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1. Two level system. [Source: Problem 6.3 from Statistical Mechanics 2nd edition by Kerson Huang, 1987]

Consider a system of N free particles in which the energy of each particle can assume two and only two
distinct values 0 and ε (ε > 0). Denote by n0 and n1, the occupation numbers of the energy level 0 and
ε, respectively. The total energy of the system is E.

HINT # 1: Use ε as the unit of energy (i.e., set ε to 1) to simplify your expressions.

HINT # 2: You may find Stirling’s approximation useful:

lnx! ≈ x lnx− x

(a) Find the entropy of such a system.

(b) Find the temperature as a function of E, and show that it can be negative. What happens when a
system of negative temperature is allowed to exchange energy with a system of positive temperature?

: (a) n1 = E; n0 = N − E
Number of ways to choose n1 particles out of N is the binomial coefficient(

N

n1

)
=

N !

n1!(N − n1)!

Using Stirling’s approximation,

S

k
= N lnN − E lnE − (N − E) ln(N − E)

(b)

1

T
= ln

N − E
E

T < 0 when N/E < 2: temperature is negative when there are more particles in the upper energy
level E than in the lower level, 0. When put in thermal contact with a T > 0 system, the system with
T < 0 will increase its temperature by (counterintuitively!) increasing the number of particles in the
lower energy level n0.

2. Pauling residual entropy. [Source: Pauling, J. Am. Chem. Soc. 12 (2680-2684), 1935.]

Water molecules in ice are arranged in such a way that for every oxygen atom, there are two hydrogen atoms
nearby, and two further away from it, as shown in Fig. 1(A). In 1935 Pauling used this to estimate the value
of residual entropy - a nonzero value of entropy that systems, which can take multiple configurations
at or near absolute zero, are said to have.

(a) Estimate the value of residual entropy for an ice block containing N water molecules.
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FIG. 1. (A) Local arrangement in water ice, showing oxygen ions (large white circles) and hydrogen ions (small black
circles). (B) The corresponding picture for spin ice. (C) Pyrochlore lattice of corner-sharing tetrahedra, as occupied by
the magnetic rare-earth ions in the spin ice materials Ho2Ti2O7 and Dy2Ti2O7. Source: Bramwell, Gingras, Science
294 (1495-1501), 2001.

This problem came to a new light in 1999, when Ramirez and collaborators found that a rare-earth
magnetic compound, Dy2Ti2O7, reached the same value of residual entropy as water ice as the temperature
tended towards zero. The source of the ground state degeneracy comes from the similar so-called ice-rule,
which states that for every tetrahedron, making up the pyrochlore lattice [Fig. 1(C)] that Dy ions live on,
there are two magnetic moments pointing in, and two pointing out [Fig. 1(B)].

: Each of 4 hydrogens has 2 possible positions with respect to a given oxygen → 16 ways to arrange all four

Only 6 out of 16 ways satisfy the 2-near 2-far condition → 6
16 = 3

8 of configurations are permitted

We can approximate the number of possible configurations for N water molecules (2N hydrogen
atoms) as (

3

8

)N (
22N

)
=

(
3

2

)N
.

Therefore, S = Nk ln 3
2 .

3. Pressure.

Reminder: There is an important relation between the thermodynamic energy Ē and the system Hamil-
tonian E ({q}, {p}, λ):

∂E ({q}, {p}, λ)

∂λ
=
∂Ē

∂λ

∣∣∣∣
S

, (1)

where λ is a parameter and the second derivative is performed at fixed entropy S.

Consider a given body and an external force acting on it. Let the external parameter λ in Eq. (1) be ~r,
the radius of some surface element d~s. The force acting on that surface element is then given by

~F = −∂E ({q}, {p}, ~r)
∂~r

. (2)

(a) Find the mean force on a surface element. The magnitude of the force per unit area is called the
pressure.
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Hint: Change in volume is given by d~s · d~r
(b) Consider two parts, in contact with one another, of a closed system in equilibrium. What can you

say about the pressures of the two parts, P1 and P2?

: (a)

F̄ = −∂E ({q}, {p}, ~r)
∂~r

= −∂Ē
∂~r

∣∣∣∣
S

=
∂Ē

∂V

∣∣∣∣
S

∂V

∂~r

F̄ =
∂Ē

∂V

∣∣∣∣
S

d~s

Pressure is given by

P =
∂Ē

∂V

∣∣∣∣
S

(b) V1 + V2 = constant. In equilibrium, entropy is maximized - also with respect to changes in, e.g.,
V1:

∂S

∂V1
=
∂S1

∂V1
+
∂S2

∂V2

∂V2
∂V1

=
∂S1

∂V1
− ∂S2

∂V2
= 0

dE = TdS − PdV

dS =
dE

T
+
P

T
dV

∂S

∂V
=
P

T

P1

T1
=
P2

T2

Since T1 = T2 in thermal equilibrium, the condition for mechanical equilibrium is P1 = P2.

4. Maxwell distribution.

(a) Derive the probability distribution for the momentum of a non interacting particle.

(b) What is the mean kinetic energy of the particle?

(c) Find the mean square fluctuation of the velocity.
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: (a) Gibbs distribution (setting k = 1):

ρ({q}, {p}) = Ae−E({q},{p})/T (3)

where A is found from the normalization condition
∫
ρ dpdq = 1.

For a non interacting particle, there is only kinetic energy E = (p2x + p2y + p2z)/2m. Substitute this
energy into Eq. (3) and use the Gaussian integral∫ ∞

−∞
e−αx

2

dx =

√
π

α
(4)

to find the normalization constant A. This results in the following momentum probability distribution:

dw~p =
1

(2πmT )3/2
e−(p

2
x+p

2
y+p

2
z)/2mT dpxdpydpz. (5)

(b) To find the mean kinetic energy, take a ∂/∂α of Eq. (4):∫ ∞
−∞

x2e−αx
2

dx = − ∂

∂α

∫ ∞
−∞

e−αx
2

dx =

√
π

α

1

2α
. (6)

p̄2x =
1√

2πmT

∫ ∞
−∞

p2xe
−p2x/2mT dpx = Tm (7)

Therefore, the mean kinetic energy is 3× p2x/2m = 3T/2.

(c)

〈(∆v)2〉 = v2 − v2 (8)

The first term was calculated in part (b) and is equal to 3T/m. For the second term, remember
that the calculation needs to be carried out for the absolute value of the velocity - i.e., the limits of
integration are from 0 to ∞. One can derive a useful general expression for integrals of the form∫∞
0
xne−αx

2

dx using substitution of variables y = αx2:∫ ∞
0

xne−αx
2

dx =
1

2
α−(n+1)/2Γ

(
1

2
(n+ 1)

)
. (9)

〈(∆v)2〉 =
T

m

(
3− 8

π

)


