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I. WORKSHEET: PHYSICS IN INFINITE DIMENSIONS II

Source: R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Dover Publications (2008).

1. Spherical model

Reminder: The n-vector model is a generalization of the Ising model, where the Hamiltonian reads as

H = −J
∑
(i,j)

~si · ~sj . (1)

Here ~si are n-component, unit length, classical spins. In particular, the classical Ising model corre-
sponds to n = 1, while the (classical) XY model to n = 2. Despite its simple form, it is still generally
unsolvable. The search for a model somehow tractable in more than two dimensions has lead to
the invention of the so-called “spherical model”, where continuous classical spin variables σi interact
between nearest neighbor and are subjected to an overall constraint∑

i

σ2
i = N , (2)

where N is the number of the sites. In practice, the Hamiltonian is given by

H = −J
∑
(i,j)

σiσj − h
∑
i

σi (3)

with the constraint (2). This constraint is unphysical, in that it implies an equal coupling, or
interaction, between all spins, no matter how far apart on the lattice they are. Fortunately, this
model was shown to be equivalent to the n-vector model in the limit n → ∞ [M. Kac and C. J.
Thompson, Physica Norvegica 5, 163 (1971)].

The model: We consider the spherical model in a d-dimensional hyper-cubic lattice with periodic bound-
ary conditions. By performing gaussian integrations, one can show that the partition function can
be written as

ZN = βJ
( π

βJ

)N
2

∫ c+i∞

c−i∞

dz

2πi
eNφ(z) , (4)

where c > 0 (being the integrand analytic for Re(z) > 0, the exact value of c does not matter) and

φ(z) = βJ(z + d) +
βh2

4Jz
− 1

2
g(z) , (5)

with

g(z) =

∫∫∫
[0,2π]d

ddω

(2π)d
log
(
z + d−

d∑
i=1

cos(ωi)
)
. (6)
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(a) Show that one can choose c in such a way that φ(z) has a maximum at z = z0, with Im[z0] = 0.

HINT: Use that φ(z) is an analytic function of z for Re(z) > 0.

(b) The asymptotic behavior of the integral for N → ∞ can be obtained using the method of steepest

descent. In practice, this gives limN→∞
1
N log

∫ c+i∞
c−i∞

dz
2πie

Nφ(z) = φ(z0). Express the free energy as

a(n implicit) function of β and h.

HINT: Just exhibit a system of equations whose solution gives the desired result.

(c) Write an implicit equation for the magnetization as a function of β and h (the equation of state).

(d) It is not difficult to show that g′(z) can be written as

g′(z) =

∫ ∞
0

dte−t(z+d)[J0(it)]d , (7)

where J0 is the Bessel function of the first kind. This is a special function which, for large t, behaves
as

J0(it) ∼ et√
2πt

(1 +O(t−1)) . (8)

Analyze the behavior of g′(z) in the limit of small z.

(e) Write the magnetization as a function of h and z0, and show that there is a phase transition for
d > 2. Which is the critical temperature?

HINT: Use the equation that determines z0, i.e. φ′(z0) = 0, in the limit of small h.

(f) The critical exponent β characterizes the behavior of the magnetization as the temperature gets
closer to the critical temperature in the ferromagnetic phase for h = 0

M0 =
(Tc − T

Tc

)β
. (9)

Compute β.

(g) The critical exponent α can be defined as follows:

u+(T )− u−(T ) ∼
(T − Tc

Tc

)1−α
, (10)

where u±(T ) is the internal energy for a temperature T slightly larger/smaller than the critical one.
Compute α.

(h) Derive (4).

HINT 1: Use the identity

δ(x) =

∫ ∞
−∞

ds

2π
eisx . (11)

HINT 2: It is convenient to work in the Fourier space.

HINT 3: In the thermodynamic limit,
∑L
n=1 f(2πn/L) ≈ N

∫ 2π

0
dω
2π f(ω).


