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We study analytically the dynamics of a network of sparsely connected
inhibitory integrate-and-fire neurons in a regime where individual neu-
rons emit spikes irregularly and at a low rate. In the limit when the
number of neurons N — oo, the network exhibits a sharp transition be-
tween astationary and an oscillatory global activity regime where neurons
are weakly synchronized. The activity becomes oscillatory when the in-
hibitory feedback is strong enough. The period of the global oscillation
is found to be mainly controlled by synaptic times but depends also on
the characteristics of the external input. In large but finite networks, the
analysis shows that global oscillations of finite coherence time generi-
cally exist both above and below the critical inhibition threshold. Their
characteristics are determined as functions of systems parameters in these
two different regimes. The results are found to be in good agreement with
numerical simulations.

1 Introduction

Oscillations are ubiquitous in neural systems and have been the focus of sev-
eral recent studies (for reviews, see, e.g., Gray, 1994; Singer & Gray, 1995;
Buzséki & Chrobak, 1995; Ritz & Sejnowski, 1997). In particular, fast global
oscillations in the gamma frequency range (> 30 Hz) have been reported
in the visual cortex (Gray, Konig, Engel, & Singer, 1989; Eckhorn, Frien,
Bauer, Woelbrun, & Kehr, 1993; Kreiter & Singer, 1996), in the olfactory cor-
tex (Laurent & Davidowitz, 1994), and in the hippocampus (Bragin et al.,
1995). Even faster oscillations (200 Hz) occur in the hippocampus of the
rat (Buzsdki, Horvath, Urioste, Hetke, & Wise, 1992; Ylinen et al., 1995). In
some experimental data (Eckhorn et al., 1993; Csicsvari, Hirase, Czurko,
& Buzsdki, 1998; Fisahn, Pike, Buhl, & Paulsen, 1998) individual neuron
recordings show irregular spike emission, at a rate that is low compared
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to the global oscillation frequency.! This raises the question of whether a
network composed of neurons firing irregularly at low rates can exhibit
fast collective oscillations, which theoretical analyses and modeling studies
may help to answer.

Previous studies of networks of spiking neurons have mostly analyzed,
or simulated, synchronized oscillations in regimes in which neurons behave
themselves as oscillators, with interspike intervals strongly peaked around
their average value (Mirollo & Strogatz, 1990; Abbott & van Vreeswijk,
1993; van Vreeswijk, Abbott, & Ermentrout, 1994; Gerstner, 1995; Hansel,
Mato, & Meunier, 1995; Gerstner, van Hemmen, & Cowan, 1996; Wang &
Buzsaki, 1996; Traub, Whittington, Colling, Buzsaki, & Jefferys, 1996). Sev-
eral oscillatory regimes have been found with either full or partial syn-
chronization. A regime particular to globally coupled systems has been
described where the network breaks into a few fully synchronized clus-
ters (Golomb & Rinzel, 1994; van Vreeswijk, 1996). In some simulations
of networks with detailed biophysical characteristics, cells fire sparsely
and irregularly during a global oscillation (Traub, Miles, & Wong, 1989;
Kopell & LeMasson, 1994; Wang, Golomb, & Rinzel, 1995), but the com-
plexity of individual neurons in these models makes it difficult to under-
stand the origin of the phenomenon clearly. The possible appearance of
fast oscillations in a network where all neurons fire irregularly with an
average frequency that is much lower than the population frequency there-
fore remains an intriguing question. It is the focus of the work presented
here.

Recurrent inhibition plays an important role in the generation of synchro-
nized oscillations as shown by in vivo (MacLeod & Laurent, 1996) and in
vitro experiments (Whittington, Traub, & Jefferys, 1995) in different systems.
This has been confirmed by several modeling studies (van Vreeswijk et al.,
1994; Gerstner et al., 1996; Wang & Buzsaki, 1996; Traub et al., 1996). It has
also been recently shown using simple models that networks in which inhi-
bition balance excitation (Tsodyks & Sejnowski, 1995; Amit & Brunel, 1997a;
van Vreeswijk & Sompolinsky, 1996) are naturally composed of neurons with
low and irregular firing. Simulations (Amit & Brunel, 1997b) have shown
that in one such model composed of sparsely connected integrate-and-fire
(IF) neurons, the highly irregular single-neuron activity is accompanied by
damped fast oscillations of the global activity.

In order to study the coexistence of individual neurons with low firing
rates and fast collective oscillations in its simplest setting, we analyze in
this article a sparsely connected network entirely composed of identical
inhibitory IF neurons. Our aim is to provide a clear understanding of this

! Fast oscillations may be due in some cases to a synchronized subset of cells with high
firing rates. The observation of cells with the required property has been recently reported
in Gray & McCormick (1996).
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type of synchrony and to determine:

e Under which conditions collective excitations of high frequencies arise
in such networks

e What controls the different characteristics (amplitude, frequency, co-
herence time, . . .) of the global oscillation.

Simulation results, presented first, show that the essence of the phe-
nomenon is present even in this simple system. Both neuron firing rates
and the autocorrelation of the global activity are very similar to those re-
ported in Amit and Brunel (1997b).

We begin by presenting simple arguments that give an estimation of
the firing rate of individual neurons and the frequency of the global os-
cillation and that suggest that the global oscillation appears only above a
well-defined parameter threshold.

In order to make the analysis more precise and complete, we then gener-
alize the analytic approach of Amit and Brunel (1997a), which was restricted
to the computation of firing rates in stationary states. The sparse random
network connectivity leads the firing patterns of different neurons to be only
weakly correlated. As a consequence, the network state can be described by
the instantaneous distribution of membrane potentials of the neuronal pop-
ulation, together with the firing probability in this population. We obtain
the coupled temporal evolution equations for these quantities, the time-
independent solution of which coincides with the stationary solution of
Amit and Brunel (1997a).

A linear stability analysis shows that this time-independent solution be-
comes unstable only when the strength of recurrent inhibition exceeds a
critical level, in agreement with our simple arguments. When this critical
levelis reached, the stationary solution becomes unstable, and an oscillatory
solution develops (via a Hopf bifurcation). The timescale of the period of
the corresponding global oscillations is set by a synaptic time, independent
of the firing rate of individual neurons, but the period precise value also
depends on the characteristics of the external input.

The analysis is then pushed to higher orders. We obtain a reduced evolu-
tion equation describing the network collective dynamics. The effects com-
ing from the finite size of the network are also discussed. We show that
having a large but finite number of neurons gives a small stochastic compo-
nent to the collective evolution equation. As a result, it is shown that cross-
correlations in a finite network present damped oscillations both above and
below the critical inhibition level. Below the critical level, the noise controls
the oscillation amplitude, which decreases as the number of neurons is in-
creased (at a fixed number of connections per neuron). Above the critical
level, the main effect of the noise is to produce a phase diffusion of the global
oscillation. An increase in the number of neurons results in an increase of
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Figure 1: Schematic diagram of the connections in the network of N neurons.
Each neuron (indicated as an open disk) receives C inhibitory connections (in-
dicated as black) from within the network and C,,; excitatory connections (in-
dicated as gray) from neurons outside the network.

the global oscillation coherence time and a reduced damping in average
cross-correlations.

Finally, the effect of some of our simplifying assumptions is studied. We
discuss the effect of allowing variability in synaptic times and number of
synaptic connections from neuron to neuron. We also consider the effect
of introducing a more detailed description of postsynaptic currents into
the model. The technical aspects of our computations are detailed in the
appendix.

2 Description of the Network and Simulations

We analyze the dynamics of a network composed of N identical inhibitory
single compartment IF neurons. Each neuron receives C randomly chosen
connections from other neurons in the network. It also receives C.y con-
nections from excitatory neurons outside the network (see Figure 1). We
consider a sparsely connected case with e = C/N « 1.

Each neuron is simply described by its membrane potential. Let us sup-
pose that neuron i receives an inhibitory (excitatory) connection from neu-
ron j. When the presynaptic neuron j emits a spike at time ¢, the potential
of the postsynaptic neuron 7 is decreased (increased) by | at time ¢ + § and
returns exponentially to the resting potential in a time t, which represents
the integration time constant of the membrane. In this simple model, the
single time § is meant to represent the transmission delays but also, and
most important, the longer time needed to obtain the full hyperpolariza-
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Figure 2: Comparison of the synaptic response characteristics in our model
and in a more realistic model. (Top) The presynaptic spike. (Middle) The corre-
sponding postsynaptic current (PSC). (Bottom) The corresponding postsynaptic
potential (PSP) for a neuron initially at resting potential. Solid lines: Our model,
in which the synaptic current is described by a delta function a time § after the
presynaptic spike. Dashed lines: A more realistic synaptic response, in which
the PSC is described by an a-function with latency (transmission delay) 7, and
synaptic time constant g (f — 1) exp(—(t — 1)/ 7s)/ts. Our synaptic characteris-
tic time & can roughly be identified with the sum of latency and synaptic decay
time, 7;, + 5. See the discussion in section 4.3.

tion of the postsynaptic neuron corresponding to a given presynaptic spike.
Therefore, finding the correspondence between § and the different synaptic
timescales of a more realistic description needs some care. As pictorially
shown in Figure 2, § should roughly be identified to the characteristic du-
ration of the synaptic currents. In the following, we thus refer to §, which
plays a crucial role in the generation of global oscillations, as the synaptic
time. The correspondence between § and the different synaptic timescales
of a more realistic description is elaborated in section 4.3, where synaptic
currents of finite duration are considered.

Mathematically, the depolarization V;(¢) of neuroni (i =1, ..., N) at its
soma obeys the equation,

tVi(t) = =Vi(t) + RL(t), (2.1)

where I;(t) are the synaptic currents arriving at the soma. These synaptic
currents are the sum of the contributions of spikes arriving at different
synapses (both local and external). These spike contributions are modeled
as delta functions in our basic IF model,

RIty =7 J Y 8(t—1f =), (2.2)
j k
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where the first sum on the right-hand side is a sum on different synapses (j =
1,...,C + Cuy), with postsynaptic potential (PSP) amplitude (or efficacy)
Jij, while the second sum represents a sum on different spikes arriving at
synapse j, at time t = t]]-‘ + 8, where t]’.‘ is the emission time of kth spike at
neuron j. For simplicity, we take PSP amplitudes equal at each synapse:
Ji = Jex > 0 for excitatory synapses and J; = —] for inhibitory ones.
External synapses are activated by independent Poisson processes with rate
Vext-

A firing threshold 6 completes the description of the IF neuron. When
Vi(t) reaches 6, an action potential is emitted by neuron i, and the depo-
larization is reset to V; < 0 after a refractory period 7, during which the
potential is insensitive to stimulation. A typical value would be 7, ~ 2 ms.
We are interested here in network states in which the frequency is much
lower than the corresponding maximal frequency 1/7;, ~ 500 Hz. In this
regime, we have checked that the exact value of 7, does not play any role.
Thus, in the following we set T to zero for simplicity.

