicular to the

crack direction

FðcohÞ
2 ¼

Z
B!A

ds T2jnj ¼ �

Z þh

�h
dx2 T21 ¼

Z þh

�h
dx2

qE
qq1ca

q2ca ¼

Z þh

�h
dx2

qEpf

qq1f
q2f. (49)

The last equality comes from the fact that the only considered anisotropy is in the phase-field part Epf of the energy density
and that, as above, gradients parallel to the crack direction give negligible contributions far behind the crack tip. FðcohÞ

2 can
be expressed as the angular derivative of the surface energy at the crack tip direction y ¼ 0. For a material broken along a
line lying at a direction y with the x-axis, the displacement and phase fields only depend on the normal coordinate
Z ¼ �x1 sinðyÞ þ x2 cosðyÞ. The local energy density E½f; q1f; q2f;qZuZ� is therefore equal to E½f;� sinðyÞqZf;
cosðyÞqZf; qZuZ�. The allied surface energy reads

2gðyÞ ¼
Z þ1
�1

dZ E½� sinðyÞqZf; cosðyÞqZf; qZuZ�. (50)

Differentiation with respect to y brings on the r.h.s. of Eq. (50) terms coming from the explicit dependence of the integrand
on y as well as terms coming from the implicit dependence of the fields on the breaking angle (for an anisotropic material).
However, the contribution of the implicit terms vanishes since for any given angle the fields minimize the total energy and
no field variation leads to an energy change at linear order. Therefore, one obtains

2
d

dy
g
����
y¼0

¼

Z þ1
�1

dx2
qE
qq1f

ð�q2fÞ ¼
Z þ1
�1

dx2
qEpf

qq1f
ð�q2fÞ, (51)

since Z reduces to x2 for y ¼ 0. Comparison of Eqs. (49) and (51) shows that

FðcohÞ
2 ¼ �2

d

dy
g
����
y¼0

(52)

as announced.
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Of course, relation (52) can also be checked by direct computation for any explicit form of the phase-field energy. For
instance, in the simple case of Eq. (17), one obtains from Eq. (49),

FðcohÞ
2 ¼

Z
dx2

qEpf

qq1f
q2f ¼

�
2

Z
dx2 kðq2fÞ2 ¼ �g0, (53)

where, for the last equality, it should be noted (see Appendix A) that the second integral in Eq. (53) is equal to the energy
(by unit length) of the cracked material which is itself equal to 2g0. The result of Eq. (53) indeed agrees with Eq. (52),
�g0 ¼ �2gyð0Þ, since the surface energy in the direction y is given by Eq. (18).

The force FðcohÞ
2 is the direct analog of the Herring (1951, p. 143) torque gy ¼ dg=dy on grain boundaries. This torque tends

to turn the crack into a direction that minimizes the surface energy.

5.2.3. Dissipative forces

The last term in Eq. (37) gives the two components of the dissipative force

FðdisÞ
i ¼ vw�1

Z þ1
�1

Z þ1
�1

dx1 dx2 q1fqif. (54)

The limit where the disk area O tends to infinity has been taken since the integrand vanishes outside the process zone. In
contrast to the configurational and cohesive forces, the dissipative force clearly depends on the detail of the underlying
diffuse interface model.

5.2.4. Force-balance and anisotropic generalization of the principle of local symmetry

Substituting the results of Eqs. (39)–(54) into Eq. (37), the two conditions of Eq. (37) can be rewritten in the compact
form

F1 ¼ G� Gc � FðdisÞ
1 ¼ 0, (55)

F2 ¼ Gyð0Þ � Gcyð0Þ � FðdisÞ
2 ¼ 0, (56)

where we have used the fact that Gcy ¼ 2gy. Eq. (55) together with Eq. (54) predicts the crack speed for G close to Gc

v �
wRR

dx1 dx2ðq1f0Þ
2
ðG� GcÞ, (57)

where f0 is the phase-field profile for a stationary crack (Karma and Lobkovsky, 2004), and thus the integral in the
denominator above is just a constant of order unity. Eq. (56), in turn, predicts the crack path by imposing K2 at the crack tip,

K2 ¼ �ðGcyð0Þ þ FðdisÞ
2 Þ=ð2aK1Þ. (58)

The component FðdisÞ
2 of the dissipative force vanishes with the crack velocity in the quasistatic limit. So, in this limit, the

microscopic details of the process zone do not play a role and the crack direction is uniquely determined by the directional
anisotropy of the material through the simplified condition

K2 ¼ �Gcyð0Þ=ð2aK1Þ. (59)

Eq. (59) replaces the principle of local symmetry for a material with an anisotropic surface tension energy. It reduces of
course to the principle of local symmetry in an isotropic material, since then Gcy vanishes. One can also note that quite
remarkably, Eq. (59) only contains macroscopically defined parameters and is independent of the detailed physics of the
process zone.

Outside the quasistatic limit, K2 ¼ 0 should continue to hold for an isotropic material since FðdisÞ
2 vanishes even for a

finite crack speed. The latter follows from the symmetry of the inner phase-field solution for a propagating crack with
K2 ¼ 0, fðx1; x2Þ ¼ fðx1;�x2Þ, which implies that the product q1fq2f in Eq. (54) is anti-symmetric and that the spatial
integral of this product vanishes. In an anisotropic material, however, f is generally not symmetrical about the local crack
axis and FðdisÞ

2 should generally be non-zero. The crack direction should then become dependent on the details of the energy
dissipation in the process zone.

A small velocity expression for the dissipative force perpendicular to the crack axis can be obtained by considering the
phase-field profile that corresponds to a stationary Griffith crack in an anisotropic material. Here, fA

0, is uniquely defined as
the stationary phase-field profile that exists for a unique pair of values of K1 and K2 that satisfy the conditions of
equilibrium parallel and perpendicular to the crack axis, aðK2

1 þ K2
2Þ ¼ Gcð0Þ and �2aK1K2 ¼ Gcyð0Þ, respectively. For small

velocity, Eq. (54) must therefore reduce to FðdisÞ
2 ¼ vw�1Ið0Þ where the integral

Ið0Þ �

Z
dx1 dx2 q1f

A
0q2f

A
0 (60)
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is a dimensionless constant that, like Gc and Gcy, depends generally on the local orientation of the crack with respect to
some fixed reference axis chosen here as y ¼ 0. For small velocity, Eq. (58) therefore becomes

K2 ¼ �ðGcyð0Þ þ vw�1Ið0ÞÞ=ð2aK1Þ, (61)

where Ið0Þ vanishes in the isotropic limit since fA
0 approaches f0 and hence becomes symmetrical about the crack axis in

that limit.

5.3. Comparison with the maximum energy-release-rate criterion

In isotropic materials, the principle of local symmetry and the maximum-energy-release-rate criterion coincide for
smooth cracks but give slightly different results in general. A well-studied case is the growth of a kink extension at the tip
of a straight crack, as discussed below.

