Advanced topics in Markov-chain Monte Carlo

Lecture 6: Sampling π (stationary distributions), computing π (Free energies) Part 2/2: Thermodynamic Integration / Simulated annealing / Simulated tempering

Werner Krauth

ICFP -Master Course Ecole Normale Supérieure, Paris, France

23 February 2022

Werner Krauth Advanced topics in Markov-chain Monte Carlo

- D. Frenkel, B Smit, Understanding Molecular Simulation: From Algorithms to Applications, (Elsevier, 2001)
- B. Hajek, Cooling Schedule for optimal annealing, Mathematics of Operations Research (1988)

Thermodynamic integration

- All of MCMC: concerned with π_i/π_j , norm of π_i (usually) unknown.
 - Metropolis filter: $\mathcal{P}(i \rightarrow j) = \min(1, \pi_j/\pi_i)$.
 - NB: Flow: $\mathcal{F}_{ij} = \pi_i P_{ij}$ (usually) unknown.
- All of physics:
 - concerned with $Z = \sum_{i \in \Omega} \pi_i (\pi_i = \exp(-E_i/kT))$
 - Partitition function known analytically in some limits:
 - High-temperature limit: $T \to \infty \Leftrightarrow \beta \to 0$
 - Ideal-gas limit: density $\rho \rightarrow 0$, interactions $\rightarrow 0$.
 - Ideal-solid limit: density $\rho \rightarrow \rho_{\max}$, interactions \rightarrow harmonic.
 - Keep Ω , change π .
- Creating a path from a known limit to the relevant {Ω, π} is called "Thermodynamic integration".
- Path must (normally) be smooth (avoid phase transitions).

Thermodynamic integration 1/3

 Partition function Z(α) = Σ_{i∈Ω} π̃^α_i ("π̃_i to the power α") (NB: π: normalized, π̃: non-normalized).

$$Z(\alpha') = \sum_{i \in \Omega} \tilde{\pi}_i^{\alpha'} = \sum_{i \in \Omega} \tilde{\pi}_i^{\alpha} \frac{\tilde{\pi}_i^{\alpha'}}{\tilde{\pi}_i^{\alpha}}$$

$$\frac{Z(\alpha')}{Z(\alpha)} = \frac{1}{Z(\alpha)} \sum_{i \in \Omega} \tilde{\pi}_i^{\alpha'} = \sum_{i \in \Omega} \pi_i^{\alpha} \frac{\tilde{\pi}_i^{\alpha'}}{\tilde{\pi}_i^{\alpha}} = \mathbb{E}\left(\frac{\tilde{\pi}_i^{\alpha'}}{\tilde{\pi}_i^{\alpha}}\right)_{\alpha}$$

$$Z(1) = \left[\frac{Z(1)}{Z(0.75)}\right] \left[\frac{Z(0.75)}{Z(0.5)}\right] \left[\frac{Z(0.5)}{Z(0.25)}\right] \left[\frac{Z(0.25)}{Z(0)}\right] Z(0)$$

Only Z(0) is known.

۲

٥

Thermodynamic integration 2/3

- V-shaped: $\pi_i = \text{const}|\frac{n+1}{2} i| \ \forall i \in \Omega = \{1, \dots, n\}.$
- Suppose that const = $\frac{4}{n^2}$ is unknown.
- \tilde{V} -shaped: $\tilde{\pi}_i = |\frac{n+1}{2} i| \ \forall i \in \Omega$.
- Partition function $Z = \sum_{i \in \Omega} \tilde{\pi}_i$.
- Consider $\tilde{\pi}^{\alpha}$ ("pi to the power alpha").

•
$$\alpha = 0$$
: $Z(\alpha = 0) = n$

Thermodynamic integration 3/3

- This is Problem 1 of today's TD.
- Relation to Simulated annealing.
- Relation to Simulated tempering.

Simulated annealing: MCMC Optimization algorithm

- Start at very small values of α ,
- At each step, slowly increase α by a tiny amount.

In the V-shaped probability distribution (with $\pi(n) = 0^+$), switch to temperature language.

- $U_i = -\log(\pi_i)$
- Set up temperature schedule $T_k \rightarrow 0$ for $k \rightarrow \infty$
- Accept / reject move ΔU with Metropolis filter min [1, exp (-ΔU/T_k)]

Simulated annealing 2/2

Simulated annealing: MCMC optimization algorithm

- Theorem (Hajek 1988): need ∑_k exp (−d^{*}/T_k) = ∞ for sure convergence to lowest-energy configuration.
- Corrolary (Hajek 1988): If *T_k* = *c*/ log (*k* + 1), then need *c* ≥ *d**
- Easy to check in V-shaped distribution on the path graph.

Simulated tempering 1/2

- Let the system evolve at several temperatures.
- Move between temperatures, move between positions.