The outcome of a typical simulation is shown in Figure 3. Neurons are
driven by the random external excitatory input above threshold; however,
since feedback interactions are inhibitory, the global activity stays at rather
low levels (about 5 Hz for the parameters indicated in Figure 3). For weak
external noise levels (o.xy = 1 mV), the global activity (total number of firing
neurons in 0.4 ms bins) is strongly oscillatory with a period of about 7 ms,
as testified by Figure 3C. On the other hand, increasing the external noise
level strongly damps and decreases the amplitude of the global oscillation.
Note that the global activity should roughly correspond to the local field
potential (LFP) often recorded in neurophysiological experiments. On the
other hand, even when the global activity is strongly oscillatory, individ-
ual firing is extremely irregular, as shown in the rasterfile of 50 neurons,
Figure 3C (above the LFP), and in the ISI histogram (to the right of the
spike rasters). In each oscillatory event, only a small fraction of the neurons
fire.

This oscillatory collective behavior is also shown by fast oscillations in
the temporal autocorrelation (AC) of the global activity, which are damped
on a longer timescale (see Figure 3, to the right of the LFP). It is also reflected
in the cross-correlations (CC) between the spike trains of a pair of neurons,
which are typically equal to the AC of the global activity.

These simulation results raise several questions on the origin and charac-
teristics of the observed oscillations. What is the mechanism of the fast oscil-
lation? In which parameter region is the network oscillating? What are the
network parameters that control the amplitude and the different timescales
(frequency, damping time constant) of the global oscillation? How do they
scale with the network size? The model is simple enough, and an analytical
study gives precise answers to these questions, as shown in the following
sections.
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Figure 3: (Left) Time evolution of the global activity (LFP) during a 100 ms inter-
val of the dynamics of a network of 5000 neurons (total number of firing neurons
in 0.4 ms bins), together with spike rasters of 50 neurons, for different values
of the external noise: o,y = 5 mV (A), 25 mV (B), and 1 mV (C). (Right) Au-
tocorrelation of the global activity (AC) and interspike interval (ISI) histogram
averaged over 1000 neurons, corresponding to the left pictures. Note the differ-
ent timescales of AC and ISI in abscissa. Parameters: § = 20 mV, V, = 10 mV,
t=20ms,§ =2ms, C=1000, ] = 0.1 mV, ey =25 mV.

3 Analysis of the Network Dynamics

Several features simplify the analysis, as noted in a previous study (Amit
& Brunel, 1997a) of the neuron mean firing rates. First, as a consequence
of the network sparse random connectivity (C « N), two neurons share a
small number of common inputs, and pair correlations can be neglected in
the limit C/N — 0. Second, we consider a regime where individual neurons
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have a firing rate v low compared to their inverse integration time 1/ and
receive a large number of inputs per integration time 7, each input making
a small contribution compared to the firing threshold (J <« 6).2 In this situ-
ation, the synaptic current of a neuron can be approximated by an average
part plus a fluctuating gaussian part, and the spike trains of all neurons in
the network can be self-consistently described by Poisson processes with
a common instantaneous firing rate v(t) but otherwise uncorrelated from
neuron to neuron (that is, between t and t +dt, a spike emission has a proba-
bility v(t)dt of occurring for each neuron, but these events occur statistically
independently in different neurons).

The synaptic current at the soma of a neuron (neuron i) can thus be
written as

RI() = () + o /Tni(h). (3.1)

The average part w(t) is related to the firing rate at time t — § and is a sum
of local and external inputs:

w=p+ flext With pp=—=CJv(t =87,  text = CoxtJextVext T (3.2)

Similarly the fluctuating part, o /T;(t), is given by the fluctuation in the
sum of internal and external Poissonian inputs of rate Cv and Ceytvext. Its
magnitude is given by

02 = 012 + Uezxt with o7 = JVCv(t —8)t,  Oext = Jextv/ CoxtVext T, (3~3)

and 7;(t) is a gaussian white noise uncorrelated from neuron to neuron,
(ni(H)) = 0and (n;i(On;(t)) = 8;j8(t — ).

Before describing our precise results, it may be useful to give simple
estimates that show how the neuron firing rates, the collective oscillation
frequency, and the oscillatory threshold can be obtained from equations 3.1-
3.3.

Let us first consider the stationary case. The case of interest corresponds
to . < 6. When expression 3.1 is used for the synaptic current, the dynamics
of the neuron depolarization (see equation 2.1) is a stochastic motion in the
harmonic potential (V — p)? truncated at the firing threshold V = 6. The
neuron firing rate vy is the escape rate from this potential. For a weak noise,
it is given by the inverse of the timescale of the motion 1/t diminished by
an Arrhenius activation factor. So one obtains the simple estimate (up to an
algebraic prefactor),

2
Vo ~ 1exp (—u> . (3.4)

T o?

2 Typical numbers in cortex are C = 5000, t = 20ms, v =5Hz, ] = 0.1 mV, 6 = 20
mV so that Cvt is typically several hundreds while 6/] is of order 100 (Abeles, 1991;
Braitenberg & Shiitz, 1991). In the simulation shown in Figure 3 Cvr ~ 100, 6/] ~ 200.
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This becomes a self-consistent equation for vy once u and o are expressed in
terms of vg using equations 3.2 and 3.3. The simple estimate, equation 3.4, is
made precise below by following Kramers’s classic treatment of the thermal
escape over a potential barrier (Chandrasekhar, 1943).

The origin of the collective oscillation can also be simply understood.
An increase of activity in the network due to a fluctuation provokes an
increase in the average feedback inhibitory input. Thus, after a period of
about one synaptic time, the activity should decrease due to the increase
of the inhibitory input. This decrease will itself provoke a decrease in the
inhibitory input and a corresponding increase in the activity after a new
period equal to the synaptic time. This simple argument predicts a global
oscillation period of about a couple of times the synaptic time §—not too
far from the period observed in the simulations. However, it does not seem
to have been noted previously that a global oscillation of period § can in
fact occur only if it is not masked by the intrinsic noise in the system. The
resulting oscillation threshold can be simply estimated in the limit where &
is short compared to the timescale of the depolarization dynamics. During
a short time interval §, a neuron membrane potential receives from the
local network an average input of magnitude CvpdJ. The fluctuation in its
membrane potential in the same time interval (due to intrinsic fluctuations
in the total incoming current) is o /§/7. The change in the average local input
can be detected only if it is larger than the intrinsic potential fluctuations.
A global oscillation can therefore occur only when

Clwt W > |t

o o '

These simple estimations are confirmed by the analysis presented below
and replaced by precise formulas.

3.1 Dynamics of the Distribution of Neuron Potentials. When pair cor-
relations are neglected, the system can be described by the distribution of
the neuron depolarization P(V, t)—that is, the probability of finding the de-
polarization of a randomly chosen neuron at V at time ¢. This distribution
is the (normalized) histogram of the depolarization of all neurons at time
t in the large N limit N — oo. The stochastic equations, 2.1 and 3.1 for
the dynamics of a neuron depolarization can be transformed into a Fokker-
Planck equation describing the evolution of their probability distribution
(Chandrasekhar, 1943),

IP(V.t)  o*(t) 9*P(V.b) = @

The two terms on the r.h.s. of equation 3.5 correspond respectively to a
diffusion term coming from the current fluctuations and a drift term coming
from the average part of the synaptic input. o () and u(t) are related to
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v(t — 8), the probability per unit time of spike emission at time t — §, by
equations 3.2 and 3.3. Note that the Fokker-Planck equation has been used
previously in studies of globally coupled oscillators (Sakaguchi, Shinomoto,
& Kuramoto, 1988; Strogatz & Mirollo, 1991; Abbott & van Vreeswijk, 1993;
Treves, 1993).

The resetting of the potential at the firing threshold (V = ) imposes
the absorbing boundary condition P(6,t) = 0. Moreover, the probability
current through 6 gives the probability of spike emission at ¢,

_2v(t)t

UZ—(t) . (3-6)

oP 0.5 =

av:y

At the reset potential V = V,, P(V,t) is continuous, but the entering
probability current imposes the following derivative discontinuity:

vt
o2(t)

P P
SV D = (V) = (3.7)

AtV = —oo, P should tend sufficiently quickly toward zero to be inte-
grable, that is,

lim P(V,H)=0 lim VP(V,#) =0. (3.8)
V——o0 V——o0

Last, P(V, t) is a probability distribution and should satisfy the normal-
ization condition:

6
/ PV, HdV = 1. (3.9)
—00

3.2 Stationary States. We first consider stationary solutions P(V,t) =
Py (V). Time-independent solutions of equation 3.5 satisfying the boundary
conditions—equations 3.6-3.8—are given by

V-2 [ v, -
Po(V) =227 exp (—%) /V RC) (u — ’7“0) ¢ du, (3.10)
09 -

"o O
9 %0 0

with
o = —CJvot + Wext, 002 = Cjzvor + aezxt (3.11)

(in equation 3.10, © (x) denotes the Heaviside function, ®(x) =1 for x > 0
and ©(x) = 0 otherwise). The normalization condition, equation 3.9, pro-
vides the self-consistent condition that determines vy:

0—ng

1 a0 2 " 2
— =2 due dve
voT Vr—mo —00

0

+o00 2you __ L2Y U
- / due" [i} (3.12)
0 u
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Figure 4: Neuron firing rate versus o,,: simulation (¢); solution of equation 3.12
(solid line); solution of the approximate asymptotic form, equation 3.13 (dashed
line). Others parameters are fixed asin Figure2: v = 20ms, ] = 0.1mV, C = 1000,
N =5000,6 =20mV, V, =10mV, ey =25 mV, § = 2 ms.

with yy = %,y, = V'U;U“U In the regime (6 — wo) > oo, equation 3.12
becomes
® — po) (0 — po)?
Wwr > ——exp| ——1. 3.13
0= i b o2 (313)

In Figure 4, the firing rates obtained by solving equations 3.12 and 3.13 are
compared with those obtained from simulations of the network. It shows an
almost linear increase in the rates as a function of o,y; in the range 3-6 Hz and
a good agreement between equation 3.12 and the results of simulations. The
asymptotic expression, equation 3.13, is also rather close to the simulation
results in this range of o.