For smooth cracks, it should be noted that force-balance, the present anisotropic generalization (Eq. (59)) of the
principle of local symmetry, also coincides with a generalization of the maximum energy-release-rate criterion to
anisotropic materials. One way to define the latter is to require crack growth to take place in the direction that maximizes
G̃ðyÞ � 2gðyÞ (Leblond, 2005) where as before G̃ðyÞ is the energy-release-rate for an infinitesimal extension at the crack tip at
an angle y (and y ¼ 0 is the direction of the unextended crack). For a smooth crack, the condition that this quantity be
maximal in the crack direction yields

d

dy
½G̃ðyÞ � 2gðyÞ�y¼0 ¼ 0. (62)

With the help of Eq. (46), this is seen to be identical to Eq. (59) as stated.
For non-smooth crack paths, force-balance (Eq. (59)) and the maximum energy-release-rate criterion give different

predictions. The growth of a kinked extension at the tip of a straight crack subject to mixed-mode I/II loading has been
studied as a test case by many authors (see e.g. Amestoy and Leblond, 1992; Hutchinson and Suo, 1992) and references
therein). Although distinct, the predictions for the threshold energy-release-rates and the kink angles in an isotropic
medium are very close for the two criteria. Thus for isotropic media, the difference between the two criteria is insignificant
in practice but nonetheless leads to some questions of theoretical interest.3 For instance, it has remained unclear what the
fate of a crack would be if loaded in the narrow gap in which kink propagation is allowed by the maximum energy-release-
rate criterion but forbidden by the principle of local symmetry.

Interestingly, the situation is different for a kinked crack in an anisotropic medium. It is not difficult to find cases where
there is a significant difference between the kink angles predicted by the maximum energy-release-rate criterion and the
force-balance condition (Eq. (59)) which generalizes the principle of local symmetry. As a simple illustration, we consider
the growth of a straight crack with a load creating a mixed-mode singular stress distribution at the crack tip, with SIF K1

and K2 (Eq. (1)). The SIFs K̃1ðyÞ and K̃2ðyÞ at the end of a small extension, at an angle y with the direction of the main crack,
are given as linear combinations of K1 and K2 as described by Eq. (45). With these notations, the energy-release-rate at the
tip of the small extension reads

G̃ðyÞ ¼ a½K̃1ðyÞ2 þ K̃2ðyÞ2�. (63)

Force-balance, Eq. (59), predicts that above the Griffith threshold Gfb, a kinked extension will grow at an angle yfb such that

Gfb ¼ G̃ðyfbÞ ¼ 2gðyfbÞ, (64)

�2aK̃1ðyfbÞK̃2ðyfbÞ � 2
dg
dy

����
y¼yfb

¼ 0. (65)

Maximum energy- release-rate predicts the different Griffith threshold Gmer and extension angle ymer that satisfy

Gmer ¼ GðymerÞ ¼ 2gðymerÞ, (66)

dG̃

dy

����
y¼ymer

� 2
dg
dy

����
y¼ymer

¼ 0. (67)

We have numerically investigated the difference between these two predictions for a simple two-fold anisotropy

gðyÞ ¼ g0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2 cosð2yÞ
q

, (68)

where, for convenience, the anisotropy axes have been rotated by p=4 compared to our previous choice (Eq. (18)) and we
have purposely chosen a large value of � ¼ 1 to produce an example where the kink angles predicted by the principle of
maximum energy-release-rate and the force-balance condition differ markedly. As before, the direction of the main crack
stands at y ¼ 0.
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The computation of the energy-release-rate at the tip of the small extension G̃ðyÞ and of its derivative requires the
evaluation of the functions FijðyÞ (Eq. (45)) and of their derivatives for finite angles. This has been performed by using
the series expansions of the Fij’s (up to order y20) as given by Amestoy and Leblond (1992).4 We imagine that the load on
the parent crack as measured by the SIFs at its tip is given by K1 ¼ Lð2g0=aÞ

1=2; K2 ¼ Lrkð2g0=aÞ
1=2, where the factor

ð2g0=aÞ
1=2 is introduced for convenience to make L dimensionless (L ¼ 2�1=4 corresponds to the onset of propagation

of a straight crack for rK ¼ 0 for the anisotropy (68)). As shown in Fig. 4A, when L is increased from zero, keeping a
constant ratio rK ¼ K1=K2 of the mode I and II SIFs, a first critical value Lmer is attained for which the maximum energy-
release-rate criterion allows kink growth at angle ymer . When L is increased further a second critical value, Lfb, is reached
for which the kinked extension can grow at an angle yfb with force-balance holding at its tip. The obtained values of the
extension angles and of the ratio Lfb=Lmer are displayed in Fig. 4B and C, as a function of the ratio rK ¼ K2=K1.

As in the isotropic case, the load difference between the two criteria remains small (of the order of 1% in the present
case, as seen in Fig. 4C) but, quite remarkably, it is seen in Fig. 4B that the presence of anisotropy (Eq. (68)) renders the
angle difference between the two criteria much more pronounced than in an isotropic medium. The large angle
difference opens up the possibility to discriminate between the two criteria in full numerical simulations. Also, even
though the ‘‘forbidden’’ gap between the threshold loads for propagation given by the maximum energy-release-rate and
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Fig. 4. Comparison of force-balance and maximum energy-release-rate criterion predictions for a kink growing at the tip of a main crack under mixed-

mode loading in an infinite medium with anisotropic surface energy given by Eq. (68). (A) The angles predicted by the two criteria are shown for the

particular SIF ratio K1=K2 ¼ �4 and two different loads, one (thin lines) just above the threshold load for the maximum energy-release-rate and the other

(thick lines) just above the threshold load for the force-balance criterion. For the maximum energy-release-rate threshold load, the adimensioned

difference between the energy-release-rate at the small extension tip and the anisotropic interface energy ½G̃ðyÞ � 2gðyÞ�=ð2g0Þ (thin solid line) is negative

everywhere except near the maximum ymer ’ 34	 . The derivative of this curve (thin dot-dashed line) intersects zero at ymer , the angle predicted by the

maximum energy-release-rate criterion (Eq. (67)). The angle yfb predicted by force-balance, yfb ’ 57:5	 , is given by the vanishing of the force-balance

condition (thin dashed line, Eq. (65) plotted here in an adimensioned form after division by 2g0) but it does not correspond to a growing extension since

½G̃ðyfbÞ � 2gðyfbÞ�=ð2g0Þ is negative for this load. The thick lines show analogous curves for the slightly larger load that corresponds to the threshold of

propagation for the force-balance condition. The intersection of the force-balance condition (thick dashed line) with zero gives yfb ’ 58	 at threshold. (B)

Kink angle as a function of K1=K2 for force-balance (yfb , solid line) and maximum energy-release-rate (ymer dashed line) at the Griffith threshold for crack

growth at that particular angle. (C) ratio of the threshold loads for growth predicted by the two criteria as measured by the ratio Lfb=Lmer of the threshold

SIFs for the parent crack (see main text for details).

4 We have checked that these series give a very precise estimation of the FijðyÞ’s up to y ¼ 90	 , by comparison with the full numerical evaluations of

Katzav et al. (2007).
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force-balance conditions is small, it is interesting to inquire what happens for loads inside this gap in simulations. These
questions are explored in Section 7.

5.4. Crystalline materials

Our results have interesting implications for crack propagation in crystalline materials. Basic experimental studies have
demonstrated the existence of both ‘‘cleavage cracks’’, which are cracks that propagate along low energy crystal planes,
such as f1 1 1g (Hauch et al., 1999) or f1 1 0g (Deegan et al., 2003) in silicon, and smooth cracks (Deegan et al., 2003) that
resemble qualitatively the cracks seen in isotropic materials. While the propensity for crack propagation along cleavage
planes in crystalline materials is to be expected energetically, the observation of smooth cracks in those same materials is
perhaps less intuitive. Theoretical attempts have been made to understand when cracks will cleave crystals using both
energetic arguments and lattice simulations (Deegan et al., 2003; Marder, 2004a, b). However, a fully consistent theoretical
picture has not yet emerged.

