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I. WORKSHEET: STATISTICAL INFERENCE

1. Maximum Likelihood Method for the Bernoulli distribution.
Reminder: The likelihood function is the joint probability density of the data X7, ..., Xy:

N
L(0) = [[ #(x::0) 1)

where 6 is some unknown parameter. The value of § that maximizes L(f) is called maximum
likelihood estimator (MLE) and is used to estimate the true value of . Note that it is often
easier to compute the maximum of log L(6).

Suppose we have a coin which falls heads up with probability p. Let X; represent the outcome of the i*®
flip (x =1 for heads and = = 0 for tails). X has a Bernoulli distribution with PDF

m(x;p) =p*(1 —p)'~* for x=0,1. (2)
(a) Estimate p using the MLE.
(b) Find a 95% confidence interval for p.

(c) Let 7 = eP. Find the MLE for 7.
HINT: Use one of the properties of the MLE.

2. Bootstrap.

Reminder: The bootstrap is a method for estimating standard errors and computing confidence intervals.
The essential idea is to use the empirical distribution to estimate the real distribution of the sample.
One can then perform simulations and extract information about errors and confidence intervals by
taking numerical averages over the bootstrap realizations.
Given a sample of n data, since the empirical distribution puts weight 1/n at each data point, a
bootstrap realization can be seen as the result of extracting n points randomly from the original
sample. Notice that the same data point can appear more than once in each realization.

We draw a sample of N = 2™ numbers with unknown distribution
L1,L2y...3, TN (3)

We wonder which is the minimal value that the random variable can assume and would like to use bootstrap
to compute the variance of the minimum. Unfortunately, we left our computer at home, so we can not
approximate the variance using simulation. Maybe this is not a big issue: to our great surprise, we note
that the numbers have the form 2%/, where j =1,2,...,n+1

T; € {2kj}j€{1,...,n+1}a (4)

and have multiplicity m(j) =277 for j <n and 1 for j =n + 1.



(a) Determine the result that the simulation would have approached.

(b) Approximate the expression assuming N large (if N is large, also n is large).

(¢) Compute the bootstrap 1 — a confidence interval. With which confidence level can we state that the
minimal value is 2?7

. Bayesian inference.

Reminder: The Bayesian approach is based on three postulates: i) Probability describes degree of belief,
not limiting frequencies. ii) We can make probability statements about parameters, even though
they are fixed constants. iii) We make inferences about a parameter by producing a probability
distribution for the parameter.

In ideal gases of non-relativistic particles the speed v is described by the Maxwell-Boltzmann distribution:

mo \3/2 5 m?
mump(v|m, kT) = (W) drv e 2T | (5)

We would like to infer the mass of the particles from a small sample {v} consisting of n measuraments of
the velocities, taken at a given temperature k7.

(a) Construct a prior mppior (m|mme, kT') that encodes our knowledge of the Maxwell-Boltzmann distri-
bution and of the temperature; try to construct a prior that is invariant under reparametrizations,
that is to say a prior independent of the particular functions of v that have been measured in the
experiment.

Hint: Consider a change of scale.

(b) Estimate the mean and the variance of the mass using Bayesian inference.