3.3 Linear Stability of the Stationary States. We can now investigate in
which parameter regime the time-independent solution (Py(V), vp) is stable.
To simplify the study of the Fokker-Planck equation, 3.5, it is convenient to
rescale P, V, and v by

2TV

pP= 0]

Q= Y20y — vy 4. (3.14)
0 00

y is the difference between the membrane potential and the average input
in the stationary state, in units of the average fluctuation of the input in
the stationary state. n(t) corresponds to the relative variation of the instan-
taneous frequency around the stationary frequency. After these rescalings,
equation 3.5 becomes

2 2
Q170D 0 smim (624 HE),

= 1
ot 2 ay? dy 2 y? (3-15)
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where G is the ratio between the mean local inhibitory inputs and oy, and
H is the ratio between the variance of the local inputs and the total variance
(local plus external):

C - CJ? ol
= _ oy _ G %o (3.16)
o0 o0 (IO (70

These parameters are a measure of the relative strength of the recurrent
inhibitory interactions.
Equation 3.15 holds on the two intervals: —oco <y < yrand y; < y < ye.

The boundary conditions on Q are imposed at yy = “—** and y, = V'U;O"“
Those on the derivatives of Q read
90 0Q ., 9Q 1+ n(t)
— W, ) =—W . ) - —W,  H=—7"""7"". 3.17
ay YD =5 WD U D =T s (17)

The linear stability of the stationary solution is studied in detail Sec-
tion A.1. This can be done in a standard way (Hirsch & Smale, 1974) by
expanding Q = Qo+ Q1 + --- and n = n1 + - - - around the steady-state
solution. The linear equation obtained at first order has solutions that are
exponential in time, Q1 = exp(wt/r)Ql, ny ~ exp(w/r)ﬁ1, where w is a
solution of the eigenvalue equation, A.29 of the appendix. The stationary
solution becomes unstable when the real part of w becomes positive.

When the synaptic time § becomes much smaller than t, the roots w of
this equation become large. We consider the regime §/t « 1buté/z > 1/C,
which is the relevant case in simulations and corresponds to the realistic
regime. §/t >> 1/C is needed because otherwise the equations giving G
and H become inconsistent with the condition tvy <« 1. At the oscillatory
instability onset, w is purely imaginary w = iw., where w./7 is the frequency
of the oscillation that develops. The eigenvalue equation takes in the limit
3/t — 0, w — oo the form

G . .
[ﬁ(l -1+ H] exp(—iwd/t) = 1. (3.18)

In this limit, the instability line in the parameter space (G, H) is obtained
parametrically as

)
G = Jw.sin (wi>
T
) )
H =sin (a)_c> + cos (&> .
T T

H is by definition constrained to be between 0 and 1 (it is the ratio between
local and total variances): H = 0 corresponds to the limit of very large
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external fluctuations, oey 3> o7, while H = 1 corresponds to o, = 0. We
find that the frequency of the oscillation varies from

we 3

? = B when H = 0, to

@ _ T whenH=1. (3.19)
T 26

This corresponds to an oscillation with a period between 85/3 and 44, not
too far from the value 2§ obtained by simple arguments. At the same time
the critical value of G goes from

3
L= il when H =0, to

86
[T
G, = % when H = 1.

The oscillation threshold G, is proportional to +/7/8§ as anticipated.

This instability line can be translated in terms of the parameters ji.xt, Gext,
and calculated numerically using equation A.29 for any value of the network
parameters. This line of instability in the plane (itex, ext) is shown in the
right part of Figure 5. The stationary solution is unstable above the solid
line. Thus, if the external input is Poissonian, an increase in the frequency
of external stimulation will typically bring the network from the stationary
to the oscillatory regime, as indicated by the dashed line in Figure 5, which
represents the average (u.yt) and the fluctuations (o.) of the external inputs
when the frequency of a Poissonian external input through synapses of
strength [y = 0.1 mV is varied.

3.4 Weakly Nonlinear Analysis. The linear stability analysis of the pre-
vious section shows that a small oscillation grows when one crosses the
instability line in the plane pext, oext. But it does not say much on the char-
acteristics of the resulting finite amplitude oscillation. In order to describe
it and to be able to compare quantitatively analytic results to simulation
data, one needs to compute the nonlinear terms that saturate the instability
growth. This can be done in a standard manner (Bender & Orszag, 1987)
by computing terms beyond the linear order in an expansion around the
stationary state. The explicit computation is detailed in Section A.2. The
collective oscillation is determined by the deviation 71 of the neuron firing
rate from its stationary value:

ny(t) = 1 (t) exp(ioct/t) + 117 (1) exp(—iwct/T).

11 determines the amplitude of the collective oscillation as well as the non-
linear contribution to its frequency in the vicinity of the instability line.



1634 Nicolas Brunel and Vincent Hakim

COO0O00O0O00O0
oRrNWhUON®D©OR
T

06 08 1 12 14
Gy/o/T

Figure5: (Left) Instability line in the plane (H, G/5/7). Solid line: Instability line
for parameters of Figure 3 and § = 0.1r. Long-dashed line: § = 0.05t. Short-
dashed line: asymptotic limit §/t — 0. The stationary state (SS) is unstable to
the right of the instability line, where an oscillatory instability (OS) develops.
(Right) Instability line in the plane (ftey, Oex). Solid line: Parameters of Figure 2,
and 8 = 0.1t. The short-dashed line is constructed taking the asymptotic insta-
bility line in the plane (H, G4/3/7) and calculating the corresponding instability
line in (text, Oext) with § = 0.1z. The SS becomes unstable above the instability
line. The long-dashed line shows the average (.x:) and the fluctuations (o.) of
the external inputs when the frequency of a Poissonian external input through
synapses of strength J..+ = 0.1 mV is varied. For low external frequencies, the
network is in its stationary state. When the external frequency increases, the
network goes to OS.

The analysis shows that the dynamics of the (small) deviation around
the stationary firing rate can be described by the reduced equation,

di A
z% — Afiy — Bl 21, (3.20)

in which A and B are complex numbers. The value of A comes from the
linear stability analysis. If Re(A) < 0 a small initial value of n; decays,
and the stationary state is stable. On the contrary, if Re(A) > 0, a global
oscillation develops. When |11| grows, the second nonlinear term on the
rh.s. of equation 3.20 becomes important. It is found here that Re(B) > 0
(a “normal” or “supercritical” Hopf bifurcation) so that the nonlinear term
saturates the linear growth. The characteristics of the oscillatory final state
come from the balance between the two terms.

The explicit expression of A and B is given in equations A.54 and A.55 as
a ratio of hypergeometric functions of the network parameters. A depends
linearly on the deviation of the parameters G and H from their critical values,
that is, G — G, H — H,. In the limit §/t — 0, the expressions of A and B
simplify. For example, when H = 0 (large external fluctuations), we find in
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the limit 8§/t — 0

t(14+2i37) G—-G, 1 . G—G,
A=- ~ — (1. 29
s A+4om) G s IHT020 ==
po T (97 \[18-5v2 9-5v2 . (13-5V2 9-5/2
5 \449n2 10 157 157 10

12

2(0.53 +0.30i). (3.21)

Generally the complex numbers A and B can be written in terms of their
real and imaginary parts, A = A, + iA;, B = B, 4+ iB;. On the critical line,
thatis, for G = G., H = H;, A, = A; = 0; above the critical line an instability
develops, A; > 0, proportionally to G — G, and H — H,. The amplitude of
this instability is controlled by the cubic term. The stable limit cycle solution
of equation 3.20, above the critical line, is

~ ) t
11 (t) = Rexp <1Aa)—> , (3.22)
T
where
A
R= /=L and Aw=A; — Bi—.
B,

The autocorrelation (AC) of the global activity, normalized by vy, is, when
A, >0,

1 T—s
C(s) = Tlingo T /0 A +nO)A + ny(t+ s))dt (3.23)
=1+ 2R?cos [(we + Aw)s/T].

The AC is a cosine function of frequency (o, + Aw)/t and amplitude R?.
Compared with the AC function observed in the simulation, Figure 3C, we
see a qualitative difference: there is no damping of the oscillation. The next
section shows that the damping is due to finite size effects. We analyze them
before comparing quantitatively the analytical results with simulations.

3.5 Finite Size Effects and Phase Diffusion of the Collective Oscilla-
tion. We discuss the effect of having a large but finite number of neurons in
the network. It is well known that for stochastic dynamics, a sharp transition
can occur only in the limit N — oo and that it will be smoothed by finite size
effects. In the sparse connectivity limit, which allows treating the quenched
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random geometry of the lattice in an annealed fashion,? the fluctuations in
the input of a given neuron i can be seen as the result of the randomness
of two different processes. The first is the spike emission process S(t) of the
whole network, and the second, for each spike emitted by the network, is
the presence or absence of a synapse between the neuron that emitted the
spike and the considered neuron. If a spike is emitted at time ¢, p;(t) = 1
with probability C/N, and 0 otherwise. The input to the network is then

RI(t) = =JTpi(H)S(t — 9).

Both processes can be decomposed between their mean and their fluctua-
tion,

pi(t) = % +8pi(H),  S(t) = Nv() +85().

Thus the input becomes

RI(t) = pu(t) — JeNv(B3pi(h) — Ir%és(t),

in which . (t) is given by equation 3.20. The input is the sum of a constant
part u and of two distinct random processes superimposed on w. The first is
uncorrelated from neuron to neuron, and we have already seen in section 3
that it can be described by N uncorrelated gaussian white noises o /T 7;(t),
i=1,...,Nwhere (n;(tyn;(t')) = 8;;6(t —t'). The second part is independent
of i. It comes from the intrinsic fluctuations in the spike train of the whole
network that are seen by all neurons. This part becomes negligible when
€ = C/N — 0, but can play a role, as we will see, when C/N is finite.
The global activity in the network is essentially a Poisson process with
instantaneous frequency Nv(t). Such a Poisson process has mean Nv(t),
which is taken into account in u, and variance Nv(t)§ (f —t'). The fluctuating
partof this process is well approximated by a gaussian white noise «/Nvo& (f),
where (£ (t) satisfies (£(t)) = 0, (§(H)&(t)) = §(t—t')). Note that for simplicity
we take the variance of this noise to be independent of time, which is the case
for n1(t) <« 1. These fluctuations are global and perceived by all neurons
in the network. Thus, the mean synaptic input received by the neurons
becomes

Cltv®) + Jv GCVOT«/?%“(t) + Wext-

Inserting this mean synaptic input in the drift term of the Fokker-Planck
equation, we can rewrite equation 3.15 as

30 19°Q

0
v @{[erGn(t—S)Jrn«/?é(t)]QH Ea—yZ’ (3.24)

3 Here we do not consider the correlations due to the quenched connectivity for finite
€. These correlations would give small corrections to the parameters calculated in the limit
€ —0, but do not give rise to qualitatively new effects for the global activity such as the
phase diffusion phenomenon discussed in this section.
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where 7 denotes the intensity of the noise stemming from these global fluc-
tuations. n tends to zero as the network size increases

!
%

n=e (3.25)

00

Taking into account this global noise term in the derivation of the reduced
equation, we obtain,

r% = Afiy — Bl > + DN/TC () (3.26)
in which A, B, and D are given by Equations A.54, A.55, and A.57, and ¢
is a complex white noise such that (¢ (#)¢*(#')) = §(t — t'). D is proportional
to n—to both the square root of the connection probability and the ratio
between local and total fluctuations.