The crack propagation law Eq. (59) provides an explicit prediction of when a crack will propagate along a cleavage plane,
or smoothly in other directions. Restricting our discussion to two dimensions for simplicity, the surface energy in a
crystalline material is expected to show a cusp behavior

gðyÞ ¼ g0ð1þ djyj þ � � �Þ, (69)

near a cleavage plane (and more generally near sets of equivalent low energy crystal planes imposed by symmetry), where
y measures the angle of the surface away from this plane, and to be a smooth differentiable function of y for other
orientations. In terms of the physical picture outlined in Section 2, this cusp behavior implies the presence of a finite
Herring torque on any small extension of a crack at an infinitesimal angle away from a cleavage plane. Therefore, a crack
will be essentially trapped along a cleavage plane until the Eshelby configurational torque is large enough to tilt the crack
away from this plane. Restated in terms of the propagation law, Eq. (59) can be obeyed for small non-zero angles only when
jK2j exceeds a threshold KðcÞ2 with

K ðcÞ2 ¼
2mg0d
ð1� nÞK1

for G � Gc . (70)

Consequently, jK2j should exceed K ðcÞ2 for a cleavage crack to change direction. Eq. (59) also implies that a crack will
propagate smoothly for other orientations away from cleavage planes where the surface g-plot is smooth. Relation (70) was
proposed somewhat more heuristically in Marder (2004b).

One interesting prospect to test this prediction is to examine its consequences for thermal fracture in crystalline
materials, where quasistatic oscillatory cracks have been studied under well-controlled experimental conditions. In
particular, experiments have revealed that the onset of crack oscillations is markedly different in anisotropic and isotropic
materials. In crystalline silicon wafers that cleave preferentially f1 1 0g planes, the onset of crack oscillations is delayed in
comparison to an isotropic material and is accompanied by a discontinuous jump in oscillation amplitude consistent with a
subcritical bifurcation (Deegan et al., 2003). In contrast, the onset of thermal crack oscillations in isotropic material has
been shown to be supercritical in a recent phase-field modeling study, consistent with earlier experimental observations in
glass (see Corson et al. (2008)) and earlier references to the experimental literature therein). The existence of a finite
threshold equation (70) to escape a cleavage crack precludes a smooth transition to crack oscillations around a cleavage
plane. One would therefore expect a subcritical bifurcation for the onset of crack oscillations if Eq. (59) is used in
conjunction with a typical g-plot for a crystalline material that exhibits cusps. However, a detailed study is clearly needed
to validate this expectation and to make contact quantitatively with experiments.

6. Motion under pure antiplane shear

As recalled in the Introduction, the principle of local symmetry was first proposed in Barenblatt and Cherepanov (1961)
for crack motion under pure antiplane shear. This particular case does not seem to have attracted much interest
subsequently, presumably because rotation of the crack front is observed and fractures under mixed mode I–III loading are
found to be unstable in three-dimensional isotropic materials (Sommer, 1969). The criterion of motion under antiplane
shear could nonetheless have some importance for the development of the tridimensional instability. It is also conceivable
that two-dimensional motion under pure mode III loading could be effectively realized in an appropriate anisotropic
material, like for instance a thin layer of sintered glass beads. We therefore find it interesting to briefly examine this
criterion for motion under pure antiplane shear with the formalism developed in the previous sections.

Since in a pure mode III motion, the displacement field reduces to its third component u3 that is a purely scalar
Laplacian field, the diverging stress distribution near the tip equation (3) is always symmetrical and produces no
configurational force perpendicular to the crack axis. Consequently, for propagation in an anisotropic material, the
propagation law reduces simply to the condition that the Herring torque vanishes, gy ¼ 0. This condition implies that in
the limit of vanishing velocity, a quasistatic crack propagates in a direction that corresponds to a local minimum of the
surface energy; it can be argued that propagation in a direction of maximal g is unstable because the configurational
torque amplifies small departures from this direction. Furthermore, for finite velocity, the dissipative force perpendicular to

ARTICLE IN PRESS

V. Hakim, A. Karma / J. Mech. Phys. Solids 57 (2009) 342–368356



Author's personal copy

the crack axis, FðdisÞ
2 , also vanishes since the phase-field profile must be symmetrical about the crack axis for a direction

where gy ¼ 0.
For propagation in an isotropic material, the situation is more subtle than for the mode I/II case. The evaluation of the

contour integral that is the direct analog for mode III of the r.h.s. of Eq. (30) (or equivalently Eq. (38)), gives only a non-
vanishing force perpendicular to the crack axis if the subdominant antisymmetrical contribution of the stress distribution
(i.e., the second term on the r.h.s. of Eq. (3)) is included. This force is proportional to K3A2

ffiffiffi
R
p

, where R is the radius of the
integration contour around the crack tip, where the square-root behavior follows from dimensional analysis. This force
vanishes if A2 ¼ 0, thereby suggesting that the original formulation of the principle of local symmetry for mode III might be
applicable. However, our inner–outer matching procedure used to compute this force is predicated on choosing R much
larger than the scale of the process zone but vanishingly small on the outer scale of the system size set by material
boundaries. Therefore, the magnitude of this force is left undetermined in the present analysis. Further work is therefore
needed to determine if the inner and outer scales can be clearly separated for pure antiplane shear and if A2 ¼ 0 can
rigorously serve as a local condition to predict crack paths in isotropic material.

Additional insight into this question can be gained by repeating the analysis of Section 2 for a small extension dl of a
mode III crack. The analogous expression for the SIF at the tip of the extended crack is K
3 ¼ K3 � bmA2

ffiffiffiffi
dl
p

dy to linear order
in dy (Sih, 1965) where b is a numerical constant, and hence Gyð0Þ�K3A2

ffiffiffiffi
dl
p

. One important difference with plane loading is
the square-root dependence of Gyð0Þ on the crack extension length, which is also reflected in the

ffiffiffi
R
p

dependence of the
integral just mentioned above, which yields the configurational force perpendicular to the crack tip for mode III. Since the
only natural cut-off for the crack extension length on the outer scale of the system is the size x of the process zone, this
result seems to imply that Gyð0Þ�K3A2

ffiffiffi
x

p
up to a numerical prefactor. It also yields the local symmetry condition A2 ¼ 0 in

the isotropic limit, where the symmetry of the phase-field profile makes the dissipative force FðdisÞ
2 vanish.

7. Numerical simulations and tests

We first focus here on testing relation (59) between K2 at a crack tip and the derivative of the surface energy, in the case
of plane strain. We numerically compute the extension of a preexisting straight crack as described by the phase-field
equation (19) and with the surface energy (18). For a pure mode I loading of the preexisting crack and an anisotropic
surface energy, Eq. (59) predicts that the growth of a kinked extension takes place at an angle y such that K2 is adequate at
the growing tip. More explicitly, on the one hand, Eq. (45) gives K̃2 at the kink tip as

K̃2 ¼ F21ðyÞK1 ’ K1
y
2

, (71)

where the second equality is valid for small angles. Therefore, one obtains for small angles,

�2aK̃1K̃2 ’ aK2
1y, (72)

since K̃1 is equal to K1 at dominant order in y (Eq. (45)). On the other hand, the surface energy (18) gives

�2gyð0Þ ¼ �g0. (73)

Eq. (59), which translates in the equality of the l.h.s. of Eqs. (72) and (73), simplifies for G close to Griffith threshold when
aK2

1 ’ 2g0. Then, it simply gives for the initial angle y of the kink crack,

y ¼
�
2

, (74)

which is strictly valid for small angle ð�51Þ in the limit G! Gc. For larger �, the kink angle predicted by force-balance can
be computed by using the series expansion for the FijðyÞ’s of Amestoy and Leblond (1992), as explained before (Eqs. (64) and
(65)).