Thus, the effect of the finite size of the network is to add a small stochastic
component to the evolution equation of 11, equation 3.26. Its main effect is
to produce a phase diffusion of the collective oscillation, which leads to
the damping of the oscillation in the autocorrelation function (for a similar
effect in a simple model see also Rappel & Karma, 1996).

3.5.1 Amplitude of the Autocorrelation. From the reduced equation 3.26,
one can compute exactly the autocorrelation at zero time C(0) as shown in
the appendix. This gives:

o In the stationary regime far from the critical line, A, < 0, |[D|/|A,] < 1:

D|? C
CWO)—1~ ||A|| ~0 (N) (3.27)

The amplitude of the fluctuations in the global activity is proportional
to C/N and thus vanishes when the connection probability goes to

Zero.
e On the critical line, A, = 0:
2|D| C
C0)—-1= ~0[,=1]. 3.28
0 — ( N) (329)

The amplitude of the fluctuations is proportional to the square root of
the connection probability.

e In the oscillatory regime far from the critical line, A, > 0, [D|/A, < 1:

CW)—1~ 2;’ ~0(). (3.29)

r

In this regime the amplitude of the oscillation is to leading order inde-
pendent of the noise amplitude.
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3.5.2 Oscillations Below the Critical Line. Inthe stationary regime far from
the critical line, the fluctuations of activity n; provoked by the noise term
can be considered small, and thus we can neglect the cubic term. It is then
easy to calculate the autocorrelation (AC) of the activity,

ID|? < |Arls
Cis)=1+ exp | —
O=trgee(m

) cos ([wc + A,-];) . (3.30)

It is a damped cosine function. The damped oscillation has frequency (w. +
A;)/t and damping time constant proportional to 7/|A,|. The amplitude of
the autocorrelation function is proportional to C/N.

3.5.3 Oscillations Above the Critical Line. In the oscillatory regime far
from the critical line, we find in Section A.3 an AC function of the form

A 2
Cs) =1+ 2B—r cos ((wc + Aw)s/t) exp (— v 2(5)) . (3.31)
r
It is again a damped cosine function. The damping factor exp(—y2(s)/2) is
different from an exponential only at short times s ~ §. At longer times,
s > §, we obtain again an exponential

2 () IDJ? B\ s IDI? 4
exp( > >—exp( 1R (1+B$>r[1+2Ay+O(|D|)]>'

The damping time constant is proportional to leading orderin |D| to 1/|D|? ~
N/C, that is, to the inverse of the connection probability. When N goes to
infinity at C fixed, the “coherence time” of the oscillation increases linearly
with N.

This “phase diffusion” effect is the main finite size effect above the critical
line. Both the amplitude and frequency of the oscillation are essentially
unaffected by these finite size effects.

3.6 Comparison Between Simulations and Theory. The autocorrela-
tion (AC) of the global activity was computed for each set of parameters
from a simulation of 20 seconds. A few longer simulations were performed
as a check. The autocorrelations obtained in the longer simulations are es-
sentially identical to the one obtained in the 20 s simulation.

Since the analysis predicts AC functions described by damped cosine
functions, a least-square fit of all AC functions was performed with such
functions. Thus the full AC is reduced to three parameters: its amplitude at
zero lag Cy, its frequency o, and its damping time constant (or coherence
time) 7.,

C(s) =1+ Coexp (—?) cos(ws).

c
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We then compared the result of the fitting procedure with the analytical
expressions.

We varied the magnitude of the external noise o,y from 0 to 5 mV. This
brings the network from the oscillatory to the stationary state.

In Figure 6 we plot the results of simulations and theory. In these figures
the diamonds are the simulation results and the dashed lines the analytical
results. In Figure 6A, the short-dashed line indicates the amplitude in the
limit N — oo, while the long-dashed line indicates the amplitude calculated
analytically taking into account finite size effects. The crosses are obtained
simulating numerically the reduced equation, equation 3.26. We find that
in the stationary regime as well as in the oscillatory regime close to the
bifurcation point, the amplitude of the oscillation obtained in the simulation
is in very good agreement with the calculation (see Figure 6A). On the other
hand, as the amplitude of the oscillation becomes of the same order as the
average frequency, Cy ~ 1, higher-order effects become important and the
calculation overestimates the amplitude of the AC. For the frequency of the
oscillation (see Figure 6B), the calculation reproduces quite well the results
of the simulations, except for very low noise levels, for which we are rather
far from the bifurcation point. Note that the frequency ranges for this set of
parameters from 70 to 180 Hz, depending on the level of external noise. Thus,
without varying the time constants 7 and §, we find that the same network
is able to sustain a collective oscillation at quite different frequencies.

Finally, the approximate analytical expressions for the damping time
constant agree well with the simulation away from the bifurcation point, as
expected (see Figure 6C). On the other hand, the simulation of the reduced
equation is in good agreement with the network simulations in the whole
range of oy

In Figure 7 we compare the full AC functions from theory (simulation of
the reduced equation) and network simulations in three regimes to show
the good agreement between both.

4 Extensions

In the previous sections a very simple network has been analyzed, and the
question of the effect of some of our simplifying assumptions legitimately
arises. In particular, we have chosen exactly identical neurons. It can be
wondered how the results are modified when some variations in neuron
properties are taken into account. In order to address this question, we show
how the previous analysis can be generalized in two cases. Since we have
seen that the oscillation frequency is tightly linked to synaptic times, the
effect of a fluctuation in synaptic times is investigated first. We then consider
the effect of a fluctuation in the number of connections per neuron, which
has been found to result in a wide spectrum of neuron steady discharge
rates (Amit & Brunel, 1997b). In both cases, it is reassuring to find that
the picture obtained from the simple model analysis remains accurate. We
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Figure 6: Parameters of the AC function versus o,y. (A) Amplitude of the AC at
zerolag. (B) Frequency. (C) Damping time constant. Diamonds: Simulation of the
full network. Crosses: Simulation of the reduced equation. Dashed lines: Theory.
In (A), the short-dashed line represents the amplitude in the limit N — oo
Parameters: 7 = 20 ms, | = —0.1 mV, C = 1000, N = 5000, 6 =20 mV, V, = 10
mV, ey =25mV, § =2 ms.

finally consider a model with synaptic currents of finite duration to analyze
more precisely which timescale plays the role of our “synaptic time” in this
more realistic case.
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Figure 7: Autocorrelations. (A) o,y = 2 mV. (B) 0oy = 3 mV. (C) oy = 4 mV.
Parameters as in Figure 6. Solid lines: Network simulation. Dashed lines: Theory
(simulation of the reduced equation).

4.1 Effect of Inhomogeneous Synaptic Times. The analysis can easily
be extended to the case in which time constants at each synaptic site are
drawn randomly and independently from an arbitrary probability density
function (PDF) Pr(8) (see Section A.4). In the following we consider the case
of a uniform PDF between 0 and 23.
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Figure 8: Instability line in the plane (e, opy) for T = 20 ms, ] = 0.1 mV,
C =1000,6 =20mV, V, =10 mV, § = 2 ms. Solid line: All synaptic times equal
to 8. Dashed line: Synaptic times drawn from a uniform distribution from 0 to
26.

Figure 8 shows how the instability line is modified by random synaptic
times. The region where the oscillatory instability appears shrinks to the
area above the dashed line. As the distribution of synaptic times widens, the
stationary state becomes more stable. The introduction of random synaptic
times also slightly reduces the frequency of the oscillation.

The critical line is thus quite sensitive to the distribution of synaptic
times. In fact, distributions of synaptic times can be found such that the
stationary state is always stable (e.g., for an exponential distribution Pr(§) =
exp(—3/50)/5).

4.2 Effect of Inhomogeneous Connectivity. The analysis can also be ex-
tended to the case when the number of connections impinging on a neuron
is no longer fixed at C, but rather connections are drawn at random inde-
pendently at each site. In that case, the number of connections received by
a neuron is a random variable with mean C and standard deviation ~ +/C.
This inhomogeneity in the connectivity provokes a significant inhomogene-
ity in the individual spike rates even for Clarge, because differences between
the average input received by two neurons are of the same order as the SD
of the synaptic input. The distribution of frequencies for an arbitrary net-
work of excitatory and inhibitory neurons has been obtained in Amit and
Brunel (1997b). The main steps leading to this distribution are described
in Section A.5. Next we study how inhomogeneity affects the dynamical
properties of the network. Figure 9 shows that the instability line is almost
unaffected by the inhomogeneity. The frequency of the global oscillation is
also very close to the one of the homogeneous case.
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Figure9: Effect of inhomogeneity in the connections on the instability line in the
plane (text, 0ex) for t =20ms, ] = —0.1mV, C = 1000,6 =20 mV, V, = 10 mV,
8 = 2ms. Solid line: Allneurons receive C connections. Dashed line: Connections
are drawn randomly and independently at each synaptic site with probability
C/N.

Amit and Brunel (1997b) showed by simulations that the degree of syn-
chronization of a neuron with global activity is strongly affected by its spike
rate: neurons with low firing frequencies tend to be more synchronized with
the global activity than neurons with high frequencies. In Section A.5 we
calculate analytically the degree of synchronization of individual neurons
as a function of their frequency. The result is shown in Figure 10 in which the
relative amplitude C(v) of the cross-correlation between neurons firing at
frequency v and the global activity obtained analytically is compared with
the result of simulations. It shows indeed that low-rate neurons are more
synchronized with the global activity than high-rate neurons. The relative
amplitude of the cross-correlation between two neurons of frequency v and
vy is given by the product of the two amplitudes, C(v1)C(v2). Note that the
heterogeneity in rates and cross-correlations is not very pronounced here,
because near the critical line, the fluctuations in the external input domi-
nate the local fluctuations, which tends to suppress this heterogeneity. In a
network with both excitatory and inhibitory neurons with an external ex-
citatory input of the same order as the internal excitatory contribution, this
heterogeneity is much more pronounced (Amit & Brunel, 1997b).

4.3 Effect of More Realistic Synaptic Responses. Our analysis has been
carried out for synaptic currents described by a delta pulse. One may won-
der how the analysis generalizes for more realistic postsynaptic currents.
We consider a function f(t) describing the shape of the postsynaptic current
when a spike is emitted at time ¢t = 0 (see, e.g., Gerstner, 1995, for a review
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Figure 10: (Left) Distribution of spike rates (histogram: simulation; dashed line:
theory). The distribution is similar to a gaussian, unlike the distributions ob-
served in Amit & Brunel (1997b), which are much wider due to the balance
between excitation and inhibition. (Right) Relative amplitude of CC between in-
dividual neurons and the global activity versus neuronal firing rate (diamonds:
simulation; solid line: theory). t = 20 ms, ] = —0.1 mV, C = 1000, 6 = 20 mV,
V,=10mV, § =2 ms, ey = 25 mV, o,y = 2.58 mV.

of different types of synaptic responses). f(f) is chosen such as

/dt fh=1.

An example often used in modeling studies and shown in Figure 2 is the
a-function with a latency 17 and a characteristic synaptic time zs:

t-m _tzmu
Fit) = [ = exp( = ) fort > 1, (4.1)
0

otherwise.

The total synaptic current arriving at neuron i is now
k
RI(t) = rZ]ijZf<t— tj).
i k
In the diffusion approximation the synaptic current becomes

RI;(t) = p(t) + Ei(®),

in which the average part is given as a function of the frequency v and the
synaptic response function f by

Ht) = ot — CJ / o) fit— ).

On the other hand, the fluctuating part E;(t) can no longer be approxi-
mated by a pure white noise and exhibits temporal correlations at the scale
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of the width of the PSC function f(t). These temporal correlations in the
currents complicate the analysis significantly, since the evolution of the dis-
tribution of the membrane potentials is no longer given by a simple one-
dimensional Fokker-Planck equation. For the case of the a-function, we
would need to solve the problem described by a three-dimensional Fokker-
Planck equation. Such an analysis is beyond the scope of this article. Here,
we choose to ignore, as a first approximation, these temporal correlations.
Thus we consider only the effect of the PSC function on the average synap-
tic currents. In this approximation, the effect of the PSC function becomes
equivalent to that of a distribution of synaptic times in the delta pulse PSC
case considered in section 4.1. For example, in the limit in which 75 and 77,
are small compared to the integration time constant, the equations for the
bifurcation point are

2
G=Jo |:2T_chos (a)T—L) + (1 — r—52w2) sin (a)f—L)i|
T s T T
‘L’SZ 2 T . TL
H=1{1- o [cos <w—) + sin (a)—)]
T T T

+2rr—5a) [COS (a)TT—L) — sin (a)%)] . (4.2)

In the case 11 = 0 (zero latency) the equations simplify to

G= 2\/51—% 4.3)
2
T
H=1-3w?+250,. (4.4)
T T

In the case H = 1, the frequency of the oscillation near the bifurcation point
is equal to 1/(;r 7). Note that the dependence of the frequency on s in the
o function PSC case is similar to the dependence on § in the delta pulse PSC
case, equation 3.19.

To check the validity of this approximation, we have performed numeri-
cal simulations with fixed latency 77 =2 ms, varying the decay time constant
of the inhibitory postsynaptic current rs. The results are shown in Figure 11.
The approximate analysis predicts the frequency is in the region between
the two full lines (corresponding to H = 0 and H = 1). Simulation results
deviate from the approximate analysis at rather small values of s because
of the effect of temporal correlations in the synaptic currents, which have the
same scale as the period of the oscillation. Nonetheless, the approximation
gives a good qualitative picture of the dependence of the frequency on zs.

Note that the frequencies obtained in this way can be directly compared
to the data of Whittington et al. (1995) and Traub et al. (1996) since the decay
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Figure 11: Dependence of the frequency of the oscillation near the bifurcation
threshold on the synaptic decay time constant s, for t;, =2 ms. Network param-
eters as in Figure 3. External inputs have j. = 25 mV, o,y = 2 mV. This point
is near the bifurcation line in the whole range of 7. o: Simulations. Solid lines:
Frequency given by the approximate analysis, equation 4.2, for H = 1 (lower
curve), and H = 0 (upper curve).

time constant of the PSCs can be identified with their parameter tg4pa. The
frequencies obtained in the simulations are very close to the ones obtained
in that study. For example, we obtain a frequency of about 40 Hz when 75 =
10 ms, in agreement with the in vitro recordings and the simulations of the
more complex model of Whittington et al. (1995) and Traub et al. (1996).
However, one has to be careful with such a comparison, since in that in
vitro study, interneurons seem to fire at population frequency.

5 Conclusion

We have studied the existence of fast global oscillation in networks where
individual neurons show irregular spiking at a low rate. We first showed
that the phenomenon can be observed in a sparsely connected network
composed of basic integrate-and-fire neurons. In this very simplified set-
ting, the phenomenon has been precisely analyzed. At the simplest level, it
differs from other modes of synchronization that lead to global oscillation
in that recording at the individual neuron level shows a stochastic spike
emission with nearly Poissonian interspike intervals and little indication of
the collective behavior (see the ISI histograms in Figure 3). This oscillation
regime has some similarity with that obtained in Wang et al. (1995), where a
hyperpolarization-activated cation current seems to play the role of our ran-
dom external inputs in generating intermittent activity in the network. This
type of weak synchronization has sometimes been rationalized as coming
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from filtering of external noise by recurrent inhibition (Traub et al., 1989).
Our analysis leads to a somewhat different picture.

We have found that in the limit of an infinite network, the global oscil-
lation is due to an oscillatory instability (a supercritical Hopf bifurcation)
of the steady state. This instability occurs at a well-defined threshold and
arises from the competition between the recurrent inhibition, which favors
oscillations, and the intrinsic noise in the system, which tends to suppress it.

We found that the global oscillation period is controlled by the synaptic
time. This appears to agree with previous experimental findings on slices
of the rat hippocampus and with simulations results (Whittington et al.,
1995; Traub et al., 1996), where it is, however, assumed that neurons fire
at population frequency, unlike those of our model. A similar decrease in
population frequency when the GABA characteristic time is varied is also
observed in a recent in vitro experiment in which neurons fire sparsely
(Fisahn et al., 1998). More work is necessary to clarify the relative roles of
the different time constants (latency, IPSC rise time, IPSC decay time) that
are commonly used to describe the synaptic response.

The oscillation period also depends on the characteristics of the external
input, and particularly on the magnitude of the external noise, as shown by
Figure 6. The initial rise in the frequency when one increases o,y followed
by a saturation at sufficiently large o, looks in fact similar to the depen-
dence of the frequency on the amount of glutamate applied to hippocampal
CAl region in vitro (Traub et al., 1996). Our network is in a stationary state
when external inputs are low and switches to an oscillatory regime when the
magnitude of the external inputs is increased. This phenomenon resembles
the induction of a gamma rhythm in the hippocampal slice mediated by
carbachol (Fisahn et al., 1998), and the induction of faster 200 Hz rhythms,
believed to be provoked by a massive excitation of CA1 cells through Scha-
effer collaterals (see, e.g., Buzsdki et al., 1992). It is also interesting to note
that a single network with fixed internal parameters is able to sustain col-
lective oscillations in different frequency ranges when the characteristics of
the external input are varied.

In a finite network, the sharp transition is smoothed, but the global os-
cillation has different characteristics above and below the critical threshold.
Below threshold, its amplitude decreases as the network size is increased.
Above threshold, an increase in the neuron number does not greatly modify
the oscillation amplitude but increases its coherence time. It has been shown
that the whole picture of a Hopf bifurcation with a well-defined threshold
remains accurate when some of our simplifying assumptions are relaxed. It
would be interesting to extend this finding to more realistic descriptions.

Our analysis also raises the important question of the synchronization
mode used in real neural systems. Do neocortical or hippocampal neurons
behave as oscillators with a frequency equal to the population frequency,
or irregularly with firing rates lower than the population frequency? In
hippocampus, pyramidal cells seem clearly to be in an irregular, low-rate
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regime, during in vivo gamma (Bragin et al., 1995), in vivo 200 Hz (Buzséki
etal., 1992), and in vitro gamma oscillations (Fisahn et al., 1998). More recent
experimental data indicate that interneurons also typically fire at a lower
frequency than the population frequency during 200 Hz oscillations in CA1
(Csicsvari et al., 1998). Further experimental work is needed to clarify this
important issue.

We have obtained a reduced description of the collective dynamics. The
analysis can certainly be extended to more complicated networks, composed
of neurons of different types or that are spatially extended. We hope that
this reduced description will prove useful in clarifying the mechanisms of
long-range synchrony and in studying propagation phenomena (Delaney
et al., 1994; Prechtl, Cohen, Pesaran, Mitra, & Kleinfeld, 1997).

Finally, and most important, the exact roles of fast oscillations remain
unclear. Are they useful for putting in resonance different neuronal popula-
tions, as it has been suggested? Can they serve to build a fast detector with
slowly firing neurons? Are they used as a clock mechanism? Or do they
reflect the usefulness of having a network where different neuronal popula-
tions fire in succession on a short timescale, to code spatial information in the
temporal domain? Recent experiments (MacLeod & Laurent, 1996; Stopfer,
Bhagavan, Smith, & Laurent, 1997) make us hope that elucidating the real
meaning of these collective oscillations, at least in some neural systems, is an
attainable goal. This is a question to which we hope to return in the future.
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Appendix

The details of our computations are given in the following. We have found
it convenient to use the rescaled variables,

2 C CJ? ol
p=2g g= I _tor T % (A1)
a0 o o9 o o
v o — v, -
y= M TR TR (). (A2)
o0 a0 a0

J and G are positive.
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Using equations A.1 and A.2, the Fokker-Planck equation, 3.5, becomes

0Q 0Q | H%Q
T = LIQ] + v(t —8) <G % +5 o ) (A.3)
where the linear operator £ is defined as
192Q 9
L[Q] = Ea—yz + 8—y(]/Q)

The equation is valid on the two intervals —co <y < y,and y, < y < ys.
The boundary conditions at y, and yy become: at s,

00 _ 14
aty,,
v 8Q]%+ 1+
[Q]yf =0, [ 1, 1+ Hn(t-9) (A-5)

(the square bracket denotes the discontinuity of the function at y namely,

[f]yf = limo{f(y + €) — f(y — €)}). Note that the terms on the rh.s. of
equations A.4and A.5 are identical. Thus, when we study the Fokker-Planck
equation at different orders, we will mention only the condition at yy. The
condition at y, can be obtained by replacing the value of the corresponding
function at yy by the discontinuity of the function at y,. Moreover Q(y, t)
should vanish sufficiently fast at y = —oo to be integrable.