These predictions were tested numerically. Eq. (19) was solved by using an Euler explicit scheme to integrate the phase-
field evolution and a successive over relaxation (SOR) method to calculate the quasistatic displacement fields u1 and u2 at
each time step. We used as initial condition a straight horizontal crack of length 2W centered in a strip of length 4W

horizontally and 2W vertically, with fixed values of u1 and u2 on the strip boundaries that correspond to the singular stress
fields defined by Eq. (1) for prescribed values of K1 and K2. We used l=m ¼ 1 [a ¼ 3=ð8mÞ], Ec=m ¼ 1

2, a grid spacing
Dx1 ¼ Dx2 ¼ 0:1x, and W ¼ 50x, where the process zone size x �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ð2EcÞ

p
. We checked that the results were independent

of width and grid spacing.
We first verified that, in the isotropic limit, the kink angle was well predicted by the local symmetry condition K
2 ¼ 0,

which implies that y � �2K2=K1. Then, for the anisotropic case, Eq. (18), we chose K2 ¼ 0 and K1 close to the onset of
propagation. Namely, we chose L2

¼ aK2
1=2g0 in the range of 1.1–1.2 (i.e., 10–20% above the propagation threshold of a

horizontal crack). The kink angles were found to be independent of L within this range to numerical accuracy of the phase-
field simulations such that the results can be meaningfully compared to the theoretical predictions of the force-balance
condition at the onset of propagation. The results for the kink angles observed for several simulations with different
magnitudes of the surface energy anisotropy � are shown in Fig. 5. The prediction of the force-balance condition (74) is seen
to be in good quantitative agreement with the results of the phase-field simulations.
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In this first set of simulations, the predictions of the force-balance condition derived in the present paper and of the
previously proposed maximum energy-release-rate criterion are close (�0:5	 for the largest tested anisotropy). Hence, they
cannot be distinguished with our numerical accuracy. A second set of simulations was thus run with the anisotropic surface
energy gðyÞ defined by Eq. (68), a case for which the two criteria give significantly different predictions of kink angles as
explained in Section 5.3 and Fig. 4. Simulations were carried out for two different ratios of SIF K2=K1 ¼ �2 and �4. The
initial condition consisted of a W long horizontal crack in a 4W � 2W strip. Fixed displacements u1 and u2 corresponding to
the singular stress fields were imposed on the strip boundaries and the same grid resolution Dx1 ¼ Dx2 ¼ 0:1x was used.
Simulations were carried out as before for loads close to the onset of propagation for comparison with the theoretical
predictions.

The results are compared to the predictions of the maximum energy-release-rate criterion and force-balance condition
in Fig. 6. For both ratios of K2=K1, the kink emerges initially from the parent straight crack with an angle close to the one
predicted by maximum energy-release-rate. Then, as it propagates further, the crack turns smoothly counterclockwise with
a curvature independent of the box size, as explained below, and thus determined by the length scale x of the process zone,
yielding a slightly curved crack path that is expected to approach asymptotically the kink angle predicted by force-balance.
We note, however, that an accurate quantitative determination of this asymptotic kink angle is made extremely difficult by
two opposite constraints. On the one hand, the strip width must be much larger than the kink length dl, in order to avoid
finite-size effects induced by the outer boundaries, which curves the crack path. On the other hand, the kink length must
itself be much larger than the process zone length scale x for the force-balance condition to hold. The phase-field
simulations shown in Fig. 6 represent our best attempt to satisfy these stringent constraints (Wbdlbx). We have checked
with simulations in a twice larger system that the crack curvature in Fig. 6 is independent of finite-size effects induced by
the outer boundaries. However, even larger scale simulations would be needed to accurately determine the asymptotic kink
angle. The present simulations shown in Fig. 6 nonetheless give a clear example where the maximum energy-release-rate
criterion fails to predict kink angles in an anisotropic material with mode IþII loading. This example is to be contrasted
with the isotropic case extensively studied in the literature, or the case of Fig. 5 with a different surface energy anisotropy
and pure mode I loading, where the two criteria give practically indistinguishable predictions.

Let us now turn to the issue of the ‘‘forbidden’’ gap plotted in Fig. 4C between the threshold loads for propagation given
by the maximum energy-release-rate and force-balance conditions, which was explored in Section 5.3. Macroscopic kink
cracks cannot exist in the phase-field model for angles that correspond to maximum energy-release-rate, as clearly
validated by the simulations in Fig. 6, but only for angles that satisfy force-balance. Thus only the threshold load dictated
by force-balance should generally be expected to have predictive value for experimentally observed crack paths on
macroscopic length scales. It is conceivable that details on the process zone length scale (i.e. in the present context, details
of the phase-field formulation) determine whether macroscopic kinks grow exactly at this threshold or only appear at a
higher threshold with a finite velocity, in a subcritical way. In any case, kinks inside the ‘‘forbidden gap’’ should stay
confined to the process zone length scale since they are below the force-balance threshold load. For the case K2=K1 ¼ �4 in
the above example, Lfb ¼ ðaK2

1=ð2g0Þ
1=2
� 0:196 (Lmer � 0:193) which is in good agreement with the threshold value

� 0:205 obtained by varying L in the phase-field simulations to determine the onset of kink propagation. These two
thresholds cannot be compared more accurately given that the surface energy in the present finite-difference
implementation of the phase-field equations differs by a few percents from its analytically predicted value and that the
kinks have a finite length on the process zone length scale.
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Finally, we have also tested our prediction for pure mode III cracks. We used the same phase-field model with the
anisotropy form of gðyÞ defined by Eq. (18), albeit with the strain energy corresponding to pure antiplane shear,

Estrain ¼
m
2
½ðq1u3Þ

2
þ ðq2u3Þ

2
�. (75)

We used as initial condition a straight horizontal crack of length 3W centered in a strip of length 6W horizontally (along
the x1-axis) and 2W vertically together with Ec=m ¼ 1

2, the anisotropy � ¼ 1:8, a grid spacing Dx1 ¼ Dx2 ¼ x=6, a half strip
width W ¼ 50x, and a fixed displacement u3 ¼ 11:313x on the x2 ¼ �W boundaries corresponding to a crack slightly above
the Griffith threshold, where as before the process zone size x �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ð2EcÞ

p
.

The results of this simulation shown in Fig. 7 confirm that a crack centered initially in the strip with its axis parallel to
the y ¼ 0 direction, kinks at a 45	 angle ðy ¼ p=4Þ that is consistent with the analytical prediction gy ¼ 0 for mode III in an
anisotropic material.

Fracture in the phase-field model that we have considered here is a reversible process in the sense that cracks can (and
do) heal when stresses are removed. This can also be observed in some experiments under very clean conditions when no
alterations of exposed surfaces follow breaking. Nonetheless, this is sometimes considered a troublesome feature since it
does not occur in more usual conditions. One could think of introducing irreversibility in a‘‘physical way’’ by adding
another field to mimick surface oxydation. In a simpler but more ad hoc fashion, one can only accept evolutions that
decrease the value of the phase field. To assess the importance of reversibility on our results, the numerical simulations
above for modes I/II and III were redone with this second scheme ((i.e. taking Eq. (19)) as written when qtfo0 and
otherwise replacing it by qtf ¼ 0). While the loads corresponding to the onset of crack propagation where found to be very
slightly different for reversible and irreversible dynamics (Lfb is a few percent larger in the irreversible case), the
macroscopic crack paths were found to be essentially identical for the same load above the onset of propagation for both
cases. In particular, the f ¼ 1

2 phase-field contours of Figs. 5 and 6 superimpose perfectly for the two sets of simulations
with and without reversible dynamics. This insensitivity of macroscopic crack paths to the introduction of irreversibility
does not appear surprising since our derivation of crack propagation laws for modes I/II and III rely on the existence of
propagating solutions for which qtfo0.

8. Conclusion

We have analyzed here the laws of quasistatic crack tip motion within the phase-field framework. The analysis provides
a derivation of the principle of local symmetry and of its generalization to anisotropic materials. It also underlines the role
of the configurational force perpendicular to the crack tip direction. The results can be interpreted physically as a simple
force-balance condition. The variational character of the phase-field equations of motion played an important role in the
derivation of the equations for the crack tip. It directly allowed us in Section 5 to define a generalization of Eshelby tensor
that includes the phase field and short-scale physics while keeping its divergenceless property. Its role in the derivation of
Section 4 may be less central from a conceptual point of view but the self-adjointness of the linear operator allowed the
obtention of explicit formulas. In any case, it should be noted that direct link to energy considerations à la Griffith require a
variational model.

Several questions appear worth of further investigations. First, it would be worthwhile to extend phase-field
simulations to larger system sizes for cases where the force-balance condition and the maximum energy-release-rate
criterion give strikingly different predictions of kink angle, as in the example of Fig. 6. In particular, it would be interesting
to understand how, in this case, forces on the process-zone scale cause the crack to initially gently curve, independently of
macroscopic length scales, before it approaches its asymptotic kink angle predicted by the force-balance condition; and,
why, in cases where the force-balance condition and the maximum energy-release-rate criterion give similar predictions,
kinks are straight even on the process zone length scale as in the example of Fig. 5. This goes beyond what we have
analytically studied here and merits further scrutiny. Second, it would be interesting to study the effects of dissipative
forces on the process zone scale for finite crack velocity and to study the role of inertia in dynamics, as opposed to
quasistatic, fracture. Third, for pure mode III cracks, even if they are not realized under most experimental conditions, the
applicability of the principle of local symmetry ðA2 ¼ 0Þ remains to be established on a firmer footing in the isotropic limit
where the force perpendicular to the crack tip seems to depend on an arbitrary cut-off on the scale of the process zone.
Fourth, the crack propagation laws have been here derived for a gradient formulation of the phase-field dynamics where
failure is reversible. Even though our numerical simulations indicate that a simple ad hoc introduction of irreversibility
(where the phase field can only decrease in time) does not alter crack paths, it is found to slightly alter the threshold load
for propagation. Therefore, the role of irreversibility, and in particular the dependence on this threshold load on details of
the process zone dynamics, is worth investigating more fully.

The phase-field energy is certainly another aspect that would benefit from further refinement. As written in Eqs. (15)
and (19), it does not distinguish between compressive and extensive strains which is quite an unphysical feature. Note that
this property is also shared by the variational formulation advocated by Francfort and Marigo (1998) (illustrated in
numerical simulations of Bourdin et al. (2000), Fig. 4, in which it is referred to as sample interpenetration). Some remedies
have been proposed (Henry and Levine, 2004) but have the disadvantage that they break the variational character of the
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equations of motion. The development of more physically motivated and material adapted energies certainly appear as an
interesting future endeavor.

The extension of the present analysis to three dimensions where fracture paths are geometrically more complex is
another important future direction. Numerical simulations and preliminary analysis addressing this question will be
reported elsewhere (Pons and Karma, 2008).

Finally, we hope that the results reported here will contribute to stimulate further experimental investigations of
quasistatic crack motion in anisotropic media.
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Appendix A. The KKL phase-field model in one dimension

In this appendix, we recall the analysis of the KKL phase-field model in one dimension, that is the snap-back of a
stretched elastic band, as described in Karma et al. (2001). In particular, the energy of the fractured state Eq. (A.22) provides
the expression of the surface energy given in the main text. We also show how the fractured solution appears in one
dimension in this model. For an elastic band of size 2L, the elastically stretched state is the only allowed state when the
total strain 2D is low enough. Above a critical total strain 2Dc two other non-trivial solutions appear via a saddle-node
bifurcation, one being dynamically stable and the other being unstable. At the bifurcation, both solutions have a higher
energy than the elastically stretched state. However, the dynamically stable solution becomes energetically favored as
compared to the elastically stretched state when the total strain becomes higher than 2DG ð42DcÞ, which corresponds to
the Griffith threshold in the model. This scenario is illustrated by numerical solution in Fig. A1. The unstable solution
corresponds to the energy barrier (the Eyring state) that has to be overcome to create the fractured state and it provides the
corresponding activation energy.

For a one-dimensional band, the KKL energy reads

E ¼

Z þL

�L
dy

k
2
ðqyfÞ2 þ gðfÞ

l
2
þ m

� �
ðqyuÞ2 � Ec

� 	
þ Ec

� �
, (A.1)

with the function g monotonically increasing from gð0Þ ¼ 0 in the fully broken state to gð1Þ ¼ 1 in the intact material
with also g0ð1Þ ¼ 0 to recover linear elasticity. Steady state solutions obey the equilibrium equation obtained by variation of
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Fig. A1. (A) Minimum value fm of the phase field vs. adimensioned displacement d ¼ Dðm=kÞ1=2 for a strip of adimensioned half-width ‘ ¼ Lð2Ec=kÞ1=2
¼

3 (solid line) and in the limit of a large strip (dashed line), as given by Eq. (A.14) with ‘ ¼ 3. For a given displacement d4dc , there are two values of fm

corresponding to two stationary solutions with the smallest value of fm for the stable one. (B) The energies E vs. d for the two branches of solutions for the

same band of ‘ ¼ 3 (solid line), the lower branch corresponding to the stable fractured state. The asymptotic expression for a large band is also plotted

using Eq. (A.20) with ‘ ¼ 3 (dashed line). The two branches meet at a cusp, the generic behavior at a saddle-node bifurcation. The corresponding

adimensioned energy d2=ð2‘Þ of the (half) elastically stretched band is also plotted (dotted line). It becomes larger than the energy of the stable fractured

solution at Griffith threshold.
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Eq. (A.1),

kqyyf ¼ g0ðfÞ
l
2
þ m

� �
ðqyuÞ2 � Ec

� 	
, (A.2)

qy½gðfÞqyu� ¼ 0, (A.3)

with the boundary conditions uð�LÞ ¼ �D;fð�LÞ ¼ 1. The elastically stretched band f ¼ 1; uðyÞ ¼ yD=L is always a solution
of Eqs. (A.2) and (A.3) and its energy is equal to the usual purely elastic one

E ¼ ðlþ 2mÞD2=L. (A.4)

In order to analyze the existence of other less obvious solutions of Eqs. (A.2) and (A.3), it is useful to note that Eq. (A.3) can
be integrated once to obtain

qyu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ec

l=2þ m

s
c

gðfÞ
, (A.5)

with c a constant yet to be determined. Eq. (A.5) allows the elimination of the strain field from the phase-field equation
(A.2) which then reads

kqyyf ¼ Ecg0ðfÞ
c2

g2ðfÞ
� 1

� 	
. (A.6)

In a usual way, it is helpful to consider y as a fictitious time and to think of Eq. (A.6) as describing the motion of a point
particle in the effective potential

Veff ðfÞ ¼
c2

gðfÞ
þ gðfÞ. (A.7)

With this analogy, a non-trivial solution of Eq. (A.6) corresponds to a particle that starts at ‘‘time’’ y ¼ �L from f ¼ 1 with a
negative velocity qyfo0, to reach a minimum f ¼ fm at y ¼ 0 where the ‘‘velocity’’ qyf vanishes; from this turning point it
then follows the time-reversed motion and comes back to f ¼ 1 at y ¼ þL. The integrability of this one-dimensional
motion gives the conservation law

k
Ec
ðqyfÞ2 þ Veff ðfÞ ¼ Veff ðfmÞ. (A.8)