The steady-state solution obeys

L[Qo] =0 (A.6)
and
0Q, 9Q0 7" _
W(yG) = —1, [W]yr =-1. (A7)
It is given by
3 exp(—y?) fyy"du exp?) y>y,
Qo) = [exp(—yz) fyyfdu exp?) y <y (A8)

From equations A.6 and A.7, one easily obtains the values of higher
derivatives of Qp at y = yy and their discontinuities at y = y,, which will be
used in the following, using the recurrence relation

"Qo 9" Qp 3"2Qp
W(y) = —ZyW(y) —2(n— 1)8]/”—_2@). (A,9)
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A.1Linear Stability. The function Q canbe expanded around the steady-
state solution Qo (y) as

Q) =Qow) + Ay, ) + Q. H+---
n(t) =ni(t) + na(t) + - - (A.10)

At first order, one obtains the linear equation

I Qo H szo)
— = -3 — 4+ - All
29 Qi+ m >(G o (A1)
together with the boundary conditions
Q1
Qi(ye. 1) =0, W(ye) = —m(t) + Hny (t — 8) (A12)
and
v 9 v
[Qi]; =0. [a%l] = -m(t) + Hn(t - 9). (A.13)

Yr
Eigenmodes of equation A.11 have a simple exponential behavior in time,

Qi(y, H) = exp(ht/7) 11 ()Q1 (Y, 1), n1(H) = exp(At/T) i (V),

and obey an ordinary differential equation in y,

¢  H d2Q0> , (A.14)

9 — 16 Y H
A1y, 2) = LIO1l(y, ») +e < & +5 i

together with the boundary conditions

R 90
Q1(ys, 1) =0, agyl(ye) = —1+ Hexp(—18/1),

and similar conditions at y;.

The general solution of equation A.14 can be written as a linear super-
position of two independent solutions ¢1> of the homogeneous equation
1/2¢" + y¢' + (1 — A)¢ = 0, plus a particular solution that can be obtained
by differentiating equation A.6 with respect to y,

o 1y, 1) + B D, ) + Xy 2y >y,

7 t ~ (A.15)
ar Md1(y, M) + By My, M) + Q1. A ¥y <y

O1(y, ») = {



Fast Global Oscillations 1651

with

G dQo(y) H dZQo(y)).

AP — M/
Q. 1) =e <1+A dy | 22+h  dp

(A.16)

Solutions of the homogeneous equation 1/2¢” + y¢' + (1 — A)¢ = 0 can
be obtained by their series expansion around y = 0. They are found to be a
linear combination of two functions. The first one can be chosen as

400 2 n—1
_ P 2y) 11—
ny, ) =1+ ”§=1( 1) o) k|=0| (k + ) . (A.17)

It coincides with the confluent hypergeometric function M[(1—1)/2, 1/2, —y?]
(see, e.g., Abramowitz & Stegun, 1970). A second independent solution can
also be expressed in terms of the hypergeometric function M as

A3 2\ +o00 . (Zy)2n+1 n A
2yM <1 ~ 55 Y ) =2y + ;(—1) W}E (k— 5) . (A18)

The asymptotic behavior of both functions can conveniently be obtained
from the following integral representations valid for Re(}) < 1/2,

1+a

1 +00
A= ——— dtet 2uVHE T
1y, 1) F(lT*)/o e™! cos2yv/t)

2 M(l-f 5 _ 2) = ;fﬂodte’t sinyvHt= 2. (A.19)
Y 227 ) T ra-nh Y C

(After replacing the cosine and sine in equation A.19 by their series expan-
sions it is easily checked that the obtained series in powers of y" coincide
with equations A.17 and A.18.) The following asymptotic behaviors are
found for y — —o0:

N

B A.20

TSI ¥51 (A20
A3 2yl VT

2 (153 7) ~ prma s (42D

We find it convenient to choose ¢2(y, w) as the particular combination of
these two functions that decays exponentially (i.e., like [y|~ exp(—y?)) at
Y= -

e ()

Py, ) = F(”T* IRE)
(31
+F(%)2yM 1-5.5. ). (A22)
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Thus for Q1 (y, t) to be integrable on [—o0, 5] we need to require a; =0in
equation A.15.

For further reference, we give the asymptotic behavior for A, = Im(}) —
+o00,

$1(y. A1 + i%2) ~ cosh [y\/)\.z — i1+ z')] exp(—12/2) (A.23)

D2 (Y, A +iko) ~ i exp [yv Ao —ir(1+1) — yz/z] , (A.24)

r(g)

where the determination of the square root is fixed by requiring it to be
positive for A1 = 0.
Finally, we note that the Wronskian Wr of ¢ and ¢, obeys the first-order

equation Wr' = —2yWr and therefore has the simple expression
b — 8 by = 2T (i
Wr(¢r1, ¢2) = ¢1), — 2 = TG exp(—=y°) (A.25)

(the prefactor being fixed by equations A.23 and A.24).

The four boundary conditions, equations A.12 and A.13, give a linear
system of four equations for the four remaining unknowns oc;” Qs ,814' ,and
B; - The condition o;7 = 0 needed to obtain an integrable o)) (y, t) gives
the eigenfrequencies of the linear equation, A.11. To obtain the required
solvability condition and the allied solutions, we find it convenient to use
first the two boundary conditions (see equation A.12) to obtain «; and ﬁf .
This gives

+__1 1Aty Ap

o = Wr(ys) {d)z(}/e)(l He ) —W> I:Ql] (ye)} (A.26)
+___ 1 TRy Ap

B = Wr(ye) {¢1(y9)(1 He )— W [Ql] (ye)}, (A.27)

where Wr denotes the Wronskian of ¢; and ¢, equation A.25, and W;(j =
1, 2) the Wronskian of the function in its argument and ¢1 »

Wi [Q] = QAqb]-/ - Q/qu forj=1,2.
For matters of convenience we define ¢, and W1 5 by

s wa[0]

b2 =3 Wi [QAT] =W



Fast Global Oscillations 1653

The two boundary conditions at y = y, (see equation A.13) give similar
equations for o — oy and B;” — B; with yy replaced by y,

@ = of — a1 —He )~ [ [Of] o | (A.28)
B = BT + 1)1 — He /) — [Wn Q] (y)]j:f .

Equations A.26 and A.28 together with a;” = 0 give the solvability condition
and the equation for the eigenfrequencies of equation A.11:

(G200 = d2y)) (0 = He /7y = W, [ O] o)
- (@] w] (A.29)

When the synaptic time § becomes much smaller than 7, the roots A of this
equation become large. Considering for definiteness roots A = A1 + i, with
A2 > 0, in the limit |A| - +o00, A — 400, one obtains from equation A.24
that 3,¢2(ys) > 9y¢2(yy) and dy¢2(ys) ~ /A2 — ir1(1 + i)¢o. We then note
that for equation A.29 to have such a root, we need G ~ /JA[. Since H < 1
by definition, we can neglect the terms proportional to H in QA’I and finally
obtain

e—AB/r

A

G

Vi —irvi(141i) = =1+ He /7, (A.30)

We focus on the root with the largest real part (together with its complex
conjugate). Its real part becomes positive, A = iky = iw,, when

1 — i)Ge i/
L (A= DGe

1— HefiwCB/r
A/ Wc

:O,

that is,
G = Jw.sin (w:8/7)
H = sin (w:6/1) + cos (w:5/7) -

A.2 Weakly Nonlinear Analysis. Our aim is to determine the lowest
nonlinear terms that saturate the instability that appears when one crosses
the critical line in the plane ey, oex. This determines the amplitude of the
collective oscillation as well as the nonlinear contribution to its frequency in
the vicinity of (G, H.). We follow the usual strategy of pushing the devel-
opment (see equation A.10) to higher order. One finds that the nth-order
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term obeys inhomogeneous linear equations with forcing terms formed
by quadratic combinations of lowest-order terms. We first determine the
second-order terms that are forced by quadratic combination of first-order
terms and therefore oscillate at 0 and 2w,. At third order, the coupling be-
tween first- and second-order terms generates forcing terms at w. and 3w.
While there is no problem determining the 3w, contribution, the w, forcing is
resonant and generates secular terms. The dynamics of the first-order terms
amplitude is determined by the requirement that it cancel the unwanted
secular contribution. The computation is not especially difficult, but it is
rather long.

We substitute the developments (see equation A.10) of Q(y, t) and n(t)
in equation 3.15, anticipating that the development parameter is of order of
the square root of the differences G — G, H — H,. Departure of G from G,
and of H from H, will therefore affect only the third-order terms.

The first-order terms have already been obtained,

Qiy, ) = eiwct/rﬁlél (. iwe) + c.c.
n1(H) = " iy (iwe) + c.c., (A.31)

where Ql is given by equations A.15, A.16, A.26,and A.27. In equation A.31,
we recall that c.c. means that complex conjugate terms to those explicitly
written have to be added. In the following, we omit the explicit mention of
the variable A to lighten the notation since functions of A will all be evaluated
at iw. (except when explicitly specified otherwise).

By differentiation of equation A.11 one can easily obtain recursively the
values of higher derivatives of Ql at y = yp and their discontinuities at
¥ = yr, which will be used in the following.

A.2.1 Second Order. We first determine the second-order terms. They
obey the equation

raa—Qtz = L[Qa]+na(t — 8) (chd% % d;g")
Tyt —8) (Gcaa—?/l % a;% ) (A.32)
together with the boundary conditions
Qa(ys. 1) =0, %(ye) = —nma(t) + Hnap(t — 8) — Hni(t — 6)
+ Hni(H)m (t — 8) (A.33)

and a similar condition in y;.
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From equation A.31, the forcing term on the r.h.s of equation A.32 con-
tains terms at frequencies 2w, and 0. Therefore, we search Q> (y, t) and n(t)
under the form

Qo(y, B = 7200 5 (y) + e 2o (1205, () + Qoolita > (A34)

na(t) = 113 pp 5 + e 2T (7i1)2 p3 , + 71112 p2,0- (A.35)

Substitution of equation A.35 into A.32 shows that Qz,z obeys the ordi-
nary differential equation,

A : d H. d?2
Qiwe — L)Q22(y) = page 2@/ <Gc& + QO)

dy 2 dy?
i 001 | He9*Q
4 emied/t <Gca—y1 1 7C ay21>’ (A.36)

together with the boundary conditions

9022
ay

Qz,z(ye, H =0, Yo) = —p22 + He2i0d/7 p, 5

_ HZe—ZiwctS/r +H6—ia)C6/r

and a similar condition in y;.
As above, the general solution of equation A.36 is written as a superpo-
sition of solution of the homogeneous equation and a particular solution

af o1y, 2iwe) + By o (y, 2io)

A +0220%, +QF >
Qa2 =41 _ a2 a2 y=u (A.37)
a, 1Y, 2iwe) + By d2(y, 2iwc)
+'02’2Q§U,2 + leoz Y <Uyr
where