This allows us to express the energy (Eq. (A.1)) of the corresponding non-trivial solution as

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2kEc

p Z 1

fm

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Veff ðfmÞ � Veff ðfÞ

q ½1þ Veff ðfmÞ � 2gðfÞ�. (A.9)

Two constraints determine the two unknown constants c and fm as a function of the dimensionless strip width ‘ and
dimensionless total strain d. First, the particle motion should take a total time 2L with

‘ ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ec=k

p
¼

Z 1

fm

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Veff ðfmÞ � Veff ðfÞ

q . (A.10)

Second, the overall integrated strain should equal the imposed displacement

d ¼ D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2mÞ=k

q
¼ c

Z 1

fm

df

gðfÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Veff ðfmÞ � Veff ðfÞ

q . (A.11)

We analyze more specifically the case of a macroscopic strip of width ‘b1.
We find it convenient to first consider the dependence of Eq. (A.10) on c. Since the sum of kinetic energy ½k=ð2EcÞðqyfÞ2�

and potential energy ½Veff ðfÞ� is constant along the particle trajectory (Eq. (A.8), the initial potential energy is always lower
than the potential energy at the return point where the kinetic energy vanishes), Veff ð1ÞoVeff ðfmÞ. For a given fm, the time
L spent by the particle during its motion increases as its initial velocity jqyfj decreases. It is thus maximal in the limit
where Veff ð1Þ ¼ 1þ c2 tends towards Veff ðfmÞ ¼ c2=gðfmÞ þ gðfmÞ, that is in the limit c2 ! gðfmÞ. The time spent on the
trajectory diverges logarithmically when c2 approaches gðfmÞ (since g0 has a double zero at f ¼ 1). Thus, for ‘b1, c2 is
exponentially close to gðfmÞ.

We consider now the integrated strain constraint, equation (A.11), and the determination of fm. It is helpful to rewrite
Eq. (A.11) using Eq. (A.10) as

d ¼ c‘ þ c

Z 1

fm

df
1� gðfÞ

gðfÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Veff ðfmÞ � Veff ðfÞ

q . (A.12)
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Under this form, for large ‘, as c2 ! gðfmÞ the integral in Eq. (A.12) converges and c2 can be replaced by gðfmÞ with an
exponentially small error. Thus, one obtains

d ’ gðfmÞ
1=2 ‘ þ

Z 1

fm

df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gðfÞ

gðfÞ½gðfÞ � gðfmÞ�

s( )
. (A.13)

The existence of solutions with d5‘ imposes gðfmÞ51 (since the integral term in Eq. (A.13) is clearly positive). When g

behaves as gðfÞ�afs for small f, equation (A.13) reduces to

d ’
ffiffiffi
a
p

fs=2
m ‘ þ

Csffiffiffi
a
p f1�s=2

m , (A.14)

where the constant Cs can be expressed in term of the Euler B function as Cs ¼ Bð1� 1=s; 1
2Þ=s. The first term in Eq. (A.14)

represents a contribution to the total displacement that is distributed over the whole sample, whereas the second one is a
localized contribution coming from the center of the stretched band. If one wishes that some solutions can correspond to
fractured bands, the second contribution should dominate the first. It should moreover be able to take values much larger
than one (so than one can have localized solutions with db1). This clearly requires the exponent 1� s=2 to be negative and
therefore that the function gðfÞ be chosen so that s42, as noted in Karma et al. (2001). A possible choice, made in the
present work as in Karma et al. (2001), is to take s ¼ 3 (in addition to the requirements gð1Þ ¼ g0ð1Þ ¼ 0) and

gðfÞ ¼ 4f3
� 3f4. (A.15)

For this specific choice, clearly a ¼ 4 and C3 ¼ Bð23 ;
1
2Þ=3 ’ 0:862. For s42, the r.h.s. of Eq. (A.14) has a minimum value dc

that is reached for fm ¼ fc with

fs�1
c ’ Csðs� 2Þ=ðas‘Þ, (A.16)

dc ’
ffiffiffi
a
p 2ðs� 1Þ

s� 2
‘fs=2

c �‘
ðs�2Þ=2ðs�1Þ, (A.17)

or more simply for our specific choice of g with s ¼ 3, fc ’ 0:268=
ffiffiffi
‘
p

and dc ’ 1:11‘1=4. For an adimensioned strain d
below dc no non-trivial solutions exist. Two coincident solutions appear at d ¼ dc which separate into a stable lower energy
solution and an unstable higher energy one when d4dc as shown in Fig. A1. The energies of the two solutions can be
explicitly obtained in the limit ‘b1. Eq. (A.9) can be rewritten as

Effiffiffiffiffiffiffiffiffiffiffiffi
2kEc

p ¼ ½Veff ðfmÞ � 1�‘ þ

Z 1

fm

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Veff ðfmÞ � Veff ðfÞ

q 2½1� gðfÞ�, (A.18)

where we have used expression (A.10) for the strip width ‘. For a large ‘, c2 can be replaced by gðfmÞ with an exponentially
small error to obtain

Effiffiffiffiffiffiffiffiffiffiffiffi
2kEc

p ¼ gðfmÞ‘ þ 2

Z 1

fm

df½1� gðfÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðfÞ

gðfÞ � gðfmÞ

s
. (A.19)

Finally, in the whole regime of interest where d5‘, the phase-field minimum value fm vanishes as a power of ‘. With the
small f behavior gðfÞ�afs, Eq. (A.19) simply reduces to

Effiffiffiffiffiffiffiffiffiffiffiffi
2kEc

p ¼ afs
m‘ � Dsfm þ 2

Z 1

0
df½1� gðfÞ�, (A.20)

where as above the constant Ds can be expressed using Euler B function (Ds ¼ ðs� 2ÞCs) and for s ¼ 3, D3 ’ 0:862. The
asymptotic form (A.20) is already reasonably accurate for ‘ ¼ 3 as shown in Fig. A1.

As d becomes much larger than dc , these two solutions correspond to the dominance of one of the two terms on the l.h.s.
of Eq. (A.13).

For the stable solution, the localized contribution to the strain dominates so that

d ’
Csffiffiffi

a
p f1�s=2

m . (A.21)

Thus, in this parameter regime, ‘b1 and dbdcb1, fm tends toward zero. As a welcome consequence, the energy of the
stable solution becomes independent of the strain and can be identified with twice the surface energy g

Es ¼ 2g ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
2kEc

p Z 1

0
df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gðfÞ

p
. (A.22)

For our specific choice of gðfÞ (Eq. (A.15)) the numerical value of the integral is approximately 0.7165. As in Griffith’s
original theory, this stable solution becomes energetically favored as compared to the elastically stretched band when Es

becomes smaller than the purely elastic stretching energy (Eq. (A.4)), that is when D4Dg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2g=ðlþ mÞ�L

p
or equivalently

for d4dg ¼ 1:20
ffiffiffi
‘
p

.
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For the unstable solution, when d becomes much larger than dc , one has simply

d ’
ffiffiffi
a
p

fs=2
m ‘. (A.23)

The corresponding energy is simply (Eqs. (A.20) and (A.22)),

Eu ¼ 2gþ
ffiffiffiffiffiffiffiffiffiffiffiffi
2kEc

p d2

‘
, (A.24)

since the term proportional to fm becomes subdominant with respect to the other two (and tends towards zero) when d
moves away from dc . In other terms, the energy of the unstable state is simply the energy of the elastically stretched band
plus the energy necessary to create the two interfaces, as one could have intuitively guessed.

Finally, it is interesting to see how the profile of the fracture state depends on the total strain d. The profile of a general
solution is obtained from Eq. (A.6) as

y

x
¼

Z f

fm

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Veff ðfmÞ � Veff ðfÞ

q , (A.25)

with as before x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ð2EcÞ

p
denotes the process zone scale. In the regime ‘b1 and db1 (or equivalently fm51) the

phase-field profile on the process zone scale is independent of d

y

x
¼

Z f

0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gðfÞ

p . (A.26)

This is not true for f comparable to fm (in the regime ‘b1 and db1) where Eq. (A.25) simplifies to

y

x
¼ fm

Z f=fm

1

rs=2 drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs � 1

p . (A.27)

In the same regime f�fm, the strain field can be written as

u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

lþ 2m

r
f1�s=2

m ffiffiffi
a
p

Z f=fm

1

dr
rs=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs � 1

p ¼
D
Cs

Z f=fm

1

dr
rs=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs � 1

p . (A.28)

Comparison of Eqs. (A.27) and (A.28) shows that the variation of u is comparable to the total strain D (Eq. (A.21)) on a scale
fmx much smaller than the process zone length. More precisely, for different strains D, the different scaled strain profiles
u=D are given by a unique function of y=ðfmxÞ.

Appendix B. Variational equations and self-adjointness of linearized operators

The equilibrium phase-field equations considered in this paper are Euler–Lagrange equations coming from the variation
of an energy density E where E depends on a set of fields ca (here the elastic displacements and a scalar phase-field) and
their spatial derivatives qjca,

qE
qca
� qj

qE
q½qjca�

¼ 0. (B.1)

We show here that quite generally for this type of equations, the allied linear operator is self-adjoint, a property that we
used for obtaining the explicit formulae of Section 4.

Linearization of Eq. (B.1) around a solution cð0Þa produces the linearized operator L. It is defined by its action on a set of
functions vb as

La½fvbg� ¼
q2E

qcaqcb
vb þ

q2E

qcaq½qjcb�
qjvb � qj

q2E

qcbq½qjca�
vb

( )
� qj

q2E

q½qkcb�q½qjca�
qkvb

( )
. (B.2)

Now it is easily seen using integration by parts that for two arbitrary sets of differentiable functions vb and wa, one hasZ
dx waLa½fvbg� ¼

Z
dx vaLa½fwbg� þ boundary terms. (B.3)

The relation clearly holds separately for the first and last term on the r.h.s. of Eq. (B.2) and comes from the interchange of
the second and third term on using integration by parts. Thus, the linear operator La is self-adjoint for the usual flat
measure (here simply dx � dx1 dx2 on the plane).

Appendix C. Explicit computations of zero-modes and solvability integrals

For the convenience of the reader, we provide below some details of our computations of solvability integrals and of the
Eshelby tensor line integrals.
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For plane strain, the explicit form (1) of the stress distribution near a crack tip is conveniently obtained from the Airy
function w which satisfies the biharmonic equation

r2
ðr2wÞ ¼ 0. (C.1)

In polar coordinates ðr;YÞ, w is related to the strain tensor by

srr ¼
1

r2
q2
YYwþ

1

r
qrw; sYY ¼ q2

rrw and srY ¼
1

r2
qYw�

1

r
q2

rYw. (C.2)

For a crack along the x-axis, with its tip at x ¼ 0, the Airy function is determined by Eq. (C.1), together with zero traction
boundary conditions on the fracture lips, srr ¼ srY ¼ 0 for Y ¼ �p. The most singular possibility compatible with a
bounded elastic energy reads, in polar coordinates,

w ¼ r3=2

3

K1ffiffiffiffiffiffi
2p
p 3 cos

Y
2

� �
þ cos

3Y
2

� �� 	
�

K2ffiffiffiffiffiffi
2p
p sin

Y
2

� �
þ sin

3Y
2

� �� 	� �
. (C.3)

The dominant divergent forms of the stress distribution follow by differentiation with the help of Eq. (C.2),

srr ¼
K1ffiffiffiffiffiffiffiffi
2pr
p

5

4
cos

Y
2

� �
�

1

4
cos

3Y
2

� �� 	
�

K2ffiffiffiffiffiffiffiffi
2pr
p

5

4
sin

Y
2

� �
�

3

4
sin

3Y
2

� �� 	
,

sYY ¼
K1ffiffiffiffiffiffiffiffi
2pr
p

3

4
cos

Y
2

� �
þ

1

4
cos

3Y
2

� �� 	
�

K2ffiffiffiffiffiffiffiffi
2pr
p

3

4
sin

Y
2

� �
þ

3

4
sin

3Y
2

� �� 	
,

srY ¼
K1ffiffiffiffiffiffiffiffi
2pr
p

1

4
sin

Y
2

� �
þ

1

4
sin

3Y
2

� �� 	
þ

K2ffiffiffiffiffiffiffiffi
2pr
p

1

4
cos

Y
2

� �
þ

3

4
cos

3Y
2

� �� 	
. (C.4)

The relation between the strain and stress tensors (Eq. (20)) and integration give the allied displacement field,

ui ¼
1

4m

ffiffiffiffiffiffi
r

2p

r
½K1dI

i þ K2 dII
i �; i ¼ r;Y. (C.5)

The mode I crack tip displacement functions dI
i are given by

dI
r ¼ ð5� 8nÞ cos

Y
2

� �
� cos

3Y
2

� �
,

dI
y ¼ ð�7þ 8nÞ sin

Y
2

� �
þ sin

3Y
2

� �
. (C.6)

The corresponding mode II functions are

dII
r ¼ ð�5þ 8nÞ sin

Y
2

� �
þ 3 sin

3Y
2

� �
,

dII
Y ¼ ð�7þ 8nÞ cos

Y
2

� �
þ 3 cos

3Y
2

� �
. (C.7)

These expressions allow the explicit evaluation of the different integrals of Sections 4 and 5.
(i) Solvability integrals: For a vectorial field u ¼ urer þ uYeY the two components of the x-translation field uðxÞ � qxu are

uðxÞr ¼ cosðYÞqrur �
sinðYÞ

r
qYur þ

sinðYÞ
r

uY,

uðxÞY ¼ cosðYÞqruY �
sinðYÞ

r
qYuY �

sinðYÞ
r

ur . (C.8)

With these formulae, one can compute the two components of the x-translation field uðx;IÞ associated to the mode I
displacement field (Eqs. (C.5) and (C.6)),

uðx;IÞr ¼
K1

8m
ffiffiffiffiffiffiffiffi
2pr
p ½ð7� 8nÞ cosð3Y=2Þ � 3 cosðY=2Þ�,

uðx;IÞY ¼
K1

8m
ffiffiffiffiffiffiffiffi
2pr
p ½ð�5þ 8nÞ sinð3Y=2Þ þ 3 sinðY=2Þ�. (C.9)

The corresponding strain tensor reads

uðx;IÞrr ¼ qru
ðx;IÞ
r ¼ �

K1

16m
ffiffiffiffiffiffi
2p
p

r3=2
½ð7� 8nÞ cosð3Y=2Þ � 3 cosðY=2Þ�,

uðx;IÞYY ¼
1

r
½uðx;IÞr þ qYuðx;IÞY � ¼ �

K1

16m
ffiffiffiffiffiffi
2p
p

r3=2
½ð1� 8nÞ cosð3Y=2Þ þ 3 cosðY=2Þ�,

uðx;IÞrY ¼
1

2
½qru

ðx;IÞ
Y þ qYuðx;IÞr � ¼ �

3K1

16m
ffiffiffiffiffiffi
2p
p

r3=2
½sinð3Y=2Þ þ sinðY=2Þ�. (C.10)
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The two needed components of the allied stress tensor follow

sðx;IÞrr ¼
K1

8
ffiffiffiffiffiffi
2p
p

r3=2
½�7 cosð3Y=2Þ þ 3 cosðY=2Þ�,

sðx;IÞrY ¼ �
3K1

8
ffiffiffiffiffiffi
2p
p

r3=2
½sinð3Y=2Þ þ sinðY=2Þ�. (C.11)