QSO =e_2i“’u‘3/I GC @ 7HC —dZQO
2.2 14 2iw. dy  4(1+iw) dy? )’

le"z can be obtained by differentiation of Qp and Q; using equations A.6
and A.14 and involves only terms of lower order that have already
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been determined,

R B Ge a1 H 920
To — p—iwd/T € =L
Qo) =e (1 Tiwe By 22 1 iwn) 02

_ e—ZiwCS/r ( Gg d2Q0 H.G, d3Q0
21 +iwe)? A2 2(1 +iw) (2 + iwe) dy?
n H? d4Qo>
82 +iwe)? dyt )’

The four boundary conditions for Qz determine the four unknowns
o, B, By .oy in terms of pr» and the previously determined functions.
With the integrability condition a, = 0, we obtain that py > is equal to

(p2(yg) — b2(y,))Hee /7 (1 — Hee™ied/7)
+ WL, 1) — (Wl Q%) 17
(2(yo) — Ga(y) (1 — Hoe 2iwd/T)
~ W2l Q5 1(e) + [W2[Q5,] ()T, f

in which all functions are taken at argument 2icw,.
The component at frequency zero Q» o obeys

5 2
0 = L[Q20] + p2.0 (GC@ + Hed Q())

dy 2 dy?
. aO*  H. 920
N [e_lw[a/f (GC ail o1 3521) +C.C,], (A.38)

together with the boundary conditions

3@2,0

oy o) = —p2.0(1 — H) — 2H? cos(w.8/7)

O20(e, b) =0,

and a similar condition in .
Its general solution can be written

a5 0Qo + B o exp(—) + 02005 (V)

+Q% ) y>yr
@3 0Qo + B0 P (=) + 02,005, ()

+Q%, ) Y <Y

Qoo(y) = (A.39)
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where

@ Hc szO)

Qz,o(}/) = (Gc dy + 1 dy2

and it is again convenient to construct the particular solution Q¥ by differ-
entiation

~ ; GC 8@1 Hc aZQl
lo — +lwca/r = s —
) [e ( Tp—— +5 @) o2 + cc

_ < G d*Qo H.G:(2+ % d*Qo
1+ @? dy? 1+ 0?4+ w?) dy’
n HC2 d4Q0>
44+ w2) dyt )

(A .40)

In this case, the four boundary conditions for Q5 o are not independent
and are not sufficient to determine the four unknowns a{ 0> % 05 /32 0 B2o
in functions of lower-order terms. This comes about because some choices
of Qs are equivalent to changing the normalization of Qg. One should
therefore eliminate them by imposing the condition [*_dyQ, ¢ = 0. In this
way, one obtains,

Yo
[(-2 S ye + H“zJ/H) eV’ f_yoodufuz]y + v

1+w? 44w, (A 41)
02,0 = 7 .
’ L _ Hy\ a2 1y _2 ]
e+ [(Gc 5 )e J? due ]y,
where
H.2y? +1
Yo() = Gey + cos(wed/t) — we sin(wed/t) — %

4G.2y* + 1)

yH(Y) = 4y cos(w:b/T) — 2yw, sin(w:8/t) + 3

— He.2y® + 3y)

2+ w; HZ(y; — 9
a1+ wg)(4 + a)%) 4+ a)g

Yr = _2(y0 - yr)Gch

(the notation [ f ]Zf = f(ys)— f(y,) is used). The derivatives of higher order of

Qz,z and QAzyo, which are used in the following, can be obtained recursively
by differentiation of equations A.36 and A.38.
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A.2.2 Third Order. We cannow proceed and study the third-order terms.
They obey the equation

Q3 dQo  H.d*Qo
o= fe o (60 + TR
a1 He 9*Qs
+ na(t —6) <Gca—y > a2 )

e, 1)

_s .
+ n(t )(G oy > 3_1/2

dQo . (H—H,) d’Qo
+ ni(t —9) <(G - GC)d—y + T dy2 >

dri\l'\ iwct
[/T

— T— e

{ dtQ1

d;ffl o dQO H, dZQO
s piwe(t=8)/t [ o =0, Tl Cot, A42
+ dat e c dy 2 dyZ +cc ( )

together with boundary conditions

Qs(ya) =0

05
a%(ye) = —n3(t) + Hns(t — 8) — 2H?n1(t — 8$)na(t — )

+ H (n1(hna(t — 8) +ny(t — )na(H) + Hnd(t — 8)
— H*ny(hn3(t — 8) + (H — H)na (t — 8)

any
_ H(S%ezwf(t—é)/r’ (A.43)

and a similar condition holds at ;.

The last two terms between brackets on the r.h.s. of equation A.42 come
from the anticipation that it will be needed to have 7i; change on a slow
timescale to cancel secular terms. The first term arises from the explicit
time differentiation in equation A.3 and does not need special explanation.
The second is less usual and comes from the delayed forcing v(t — §) in
equation A.3. Formally introducing a slow timescale T = ¢t, the delayed
forcing is written v(t — 8, T — €4). The second term between brackets in
equation A.42 is produced by the expansion to first order in € v(t — 8, T —
€8) = v(t —8) — €8 drv(t — 8) + - - - The last term in the boundary condition,
equation A .43, appears in the same way.
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The forcing terms on the r.h.s. of equation A.42, oscillate at frequencies
3w, and w.. Therefore, we search Q3(y, t) and n3(t) under the form

Qs(y, B = 7 Qs 5(y) + " Q31 (y) + c.c.

ns(t) = esiw‘t/fﬁg,g + eiw‘t/rﬁy,yl + c.c. (A.44)

We focus on the terms at frequency w., which are resonant with the first-
order terms. They obey the equation

dQo  H.d*Qo
“ay T2y )

- 007  H.0%Q;
A2 L e 1 c 1
+ [m|m [,0226 ( oy +o o

001 | H. 9O
G — 4 ¢
+p20< Cay + 2 2

4 eind/T (G 02,0 n H. 32Q2,o)
. He

(i — L)Q3.1(y) = fiz 167/ (

ay 2 9y?

4 e/t <Gc 0022 N H, 32@2.2)]

ay 2 2

dy Tt dy?

_ 2
oot ((G _ Gc)dQO (H-Hy)d Qo)

dny A
1=

dt

y din (. dQy H.d?Qo
_ szS/ra_ G _¢ .
¢ dr ( “dy 2 dy2>

(A 45)

The general solution of equation A.45 can be written

o g1y, iw) + B ¢a(y. i) +iis 1 QL +QY Yy,

Q=1 > , _ , . Ap A
o3 ?1 (]/, lwc)+/33 ¢2(]/, lwc)+n3,1Qq+Q€£1 y<Yr.

(A .46)

In the particular solution, Q’{ is the function that appears at first order,

equation A.16, and as before, we can construct Qéol by differentiation of
lower-order terms:

A~ dﬁl ~ N A A ~
Q=1 Q81 + Qb +inlin PQ5 . (A47)
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where Qg’l is obtained from Ql by differentiation of ¢ » and QAFf with respect
to A:

o 9.1y, iwe) + By (Y, i)

Ny +3, 0 (y, iwe) Y >y
W=7 __ . A.48)
B1® =N gty oo (
+3AQA§J(% iwe) Y <UYr
Al —iwd/T (G - Gc) dQO (H - Hc) dZQO
Qaa=e ( l+io. dy — 2Q+iw) dy? )’ (A.49)

and

QC :eiwc5/f Gc 8QA2.2 H, 82@2,2
31 1—iw. 3y = 2Q2—iw;) dy?

\pimye G 9Q20  He  #Qao
1+iw. 9y 2Q +iwe)  9y?

901 He 9O
+ 02,0 (Gc oy + oy

+ 2€—21’w56/r GC aQ; HC aZQ;
' 142w, oy 41 +iw;) y?

_ G (o #Q  H3Q
T+ \ a2 " 3 9P

He (G 9°Q1  He9*Qx
4+ 2\ 3 9y3 8 oyt

—e

~iwsjr_Ce G Qi He  9Q
1+iwc \2(1 +iw;) Y2 23+ 2iw) 33

—e

2wy He G B N H. — *Q;
22 +iwe) \ 3+ 2iw. Y3 42 +iwe) y*
2 +iw,
1 —iw) (1 + 2iwe)
Gc dZQO + Hc d3QO>
2 +iw. dy? 23 + iwe) dy?

— pape TG,

_ pz’oefiwCB/chz‘l‘ fwe ( Gc szO H, d3Q0>

1+ iwe \2 4 iw: dy? 23 +iwe) dy?
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4+ iw,
“4(1 + iwe) (2 — i)

Gc @ Hc d4Q0
3+tio. dy® 24 +iwy) dy*

iw:d/t

— 226

—iw.S/T 4 +iw, Ge dSQO H, d4QO
— p2,0e " He - - 3 - 7
42 +iwc) \3 +iwc dy 2(4 +iw:) dy
3 +iw,

+ efiwCS/tGZ - i
21 —iw)(1 + iewc)?

( Ge d°Qo H, d4Qo>
3+io. dy? 2(4 + iw) dy*

s GeHe (24 3
6 14 w2 44?2 (Q+io)2+iw)

G. d*Qo . He Qo
4+ iwe dy 205 +iwe) dyd

; 6+ iw,
—iw:8/T 172 C
e BQ+ w2 — i)
G, o H de
c $Qo ¢ Qo) (A.50)
5+iw. dy> = 2(6+iw;) dyb
Now, upon replacing @; = 0 one can try to determine o , 85, 85, 713

from the four boundary conditions on Q3 1 (y). This provides a linear inho-
mogeneous system for the four unknowns. The inhomogeneous terms are
made from Qg” 1) and its derivatives evaluated at ¥y and y,. But there
is a difficulty: since we are considering the resonant part of the third-
order terms, the linear operator coincides with the 4 x 4 matrix obtained
at first order, which has been required to have a zero determinant. So
the equations for o, B, B; , i3 are solvable only if the inhomogeneous
terms obey a solvability condition. In order to obtain it, we find it conve-
nient to proceed as we did at linear order (see equations A.26 and A.28).
We obtain «f and B; in terms of 731 and Qé" from the 2 x 2 system
given by the two boundary conditions at y5. We then obtain similar ex-
pressions for «f and g — g5 . Comparing the two obtained expressions
for of and requiring them to be identical provides the solvability condi-
tion,

(B200) = d2)) 2 = W2 [ Q1 (o) — [ W2 [ O] (y)]:i L (Aas)
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where

8

dity
T

Q = ——He e/t T i — fip | 1293

Q1 = (H— Hpe /"

Q3 = —2HZe /% (pp + pao) + 3HZe "
+H, [pzz(efziwﬁ/f + eiwcﬁ/f) 4 on(l + e*inB/I):I
_ H?(z + e*Ziwqu/r). (A52)

With the help of equations A.47-A.50, this gives the searched-for equation
of motion for 71y

i
‘c% — Aby — B|D |2y, (A.53)

in which
—~Wal Q4 1 1(yo) +[W2[Ql3,,](y)]§:f —(2(y0) —b2(yr))
Wz[Qél](yw—[Wzlég,ll(y)lz;f+<J>z(yg>—&z(yr»%He—"wcﬁ/f

(A.54)

WaL05 1 1y0)— [WLQ5 1)1 + (@2 o)~ B2 () R
WaLO% 110~ [WL QS 1T + (@2 (o) — B2 y)) £ He ot/

B . (A.55)

These expressions simplify in the limit §/r — 0. In the particular case H = 0,
one obtains equation 3.21.

A.3 Effect of Noise Due to Finite-Size Effects. Inserting the noise in
equation A .42, we obtain
dity N A 2
T = Ay — Bl |*fi1 + DJ/TC (1), (A.56)

in which A and B are given by equations A.54 and A.55, while D is
D=y W2 | Que ) + [ W2 [ Qo (ygj , (A57)
W, [le] (Ye) — [Wz [le] (y)]y:,
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where

R efiwcé/r dQO
Qnozse = lec E

n is given by equation 3.25 and ¢ is a complex white noise such that
(c®E* () =8t —1)).

The autocorrelation at zero time C(0) is given by
CO) =1+ 2(m®)?).

We deduce from equation A.56 the Fokker-Planck equation describing the
evolution of the PDF of both real and imaginary parts of 7i;. This equation
can be converted in an equation giving the stationary distribution Pr(p) of
p = |i11|%. Tt satisfies

d P 0
= (IpPo= ) = = ([2400 — 28,07 Px).
ap ap ap

whose solution is

oxp (20— o)

A . '
S5 exp (23R — R dR

Pr(p) =

and the autocorrelation at zero lag is

S Rexp (28R — B2 R?) dR

R
C0)=1+2 .
A, B,
fOOO exp (2@1{ — WR2> dR

From this exact expression, it is not difficult to obtain expressions 3.27-3.29.

From equation A.56, one can compute the behavior of the autocorrelation
function C(s). Far below the critical line, |71 | is small and, the nonlinear term
can be neglected. It is then easy to obtain equation 3.30.

In the oscillatory regime far above the critical line, finite-size effects
provoke fluctuations of activity around the oscillation described by equa-
tion 3.22. We consider a small perturbation, in both amplitude and phase, of
the “pure” oscillation 711 — 711(1 4 r) exp(ig). r is the perturbation in ampli-
tude, while ¢ is the perturbation in phase. To obtain the evolution equations
for r and ¢ we apply standard stochastic calculus techniques (see, e.g., Gar-
diner, 1983, chap. 4), and obtain,

Th = —A,Qr+ 37 +1°) + €, + € Ty (A.58)
. BiA, 2 Gi
T¢——B—r(2r+7’)+€1+r (A59)
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in which € = |D|/R, and ¢;, ¢; are uncorrelated white noises. Note that the
last termin the r.h.s. of equation A.58 appears (Gardiner, 1983, sec. 4.4.5) due
to the fact that, upon discretizing equation A.56 with a small time step dt,
¢ (t+dt) — ¢ (t) is of order V/dt, not dt. The calculation of the autocorrelation
in terms of r and ¢ gives, keeping only the dominant term,

Cis)=1+ 2R2(cos (we 4+ Aw)s/Tt + Pt +5) — P(1))).

In order to calculate the autocorrelation we need to calculate the distribution
of Ap(s) = ¢(t +5) — ¢(t). From equations A.58 and A.59, we find that, to
leading order in ¢, it has a gaussian distribution with mean 0 and variance

2(5)—@ 3_1_ Bl2 ox _2Ays _1+2Ars
v =ore [T A, 1P\ r |

Averaging cos((w: + Aw)s/t + A¢(s)) with such a distribution yields
C(s) = 1+ 2R? cos ((we + Aw)s/T) exp (—yz(s) /2) .

We find a damped cosine function as below the critical lines, but now the
damping factor is no longer a simple exponential. For small times s <«
7/(B,R?), the damping is described by

exp (~19) < exp (- 1202
P72 Pl7@me 7 )

while for long times s > 7/ (B,R?)

|D|? - B?\ s
xp | — ~exp|——=5 ==
P P\ TR B2) 7
The damping time constant in both regimes is proportional to 1/|D|> ~ N/C,
that is, to the inverse of the connection probability. When N goes to infinity
at C fixed, the coherence time of the oscillation increases linearly with N.

The next order in € brings (after a rather tedious calculation) a small
additional contribution to the variance, so that for long times

2 2 2 2
Ve _ID] Bi\s D] 4
exp< 5 >_exp< IR (1+B%>r|:1+2Ar+O<|D|) .

A.4Randomly Distributed Synaptic Times. The calculations performed
in the case in which all synaptic times have the same value can be repeated
in the more general situation in which synaptic times are drawn randomly
and independently at each site with distribution Pr(8). The difference is that
in all equations where functions of § appear, we need to integrate these func-
tions with the PDF Pr(5). For example, we find that the critical line where

y2(s)
2
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the instability appears is given by
($2(y5) = 2y) (1—H / Pr@)e*wﬁ/’da) = WalQ1we)
~ WA . (A60)
in which

Qly.w) = [ Prive/eas

X( G dQo(y) H dZQo(y))
14w dy 2Q4+w) dy* )’

(A.61)

A.5 Inhomogeneous Networks

We now relax the constraint that the number of connections received by a
neuron be precisely equal to C. The connections are randomly and inde-
pendently drawn at each possible site. They are present with probability
C/N. In this situation, the dynamics of different neurons will depend on
this number of connections they receive: this number is now a random vari-
able with mean C and variance C(1 — ¢€). For example, their frequency will
be a decreasing function of the number of connections. The connectivity
matrix is defined by J; = Je; where for all i, j e; = 1 with probability e.
The distribution of frequencies in the stationary state in such a situation has
been obtained, for the case of a network with both excitatory and inhibitory
neurons, by Amit and Brunel (1997b). The distribution of stationary fre-
quencies can be obtained as a special case of this analysis. We briefly recall
here the main steps of this analysis before turning to the stability analy-
sis.

Averaging the synaptic input only on the randomness of spike emission
times of presynaptic neurons, we get that the mean and the variance of local
inputs are given by

2 2
Mi = ]'L' Zeijvj, o, = ] T Zeijvj.
i j

Since the number of inputs to each neuron is very large, the spatial dis-
tribution of the variable }; ¢jjvj, which completely determines the spatial
distribution of x and o, will be close to a gaussian whose two first mo-
ments can be calculated as a function of the two first moments of the spatial
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distribution of frequencies:

e

<(Z—c)> _c(F-e).

Thus the variable
Zj ejjVj — Cv
C (v_2 — 632)

Zj =

has a gaussian distribution, p(z) = exp(—zz/Z)/\/Zn. Thus a neuron re-
ceives, with probability p(z), a local input with moments

1@ = —Jt (cv +z/C (? - eiz)) (A.62)

and

o2(2) = PPt (cv +z,/C (v_2 - ev2)> . (A.63)

A.5.1 Distribution of Frequencies in Stationary State. In the stationary state
the frequency of a neuron with moments j(z) and o (z) is given by

o
Vr—u(

0—p(2 -1
Vo (2) = (rﬁ / “’” duexp(u?)(1 +erf(u))> . (A.64)

o(z)

The two first moments of the distribution of frequencies can then be deter-
mined in a self-consistent way, using

Vo = f dzp(2)vo(2), V2 = / dzp (232 (2).
These equations, together with equations A.62-A.64, fully determine the

whole distribution of stationary frequencies, which can be obtained using
the relation

P) = /dzp(z)&(v —19(2)).
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A.5.2 Linear Stability Analysis. The linear stability analysis of section A.1
can be generalized to the inhomogeneous network. We give here the main
steps of this analysis.

We expand the frequencies around the stationary frequency,

v(z) = vo(2) 1 +mi(z, 1) +--1),
and, defining for each z y = (x — 1o (2))/00(2),
P 27v9(2)
00(2)

The moments of the spatial distribution of frequencies can be expanded in
the same way:

(QO(]/? Z) + Ql(;‘/, z, t) + te ')'

v=vo(l+mit)+--),
ﬁ:%@+ﬁ@+my
where

1
i = o f dz0(2) 0@ (2, b

— 2
ﬁ@:%/mm%@m@u
Yo
The Fokker-Planck equation at first order is

(Fi@mt -8 + Ha@mdt = 9)) g2,

Q1
TW = L[]+ 5 a2
_ — 001
+@m@ma—»+cﬂmma—w)—— (A.65)
dy
where
JCvot —€Jrz,/C (v_g — eié) ?i#
Gi(z) = o
00(2)
Jrz,/C (v_g - GV%) v_zivz
Ga(z) = S
200(2)
J*Cvot — €J?1z /C (% — eﬁ%) V_zi‘;z
Hi(z) = —

02(2)
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= o\ ¥
JPtz C<v5—6v3>_ 0
VS—EUO

208 (2)

Hy(2) =

The eigenmodes of equation A.65 can be written

Qiy,z, t) = Q1 (y, z) exp(iwt/T) + c.c.
n1(z, t) = i1(z) exp(iot/t) + c.c.,

leading to the solvability conditions, for each z,
1 (2) = 1@y + @),

where

W A v —iwd/t ( % z

2 (Rl @) = [W2 (R @) -+ i@ (Gat90) — Bat)

I(z) = - =
$2(Yo) — d2(yr)

Wa [Ral (o) = [Wa [RaI )+ Ha@e /% (@) — 2(0))

Y,
@) = T
e $200) — G20)

with

2
Rys = e-i03/7 (G1,2(Z) dQo(y) | Hip() d Qo(y)) . (A.66)

1+iw dy 2Q+1w)  dy?

Multiplying the above equation by pvy (2pv3) and integrating with respect
to z, we obtain

= (VOI)A_+ (W)])ﬁ

n=-—m — 1
Vo Vo
2 2
5 (vol) — o) =
s :2%2111 +2 % 73,
Yo Yo

where we use the notation (- - -) = f dzp(z) ... The instability point together
with the associated frequency are given by the condition that the associated
determinant vanishes, that is,
2 2 2
1= 031) n Z(Vi]) n Z(VOI)(VOI) —_(VOD(VOI)_
w0 g

The relative degree of synchrony of population z with the collective os-
cillation is given by

(

<

ol

2

2
Yo

1- )
%

@ =m|Iz+]@
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