With these explicit expressions, one can evaluate the solvability integrals for the perturbed displacement field uð1Þi ,

uð1Þi ¼
1

4m

ffiffiffiffiffiffi
r

2p

r
½dK1 dI

i þ dK2 dII
i �; i ¼ r;Y. (C.12)

With Eqs. (C.4), (C.9) and (C.6), (C.11), one obtains for the two integrals

Z
dsju

ð1Þ
i sðx;IÞij ¼

Z
dsj

1

4m

ffiffiffiffiffiffi
r

2p

r
dK1 dI

is
ðx;IÞ
ij

� 	
¼

K1 dK1

8m ½5� 6n�,Z
dsju

ðx;IÞ
i sð1Þij ¼

K1dK1

8m ½�3þ 2n�, (C.13)

where sð1Þij is the perturbation of the stress tensor corresponding to uð1Þi . It is given by the mode I part of Eq. (C.4) with K1

and K2 replaced by dK1 and dK2. For symmetry reasons, only the mode I part of uð1Þi and sð1Þij contribute to the integrals.
Subtracting the two equations (C.13), one finally obtains

Z
dsj½u

ðx;IÞ
i sð1Þij � uð1Þi sðx;IÞij � ¼ �

K1 dK1

m
½1� n�, (C.14)

which is Eq. (27) of the main text.
The corresponding expressions for a y-translation field uðyÞ � qyu associated to a vectorial field u ¼ urer þ uYeY are

uðyÞr ¼ sinðYÞqrur þ
cosðYÞ

r
qYur �

cosðYÞ
r

uY,

uðyÞY ¼ sinðYÞqruY þ
cosðYÞ

r
qYuY þ

cosðYÞ
r

ur . (C.15)

This gives for the two components of the y-translation field uðy;IÞ associated to the mode I displacement field of Eq. (C.6)

uðy;IÞr ¼
K1

8m
ffiffiffiffiffiffiffiffi
2pr
p ½ð7� 8nÞ sinð3Y=2Þ � sinðY=2Þ�,

uðy;IÞY ¼
K1

8m
ffiffiffiffiffiffiffiffi
2pr
p ½ð5� 8nÞ cosð3Y=2Þ � cosðY=2Þ�, (C.16)

with the corresponding strain tensor

uðy;IÞrr ¼ �
K1

16m
ffiffiffiffiffiffi
2p
p

r3=2
½ð7� 8nÞ sinð3Y=2Þ � sinðY=2Þ�,

uðy;IÞYY ¼ �
K1

16m
ffiffiffiffiffiffi
2p
p

r3=2
½ð1� 8nÞ sinð3Y=2Þ þ sinðY=2Þ�,

uðy;IÞrY ¼
K1

16m
ffiffiffiffiffiffi
2p
p

r3=2
½3 cosð3Y=2Þ þ cosðY=2Þ�, (C.17)

and stress tensor

sðy;IÞrr ¼
K1

8
ffiffiffiffiffiffi
2p
p

r3=2
½�7 sinð3Y=2Þ þ sinðY=2Þ�,

sðy;IÞrY ¼
K1

8
ffiffiffiffiffiffi
2p
p

r3=2
½3 cosð3Y=2Þ þ cosðY=2Þ�. (C.18)

This gives for the two integrals of interestZ
dsj uðy;IÞi sð1Þij ¼

K1K2

8m ½5� 6n�,Z
dsj uð1Þi sðy;IÞij ¼

K1K2

8m ½�3þ 2n�, (C.19)

where only sð1Þij and uð1Þi , the mode II parts of the perturbed stress tensor sð1Þij and displacements fields uð1Þi (Eq. (C.12))
contribute to the integrals.
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One finally obtains for the difference of the two integrals of Eq. (C.19)Z
dsj½u

ðy;IÞ
i sð1Þij � uð1Þi sðy;IÞij � ¼

K1 K2

m ½1� n�, (C.20)

which is Eq. (30) of the main text.
(ii) Components of the configurational force on the crack tip: The two line integrals (Eq. (38)) giving the two components of

the configurational force on the crack tip can be directly evaluated with the help of the above results.

f ðconf Þ
i ¼

Z
A!B

ds TE
ijnj ¼

Z
A!B

ds½Estrainni � sjkuðiÞk �, (C.21)

where uðiÞ � qiu is the translation field in the direction i ði ¼ x; yÞ, with modes I and II components included

uðiÞk ¼ uði;IÞk þ uði;IIÞk . (C.22)

The mode I components uði;IÞk are given by Eqs. (C.9) and (C.16). A similar computation gives their mode II components with
the help of Eqs. (C.5), (C.7) and (C.8)

uðx;IIÞr ¼
K2

8m
ffiffiffiffiffiffiffiffi
2pr
p ½ð�7þ 8nÞ sinð3Y=2Þ þ sinðY=2Þ�,

uðx;IIÞY ¼
K2

8m
ffiffiffiffiffiffiffiffi
2pr
p ½ð�5þ 8nÞ cosð3Y=2Þ þ cosðY=2Þ� (C.23)

and

uðy;IIÞr ¼
K2

8m
ffiffiffiffiffiffiffiffi
2pr
p ½ð7� 8nÞ cosð3Y=2Þ þ 5 cosðY=2Þ�,

uðy;IIÞY ¼
K2

8m
ffiffiffiffiffiffiffiffi
2pr
p ½ð�5þ 8nÞ sinð3Y=2Þ � 5 sinðY=2Þ�. (C.24)

With these formulae and the stress tensor expression Eq. (C.4), one obtainsZ þp
�p

r dY½srruðxÞr þ srYuðxÞY � ¼
1

8m
½K2

1ð�3þ 2nÞ þ K2
2ð�5þ 6nÞ�,Z þp

�p
r dY½srruðyÞr þ srYuðyÞY � ¼

1

4mK1K2ð3� 2nÞ. (C.25)

Furthermore, with Estrain ¼ ðsijsij � nsiisjjÞ and the stress tensor expression Eq. (C.4), one obtainsZ þp
�p

r dY cosðYÞEstrain ¼
1

8m ðK
2
1 � K2

2Þð1� 2nÞ, (C.26)

Z þp
�p

r dY sinðYÞEstrain ¼ �
1

4mK1K2ð1� 2nÞ. (C.27)

Substraction of Eq. (C.25) from Eq. (C.26) gives the usual expression of Fðconf Þ
1 ,

Fðconf Þ
1 ¼

Z þp
�p

dY½cosðYÞEstrain � srruðxÞr � srYuðxÞY � ¼
1� n

2m
ðK2

1 þ K2
2Þ, (C.28)

as given in Eq. (40) in the main text.
The other component of the configurational force Fðconf Þ

2 is similarly obtained by subtracting Eq. (C.25) from Eq. (C.27),

Fðconf Þ
2 ¼

Z þp
�p

dY½sinðYÞEstrain � srruðyÞr � srYuðyÞY � ¼ �
1� n
m

K1K2, (C.29)

which is Eq. (41) of the main text.
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